CHEMISTRY A European Journal

Supporting Information

Cycloaddition Chemistry of a Silylene-Nickel Complex toward Organic π -Systems: From Reversibility to C–H Activation

Terrance J. Hadlington,* Arseni Kostenko, and Matthias Driess*^[a]

chem_20200009_sm_miscellaneous_information.pdf

Supporting Information

Contents:

1.	Experimental	methods and	data	2
----	--------------	-------------	------	---

- 2. X-Ray crystallographic data......29
- 3. Computational methods and data......33

1. Experimental methods and data

General considerations. All experiments and manipulations were carried out under dry oxygen free dinitrogen using standard Schlenk techniques or in an MBraun inert atmosphere glovebox containing an atmosphere of high purity dinitrogen. Hexane, diethylether, toluene and THF were dried by standard methods. C_6D_6 and D_8 -THF were stirred over a sonicated potassium mirror for a period of 48 hr and recondensed into a Schlenk tube containing activated 4 Å mol sieves. DCM-d₂ was stirred over CaH₂ for 24 hr and distilled into a Schlenk tube containing activated 4 Å mol sieves. NMR spectra were recorded on a Bruker AV 200, 400, or 500 Spectrometer. The ¹H and ¹³C{¹H} NMR spectra were referenced to the residual solvent signals as internal standards. ²⁹Si NMR spectra were externally calibrated with SiMe₄. The starting material [{N(Dipp)(SiMe₃)}ClSi: \rightarrow Ni(NHC)₂] (1; ^{TMS}L = [(Dipp)(SiMe₃)N]⁻; Dipp = C₆H₃-Prⁱ-2,6; NHC = [:C{N(Prⁱ)C(Me)}₂]) was synthesized according to the known literature procedure.¹ All other reagents were used as received.

Synthesis of 2. A solution of **1** (0.2 g, 0.27 mmol) in toluene (10 mL) was cooled to -78 °C, and phenyl acetylene added *via* pipette (30 μL, 0.27 mmol). An immediate color change to deep purple-brown was observed. The reaction mixture was subsequently warmed to ambient temperature, whereupon all volatiles were removed *in vacuo*. The reaction mixture was extracted in warm hexane (15mL), concentrated to ~2 mL, and stored at 4 °C for 2 weeks to afford a crop of deep red-purple crystalline **2** (160 mg, 70 %). ¹H NMR (C₆D₆, 400 MHz, 298 K): δ = 0.41 (s, 9H, Si*Me*₃), 1.09 (br, 18H, NHC-Prⁱ-C*H*₃), 1.35 (overlapping d, 9H, Dipp-Prⁱ-C*H*₃), 1.45 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-C*H*₃), 1.53 (br, 6H, NHC-Prⁱ-C*H*₃) 1.76 (s, 6H, NHC-NC*Me*), 1.81 (s, 6H, NHC-NC*Me*), 3.98 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-C*H*), 4.09 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-C*H*), 5.81 (br, 2H, NHC-Prⁱ-C*H*), 5.85 (sept, ³J_{HH} = 7.2 Hz, 2H, NHC-Prⁱ-C*H*), 6.89 (m, 1H, Ar-C*H*), 7.06 (m, 4H, Ar-C*H*), 7.21 (m, 3H, Ar-C*H*); ¹³C{¹H} NMR (C₆D₆, 75.5 MHz, 298 K): δ = 2.6 (Si*Me*₃), 10.4 and 10.5 (NHC-NC*Me*), 21.9, 22.7, and 23.1 (br, NHC-Prⁱ-C*H*₃), 24.8, 25.4, 25.7, and 26.5 (Dipp-Prⁱ-C*H*₃), 28.3 and 28.4 (Dipp-Prⁱ-C*H*), 52.4 and 52.5 (NHC-Prⁱ-C*H*), 124.3, 124.4, 125.5, and 125.6 (NHC-NC*Me*), 123.8, 127.1, 127.7, 128.4, 131.0, 135.5, 141.7, 148.2, and 168.2 (Ar-C), 200.7 and 200.8 (NHC-C;); ²⁹Si{¹H} NMR (C₆D₆, 80 MHz, 298 K): δ = 6.4 (*Si*Me₃), -32.9 (H-*Si*-L^{TMS}); anal. calcd. for C₄₅H₇₂ClN₅NiSi₂: C, 64.85 %; H, 8.71 %; N, 8.40 %; found: C, 64.58 %; H, 9.08%; N, 8.30 %.

Figure S2. $^{13}C\{^{1}H\}$ NMR spectrum of 2 dissolved in C₆D₆, at 298K.

Figure S3. ²⁹Si,¹H HMQC NMR spectrum of 2 dissolved in C₆D₆, at 298K.

Synthesis of 3. A solution of 1 (0.2 g, 0.27 mmol) in toluene (10 mL), was cooled to -78 °C, and acetophenone added via pipette (32 µL, 0.27 mmol), leading to an immediate color change to orange-yellow. The reaction was warmed to 0 °C, and all volatiles removed in vacuo. The residue was extracted in hexane, filtered, and concentrated to 5 mL. Storage of this solution at ambient temperature led to the formation of a large crop of yellow crystals of 3 over the course of 1 h (150 mg, 65 %). Storage of the solution at this temperature for >2 h periods leads to decomposition of the product. ¹H NMR (D₈-THF, 400 MHz, 243 K): δ = -11.71 (s, 1H, Ni-H), 0.25 (s, 9H, Si*Me*₃), 0.94 (d, ³J_{HH} = 6.8 Hz, 6H, Dipp-Prⁱ-C*H*₃), 0.98-1.34 (overlapping d/br, 27H, Prⁱ-C*H*₃), 1.47 (br d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ-CH₃), 1.55 (br d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ-CH₃), 2.16 (s, 6H, NHC-NCMe), 2.18 (s, 6H, NHC-NCMe), 2.22 (s, 6H, NHC-NCMe), 3.97 (br, 2H, Dipp-Prⁱ-CH), 4.57 (br, 1H, Ni-η²-(CH₂CH-Si)), 5.20-6.00 (br, 4H, NHC-Prⁱ-CH), 5.63 (br, 2H, Ni-η²-(CH₂CH-Si)), 6.88-7.11 (m, 8H, Ar-CH); ¹³C{¹H} NMR (D₈-THF, 75.5 MHz, 243 K): δ = 5.0 (SiMe₃), 10.5, and 10.6 (NHC-NCMe), 21.5, 21.7, 22.4, and 23.07 (br/overlapping, NHC-Prⁱ-CH₃), 25.9, 26.2, 26.5, and 26.9 (Dipp-Prⁱ-CH₃), 28.4, and 28.7 (Dipp-Prⁱ-CH), 53.8, 53.9, and 54.3 (br, NHC-Prⁱ-CH), 91.3 (Ph-C=CH₂), 125.5, and 127.3 (NHC-NCMe), 124.2, 124.3, 125.6, 126.6, 127.9, 140.6, 145.4, 148.1, and 148.2 (Ar-C), 156.6 (Ph-C=CH₂), 192.1, and 194.2 (NHC-C:); ²⁹Si{¹H} NMR (D₈-THF, 80 MHz, 243 K): δ = 1.6 (SiMe₃), -18.7 (O-Si-Ni); anal. calcd. for C₄₅H₇₄ClN₅NiOSi₂: C, 63.48 %; H, 8.76 %; N, 8.23 %; found: C, 63.36 %; H, 8.76 %; N, 8.03 %.

Figure S5. ¹³C{¹H} NMR spectrum of 3 dissolved in D₈-THF, at 243K.

Figure S7. ²⁹Si,¹H HMQC NMR spectrum of 3 dissolved in D₈-THF, at 243K.

Synthesis of 4. A solution of 1 (0.15 g, 0.21 mmol) in toluene (10 mL) was cooled to -78 °C, and 4-trifluoromethyl benzaldehyde added via pipette (25 µL, 0.21 mmol), leading to an immediate color change to orange-yellow. The reaction was warmed to 0 °C, and all volatiles removed *in vacuo*. The residue was extracted in hexane, filtered, and concentrated to 5 mL. Storage of this solution at ambient temperature overnight led to the formation of a large crop of orange crystals of 4 (80 mg, 46 %). ¹H NMR (D₈-THF, 400 MHz, 298 K): $\delta = 0.35$ (s, 9H, SiMe₃), 0.39 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 0.59 (overlapping d, ³J_{HH} = 7.2 Hz, 6H, NHC-Prⁱ-CH₃), 0.82 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-CH₃), 1.11 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ-CH₃), 1.16 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ-CH₃), 1.21 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-CH₃), 1.40 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 1.47 (overlapping d, ³J_{HH} = 7.2 Hz, 6H, NHC-Prⁱ-CH₃), 1.74 (d, ${}^{3}J_{HH} = 7.2$ Hz, 3H, NHC-Prⁱ-CH₃), 1.85 (d, ${}^{3}J_{HH} = 7.2$ Hz, 3H, NHC-Prⁱ-CH₃), 2.04 (s, 12H, NHC-NCMe), 2.08 (s, 12H, NHC-NCMe), 2.15 (s, 12H, NHC-NCMe), 2.34 (s, 12H, NHC-NCMe), 3.57 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-CH), 3.78 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-CH), 4.52 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 5.08 (s, 1H, Si-OC(H)(Ph)-Ni), 5.28 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 6.53 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-C*H*), 6.80 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-C*H*), 6.90 (m, 2H, Dipp-*m*-Ar-C*H*), 6.95 (m, 1H, Dipp-*p*-Ar-C*H*), 7.12 and 7.21 (m, 4H, CF₃-Benzlald.-Ar-C*H*); ¹³C{¹H} NMR (D₈-THF, 75.5 MHz, 298 K): δ = 4.0 (SiMe₃), 10.3, 10.6, 10.7 and 10.8 (NHC-NCMe), 20.3, 20.9, 21.0, 21.3, 22.6, and 23.1 (NHC-Prⁱ-CH₃), 24.1 and 25.6 (Dipp-Prⁱ-CH₃), 28.5 and 28.7 (Dipp-Prⁱ-CH), 53.0, 53.5, 53.6, and 53.9 (NHC-Prⁱ-CH), 123.4, 123.9, 124.3, and 125.3 (NHC-NCMe), 124.8 (q, Ar-CF₃), 125.9, 126.0, 126.9, 127.8, 144.6, 147.1, 148.7, and 159.1 (Ar-C), 187.5 and 190.5 (NHC-C:); ¹⁹F NMR (D₈-THF, 188 MHz, 298 K): δ = 64.3; anal. calcd. for C₄₅H₇₁ClF₃N₅NiOSi₂: C, 59.70 %; H, 7.90 %; N, 7.74 %; found: C, 59.84 %; H, 8.19 %; N, 7.43 %.

Figure S8. ¹H NMR spectrum of 4 dissolved in D₈-THF, at 298K.

Figure S9. ¹³C{¹H} NMR spectrum of 4 dissolved in D₈-THF, at 298K.

Synthesis of 5. A solution of 1 (0.2 g, 0.27 mmol) in toluene (10 mL), was cooled to -78 °C, and Nbenzylideneaniline added as a solid (49.7 mg, 0.27 mmol). A color change to orange-yellow was observed after stirring for 2 h with warming to ambient temperature. At this stage, all volatiles were removed from the reaction mixture in vacuo, the solid residue extracted in diethyl ether (25 mL), and filtered. Concentration of this solution to 15 mL and storage at 4 °C overnight resulted in the formation of large crop of red-orange crystals of 5 (110 mg, 45 %). ¹H NMR (D₈-THF, 400 MHz, 298 K): δ = 0.02 (br, 3H, NHC-Prⁱ-CH₃), 0.26 (s, 9H, SiMe₃), 0.32 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 0.45 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 0.51 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ- CH_{3} , 0.88 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ- CH_{3}), 1.00 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ- CH_{3}), 1.14 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ-CH₃), 1.46 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ-CH₃), 1.50 (d, ${}^{3}J_{HH} = 7.2$ Hz, 3H, NHC-Prⁱ-CH₃), 1.55 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 1.77 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 1.99 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 2.01 (s, 3H, NHC-NCMe), 2.19 (s, 3H, NHC-NCMe), 2.27 (s, 3H, NHC-NCMe), 2.36 (s, 3H, NHC-NCMe), 3.70 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-CH), 3.89 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-CH), 4.31 (s, 1H, Si-N(Ph)C(H)(Ph)-Ni), 4.43 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 5.29 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 6.18 (m, 1H, Ar-C*H*), 6.56 (m, 5H, Ar-C*H*), 6.78 (overlapping sept, 1H, NHC-Prⁱ-C*H*₃), 6.79-6.94 (m, 7H, Ar-C*H*), 7.00 (overlapping sept, 1H, NHC-Prⁱ-CH₃); ${}^{13}C{}^{1}H{}$ NMR (D₈-THF, 75.5 MHz, 298 K): $\delta = 4.1$ (SiMe₃), 10.4, 10.7, 10.8, and 10.9 (NHC-NCMe), 20.6, 20.9, 21.0, 21.5, 22.0, 22.6, 23.5, and 24.6 (NHC-Pri-CH₃), 25.9, 26.0, 26.2, and 26.8 (Dipp-Prⁱ-CH₃), 28.1 and 28.5 (Dipp-Prⁱ-CH), 45.6 (PhN-C(H)(Ph)), 53.1, 53.6, 53.7, and 54.0 (NHC-Prⁱ-

CH), 125.6, 125.8, 126.6, and 126.8 (NHC-NCMe), 116.6, 119.3, 122.3, 124.1, 124.4, 124.5, 124.7, 127.8, 127.9, 128.0, 145.0, 147.5, 148.4, 148.7, 150.6, and 153.4 (Ar-*C*), 188.8 and 191.7 (NHC-*C*:); ²⁹Si{¹H} NMR (D₈-THF, 80 MHz, 298 K): δ = 2.4 (*SI*Me₃), -65.4 (Ni-C(H)(Ph)-N(Ph)-*Si*); anal. calcd. for C₅₀H₇₇ClN₆NiSi₂: C, 65.81 %; H, 8.51 %; N, 9.21 %; found: C, 64.65 %; H, 8.35 %; N, 9.12 %.

Figure S10. ¹H NMR spectrum of 5 dissolved in D₈-THF, at 298K.

Figure S12. ²⁹Si{¹H} NMR spectrum of 5 dissolved in D₈-THF, at 298K.

Figure S13. ²⁹Si,¹H HMQC NMR spectrum of 5 dissolved in D₈-THF, at 298K.

Synthesis of 6. A solution of 1 (0.15 g, 0.21 mmol) in toluene (10 mL) was cooled to -78 °C, and the atmosphere of the reaction vessel exchanged for acetylene. The color of the reaction mixture immediately became yellow, whereupon the atmosphere of the flask was exchanged for nitrogen gas through several vacuum cycles. If excess acetylene is not entirely removed from the reaction, insoluble dark purple material is formed upon warming the reaction mixture. The reaction mixture was subsequently warmed to ambient temperature, and all volatiles removed in vacuo. The yellow residue was extracted in warm hexane (15 mL), filtered, and concentrated to 5 mL. Storage of this solution at ambient temperature for one day resulted in the formation of a small crop of yellow crystals of **6** (90 mg, 59 %). ¹H NMR (C₆D₆, 400 MHz, 298 K): δ = 0.39 (s, 9H, Si*Me*₃), 0.74 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 0.85 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 1.18 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 1.12 NHC-Prⁱ-CH₃), 1.44 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-CH₃), 1.46 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-CH₃), 1.53 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-CH₃), 1.62 (s, 3H, NHC-NCMe), 1.65 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-CH₃), 1.70 (s, 3H, NHC-NCMe), 1.72 62 (s, 3H, NHC-NCMe), 1.76 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 1.80 (s, 3H, NHC-NCMe), 4.15 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-C*H*), 4.40 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-C*H*), 5.73 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 5.90 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 5.97 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 6.61 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-C*H*), 7.19 (m, 1H, *p*-Ar-C*H*), 7.27 (m, 2H, *m*-Ar-C*H*), 7.73 (d, ³J_{HH} = 12.50 Hz, 1H, Si-C(H)=C(H)-Ni), 8.25 (d, ³J_{HH} = 12.50 Hz, 1H, Si-C(H)=C(H)-Ni); ¹³C(¹H) NMR (C₆D₆, 75.5 MHz, 298 K): δ = 3.4 (Si*Me*₃), 10.1, 10.2, 10.4 and 10.5 (NHC-NC*Me*), 21.1, 21.5, 21.6, 21.7, 22.2, 22.4, 23.2, and 24.3 (NHC-Prⁱ-*C*H₃), 25.4, 25.8, 26.5, and 26.6 (Dipp-Prⁱ-*C*H₃), 28.1 and 28.2 (Dipp-Prⁱ-*C*H), 52.2, 52.5, 52.6, and 52.7 (NHC-Prⁱ-*C*H), 124.2 and 124.3 (4 overlapping peaks, NHC-N*C*Me), 123.6, 124.8, 125.7, 144.4, 147.3, and 148.8 (Ar-*C*), 169.1 and 171.2 (Si-*C*(H)=*C*(H)-Ni), 190.8 and 194.6 (NHC-*C*:); ²⁹Si{¹H} NMR (C₆D₆, 80 MHz, 298 K): δ = 2.3 (*Si*Me₃), -59.8 (Si-C(H)=C(H)-Ni); anal. calcd. for C₃₉H₆₈ClN₅NiSi₂: C, 61.85 %; H, 9.05 %; N, 9.25 %; found: C, 61.45 %; H, 8.85 %; N, 9.07 %.

Figure S14. ¹H NMR spectrum of 6 dissolved in C₆D₆, at 298K.

Figure S16. ${}^{29}Si{}^{1}H$ NMR spectrum of 6 dissolved in C₆D₆, at 298K.

Figure S17. ²⁹Si,¹H HMQC NMR spectrum of 6 dissolved in C₆D₆, at 298K.

Synthesis of 6-OMe. To a solution of 1 (0.15 g, 0.21 mmol) in toluene (10 mL) was added 1,4-dimethoxy-2butyne added via pipette (27 µL, 0.21 mmol) at ambient temperature. After stirring for 1 h, a color change to bright orange was observed. All volatiles were subsequently removed from the reaction mixture in vacuo, the solid residue extracted in hexane (10 mL), and filtered. Concentration of this solution to 5 mL and storage at 4 °C overnight resulted in the formation of large crop of orange crystals of 6-OMe (85 mg, 49 %). ¹H NMR (C_6D_6 , 400 MHz, 298 K): δ = 0.28 (s, 9H, Si*Me*₃), 0.76 (br dd, 6H, NHC-Prⁱ-C*H*₃), 1.32 (br, 6H, NHC-Prⁱ-C*H*₃), 1.38 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 1.41 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-CH₃), 1.43 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-CH₃), 1.46 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-CH₃), 1.50 (br, 3H, NHC-Prⁱ-CH₃), 1.59 (br, 3H, NHC-Prⁱ-CH₃), 1.62 (d, ${}^{3}J_{HH} = 7.2 \text{ Hz}, 3H, \text{ NHC-Pr}^{i}-CH_{3}$, 1.68 (s, 3H, NHC-NC*Me*), 1.69 (d, ${}^{3}J_{HH} = 6.8 \text{ Hz}, 3H, \text{ Dipp-Pr}^{i}-CH_{3}$), 1.73 (s, 6H, NHC-NCMe), 1.80 (s, 3H, NHC-NCMe), 3.12 (s, 3H, CH₂-OMe), 3.41 (s, 3H, CH₂-OMe), 3.81 (m, 1H, CH₂-OMe), 3.94 (m, 1H, CH₂-OMe), 3.96 (sept, ³J_{HH} = 6.8 Hz, 2H, Dipp-Prⁱ-CH), 4.51 (sept, ³J_{HH} = 6.8 Hz, 2H, Dipp-Prⁱ-C*H*),5.37 (br, 1H, NHC-Prⁱ-C*H*), 5.94 (br, 1H, NHC-Prⁱ-C*H*), 6.49 (br, 1H, NHC-Prⁱ-C*H*), 6.93 (br, 1H, NHC-Prⁱ-CH), 7.20 (m, 2H, *m*-Ar-CH), 7.29 (m, 1H, *p*-Ar-CH); ¹³C{¹H} NMR (C₆D₆, 75.5 MHz, 298 K): δ = 2.6 (SiMe₃), 9.8, 9.9, 10.1 (4 signals, NHC-NCMe), 20.8, 21.0, 21.3, 21.5, 21.7, 21.9, 22.5, and 22.6 (NHC-Prⁱ-CH₃), 25.2, 25.6, 25.7, and 26.6 (Dipp-Prⁱ-CH₃), 27.7 and 27.8 (Dipp-Prⁱ-CH), 51.6, 52.0, 52.3, and 52.6 (NHC-Prⁱ-CH), 57.1 and 57.4 (CH₂OMe), 69.8 and 77.6 (CH₂OMe), 123.0 and 125.0 (NHC-NCMe), 123.6, 124.1, 124.4, 124.6, 142.5, 145.0, 147.3, and 147.8 (Ar-C), 182.7 and 191.7 (MeOCH₂C=CCH₂OMe), 192.7 (NHC-C:); ²⁹Si{¹H} NMR (C₆D₆, 80 MHz, 298 K): δ = 2.2 (S*i*Me₃), -63.3 (S*i*-C=C-Ni); anal. calcd. for C₄₃H₇₆ClN₅NiO₂Si₂: C, 61.09 %; H, 9.06 %; N, 8.28 %; found: C, 61.01 %; H, 8.14%; N, 8.91 %.

Figure S19. ¹³C{¹H} NMR spectrum of 6-OMe dissolved in C₆D₆, at 298K.

Figure S21. ²⁹Si,¹H HMQC NMR spectrum of 6-OMe dissolved in C₆D₆, at 298K.

---63.33

Synthesis of 7. A solution of 1 (0.15 g, 0.21 mmol) in diethyl ether (25 mL) was cooled to -78 °C, and treated with an atmosphere of ethylene. The color of the reaction mixture immediately became yellow, whereupon the atmosphere of the flask was exchanged for nitrogen gas through several vacuum cycles. The solution was warmed to 0 °C, filtered into a precooled Schlenk flask, and concentrated to ~10 mL by blowing a stream of nitrogen gas over the solution. The reaction mixture was stored at -30 °C overnight to yield a small crop of yellow plate-like crystals (45 mg, 29 %). ¹H NMR (D₈-THF, 400 MHz, 298 K): δ = -0.06 (s, 9H, Si*Me*₃), 0.57 (m, 2H, Ni- CH_2CH_2 -Si), 0.80 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ-CH₃), 0.95 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ-CH₃), 1.06 (d, ${}^{3}J_{HH} = 6.8$ Hz, 2H, Dipp-Prⁱ-CH₃), 1.06 (d, {}^{3}J_{HH} = 6.8 Hz, 2H, Dipp-Prⁱ-CH₃), 1.06 (d, {}^{3}J_{HH} = 6.8 Hz, 2H 6.8 Hz, 3H, Dipp-Prⁱ-CH₃), 1.19 (overlapping d, 6H, NHC-iPr-CH₃), 1.34 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, Dipp-Prⁱ-CH₃), 1.34 (m, 2H, Ni-C H_2 CH₂-Si) 1.38 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-C H_3), 1.50 (d, ³J_{HH} = 7.2 Hz, 6H, NHC-Prⁱ-C H_3), 1.53 (d, ${}^{3}J_{HH} = 7.2$ Hz, 6H, NHC-Prⁱ-CH₃), 1.66 (d, ${}^{3}J_{HH} = 7.2$ Hz, 3H, Dipp-Prⁱ-CH₃), 2.10 (s, 6H, NHC-NCMe), 2.19 (s, 6H, NHC-NCMe), 2.21 (s, 6H, NHC-NCMe), 3.79 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-CH), 3.91 (sept, ³J_{HH} = 6.8 Hz, 2H, Dipp-Prⁱ-CH), 5.50 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 5.57 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 6.31 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 6.78 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 6.87 (m, 1H, *p*-Ar-CH), 6.94 (m, 2H, *m*-Ar-CH); ${}^{13}C{}^{1}H{}$ NMR (D₈-THF, 75.5 MHz, 233 K): $\delta = 1.7$ (Ni-CH₂CH₂-Si), 3.2 (SiMe₃), 10.3, 10.4, 10.6, and 10.8 (NHC-NCMe), 21.0 (Ni-CH₂CH₂-Si), 21.2, 21.7, 21.9, 22.0, 22.9, 24.3, 25.9, and 26.0 (NHC-Prⁱ-CH₃), 26.2, 26.8, 28.0, and 28.5 (Dipp-Prⁱ-CH₃), 30.8 (br, Dipp-Prⁱ-CH), 53.0, 53.2, 53.3, and 53.4 (NHC-Prⁱ-CH), 123.5, 124.0, 124.7, and 126.7 (NHC-NCMe), 123.9, 124.7, 126.7, 144.6, 147.0, and 148.3 (Ar-C), 191.6, and 194.3 (NHC-C:); ²⁹Si{¹H} NMR (D₈-THF, 80 MHz, 298 K): δ = 1.8 (SiMe₃), -26.0 (Ni-C₂H₄-Si); anal. calcd. for C₃₉H₇₀ClN₅NiSi₂: C, 61.69 %; H, 9.29 %; N, 9.22 %; found: C, 62.01 %; H, 9.25%; N, 9.44 %.

N.B. Keeping an NMR sample of **7** at ambient temperature for 24 h results in complete disproportionation to **1** and **9**. However, a few crystals of **8** could be isolated when reacting a hexane solution of **1** with excess ethylene followed by storage at low-temperature for several days, from which a poor-quality structure could be obtained (see below), confirming its connectivity. No further data was obtained for this compound, however.

Figure S22. Molecular structure of 8, with thermal ellipsoids at 30% probability.

Figure S23. ¹H NMR spectrum of 7 dissolved in C₆D₆, at 298K. An asterisk indicates excess ethylene, required to prevent regeneration of starting material 1.

Figure S24. ¹³C{¹H} NMR spectrum of 7 dissolved in C_6D_6 , at 298K.

Figure S26. ²⁹Si,¹H HMQC NMR spectrum of 7 dissolved in C₆D₆, at 298K.

Synthesis of 9. A solution of 1 (0.15 g, 0.21 mmol) in toluene (10 mL) was stirred under an atmosphere of ethylene for 18 h at ambient temperature, resulting in a pale yellow solution. All volatiles were subsequently removed from the reaction mixture in vacuo, the residue extracted in hexane (10 mL), and filtered. Concentration of the filtrate to ~5 mL and storage at ambient temperature overnight resulted in the formation of a large crop of yellow crystalline material. (105 mg, 65 %). ¹H NMR (C₆D₆, 400 MHz, 298 K): δ = 0.50 (m, 1H, Si-CH₂CH₃), 0.57 (m, 3H, Si-CH₂CH₃), 0.65 (s, 9H, SiMe₃), 0.70 (m, 1H, Si-CH₂CH₃), 0.81 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, NHC-Prⁱ-CH₃), 1.01 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, NHC-Prⁱ-CH₃), 1.12 (m, 1H, Ni-(H₂C=C(H)Si)), 1.23 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, NHC-Prⁱ- CH_3), 1.25 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, NHC-Prⁱ- CH_3), 1.38 (d, ${}^{3}J_{HH} = 6.8$ Hz, 6H, Dipp-Prⁱ- CH_3), 1.40 (d, ${}^{3}J_{HH} = 7.2$ Hz, 6H, NHC-Prⁱ-CH₃), 1.44 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 1.45 (d, ³J_{HH} = 7.2 Hz, 3H, NHC-Prⁱ-CH₃), 1.55 (d, ³J_{HH} = 6.8 Hz, 6H, Dipp-Prⁱ-CH₃), 1.68 (s, 3H, NHC-NC*Me*), 1.74 (s, 3H, NHC-NC*Me*), 1.75 (s, 3H, NHC-NC*Me*), 1.87 (s, 3H, NHC-NC*Me*), 1.95 (m, 1H, Ni-(*H*₂C=C(H)Si), 2.04 (m, 1H, Ni-(*H*₂C=C(H)Si), 4.05 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-CH), 4.25 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-CH), 5.52 (sept, ³J_{HH} = 7.2 Hz, 1H, NHC-Prⁱ-CH), 5.74 (sept, ${}^{3}J_{HH} = 7.2$ Hz, 1H, NHC-Prⁱ-CH), 6.00 (sept, ${}^{3}J_{HH} = 7.2$ Hz, 1H, NHC-Prⁱ-CH), 6.40 (sept, ${}^{3}J_{HH} = 7.2$ Hz, 1H, NHC-Prⁱ-CH), 7.11 (m, 3H, Ar-CH); ¹³C{¹H} NMR (C₆D₆, 75.5 MHz, 298 K): δ = 3.7 (SiMe₃), 8.9 (Si-CH₂CH₃), 10.2, 10.3, and 10.4 (NHC-NCMe), 12.2 (Si-CH₂CH₃), 21.6, 21.7, 21.9, 22.1, 22.7, 23.4, 24.9, and 25.3 (NHC-Prⁱ-CH₃), 25.1 (Ni-(H₂C=C(H)Si), 26.5 and 26.6 (Dipp-Prⁱ-CH₃), 27.9 (Ni-(H₂C=C(H)Si), 30.1 (Dipp-Prⁱ-CH), 51.6, 52.1, and 52.5 (NHC-Prⁱ-CH), 122.9, 123.1, 123.5, and 123.7 (NHC-NCMe), 123.7, 124.6, 124.9, 144.2, 146.8, and 148.2 (Ar-*C*), 202.1 and 202.3 (NHC-*C*:); ²⁹Si{¹H} NMR (C₆D₆, 80 MHz, 298 K): δ = 5.2 (S*i*Me₃), 7.8 (^{™S}L(CI)*Si*Et); anal. calcd. for C₄₁H₇₄ClN₅NiSi₂: C, 62.54 %; H, 9.47 %; N, 8.89 %; found: C, 62.18 %; H, 9.29%; N, 8.66 %.

Figure S27. ¹H NMR spectrum of 9 dissolved in C₆D₆, at 298K.

Figure S29. ¹³C{¹H} NMR spectrum of 9 dissolved in C₆D₆, at 298K.

Figure S31. ²⁹Si,¹H HMQC NMR spectrum of 9 dissolved in C₆D₆, at 298K.

Synthesis of 9-Ph. To a solution of **1** (0.15 g, 0.21 mmol) in toluene (10 mL) was added styrene (52 μL, 0,45 mmol) at -78 °C. The reaction was warmed to ambient temperature and stirred for 18 h, resulting in a yellow-brown solution. All volatiles were removed from this mixture *in vacuo*, and the residue extracted in hexane (10 mL). Filtration, concentration to 4 mL, and storage at ambient temperature resulted in the formation of a large crop of yellow crystalline material (100 mg, 52 %). ¹H NMR (C₆D₆, 400 MHz, 298 K): δ = 0.41 (s, 9H, Si*Me*₃), 1.09 (br, 18H, NHC-Prⁱ-C*H*₃), 1.35 (overlapping d, 9H, Dipp-Prⁱ-C*H*₃), 1.45 (d, ³J_{HH} = 6.8 Hz, 3H, Dipp-Prⁱ-C*H*₃), 1.53 (br, 6H, NHC-Prⁱ-C*H*₃) 1.76 (s, 6H, NHC-NC*Me*), 1.81 (s, 6H, NHC-NC*Me*), 3.98 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-C*H*), 4.09 (sept, ³J_{HH} = 6.8 Hz, 1H, Dipp-Prⁱ-C*H*), 5.81 (br, 2H, NHC-Prⁱ-C*H*), 5.85 (sept, ³J_{HH} = 7.2 Hz, 2H, NHC-Prⁱ-C*H*), 6.89 (m, 1H, Ar-C*H*), 7.06 (m, 4H, Ar-C*H*), 7.21 (m, 3H, Ar-C*H*); ¹³C{¹H} NMR (C₆D₆, 75.5 MHz, 298 K): δ = 2.6 (Si*Me*₃), 10.4 and 10.5 (NHC-NC*Me*), 21.9, 22.7, and 23.1 (br, NHC-Prⁱ-CH₃), 24.8, 25.4, 25.7, and 26.5 (Dipp-Prⁱ-CH₃), 28.3 and 28.4 (Dipp-Prⁱ-CH), 52.4 and 52.5 (NHC-Prⁱ-CH), 124.3, 124.4, 125.5, and 125.6 (NHC-NCMe), 123.8, 127.1, 127.7, 128.4, 131.0, 135.5, 141.7, 148.2, and 168.2 (Ar-C), 200.7 and 200.8 (NHC-C); ²⁹Si{¹H</sup> NMR (C₆D₆, 80 MHz, 298 K): δ = 6.4 (*Si*Me₃), -32.9 (H-*Si*-L^{TMS}); anal. calcd. for C₅₃H₈₂ClN₅NiSi₂: C, 67.75 %; H, 8.80 %; N, 7.45 %; found: C, 67.89 %; H, 8.93%; N, 7.30 %.

Figure S32. ¹H NMR spectrum of **9-Ph** dissolved in C₆D₆, at 298K.

Figure S33. Zoom of the ¹H NMR spectrum of **9-Ph** dissolved in C_6D_6 , from 0.0 ppm to 2.0 ppm, at 298K.

Figure S34. ${}^{13}C{}^{1}H$ NMR spectrum of 9 dissolved in C₆D₆, at 298K.

Figure S36. ²⁹Si,¹H HMQC NMR spectrum of **9-Ph** dissolved in C₆D₆, at 298K.

5.89

Synthesis of 10. A solution of **1** (0.15 g, 0.21 mmol) in toluene (10 mL) was cooled to -78 °C, and 2-butyne added *via* pipette (50 µL, 0.62 mmol). The reaction initially became bright yellow-orange, and slowly became pale yellow after stirring with warming to ambient temperature overnight. All volatiles were subsequently removed *in vacuo*, the reaction mixture extracted in hexane (15mL), and concentrated to ~2 mL, whereupon colorless crystals began to form. Storage of this sample at ambient temperature overnight allowed for the formation of large colorless crystals of **10** suitable for an X-ray diffraction analysis. (35 mg, 41 %). ¹H NMR (C₆D₆, 200 MHz, 298 K): δ = 0.24 (s, 9H, Si*Me*₃), 1.20 (d, ³J_{HH} = 6.8 Hz, 6H, Dipp-Prⁱ-CH₃), 1.29 (d, ³J_{HH} = 6.8 Hz, 6H, Dipp-Prⁱ-CH₃), 1.53 (br s, 6H, Si{C(Me)C(Me)}₂), 1.63 (br s, 6H, Si{C(Me)C(Me)}₂), 3.63 (sept, ³J_{HH} = 6.8 Hz, 2H, Dipp-Prⁱ-CH₃), 7.05 (m, 3H, Ar-CH); ¹³C{¹H} NMR (C₆D₆, 75.5 MHz, 298 K): δ = 1.8 (Si*Me*₃), 13.2 and 13.7 (Si{C(*Me*)C(*Me*)}₂)), 24.9 and 25.0 (Dipp-Prⁱ-CH₃), 27.9 (Dipp-Prⁱ-CH), 125.6 and 126.2 (Si{C(Me)C(Me)}₂)), 123.9, 147.6, and 149.6 (Ar-CH); ²⁹Si{¹H} NMR (C₆D₆, 80 MHz, 298 K): δ = 7.7 (*Si*Me₃), -5.9 (*Si*{C(Me)C(Me)}₂)); anal. calcd. for C₂₃H₃₈CINSi₂: C, 65.75 %; H, 9.12 %; N, 3.33 %; found: C, 65.46 %; H, 9.18 %; N, 3.32 %.

Figure S37. ¹H NMR spectrum of 10 dissolved in C₆D₆, at 298K.

Figure S39. $^{29}Si\{^{1}H\}$ NMR spectrum of 10 dissolved in C₆D₆, at 298K.

2. X-Ray crystallographic data

Crystals were mounted on a glass capillary in perfluorinated oil and measured in a cold N₂ flow. The data was collected on an Oxford Diffraction SuperNova Atlas at 150 K (Cu-K α radiation, λ = 1.54184 Å). The structures were solved by direct methods or using the SHELXT program² and refined on F² with the SHELX-2014 software package.³ The positions of the H atoms were calculated and considered isotropically according to a riding model, aside from the Ni-H moiety found in **3**, which was located and freely refined. Full crystal data, refinement and data collection details for all crystallographically characterized compounds can be found in their CIFs.

Figure S40. The molecular structure of 3, with thermal ellipsoids at 30% probability.

Figure S41. The molecular structure of 4, with thermal ellipsoids at 30% probability.

Figure S42. The molecular structure of 5, with thermal ellipsoids at 30% probability.

Figure S43. The molecular structure of 6-OMe, with thermal ellipsoids at 30% probability.

Figure S44. The molecular structure of 9-Ph, with thermal ellipsoids at 30% probability.

Table S1.	Summary of	^c crystallographic	data for compounds	3, 4,	1, 5, 6, and 6-OMe.
		, <u> </u>		,	, , ,

	3	4	5	6	6-OMe
empirical form.	C45H74CIN5NiOSi2	$C_{45}H_{71}CIF_3N_5NiOSi_2$	C50H77CIN6NiSi2	C ₃₉ H ₆₈ CIN ₅ NiSi ₂	C43H76CIN5NiO2Si2
formula wt	851.43	905.40	912.51	757.32	845.42
crystal syst.	triclinic	orthorhombic	orthorhombic	orthorhombic	monoclinic
space group	P-1	P212121	Pna2₁	Pbca	P21/n
a (Å)	10.0535(3)	13.12070(10)	25.1576(5)	18.5613(6)	10.11490(10)
b (Å)	12.7880(4)	18.32810(10)	12.7701(3)	18.5497(5)	14. 27.8799(4)
<i>c</i> (Å)	20.3697(5)	19.8222(2)	15.4377(4)	24.7704(6)	17.5039(2)
α (deg.)	75.549(2)	90	90	90	90
β (δεγ)	87.147(2)	90	90	90	100.7680(10)
γ (deg.)	70.938(3)	90	90	90	90
vol (Å ³)	2395.46(13)	4766.79(7)	4959.6(2)	8528.6(4)	4849.22(10)
Z	2	4	4	8	4
ρ(calc) (g.cm ⁻³)	1.180	1.262	1.222	1.180	1.158
μ (mm ⁻¹)	1.854	1.988	1.817	2.003	1.842
<i>F</i> (000)	920	1936	1968	3280	1832
Т (К)	150(2)	150(2)	150(2)	150(2)	150(2)
refins collect.	16804	19407	20162	60903	34731
unique reflns	9032	8502	8535	8086	9195
Rint	0.0221	0.0199	0.0672	0.0480	0.0379
R1 [<i>l</i> >2 <i>σ</i> (<i>l</i>)]	0.0230	0.0242	0.0713	0.0253	0.0300
wR2 (all data)	0.0904	0.0846	0.2176	0.1082	0.1044
CCDC No.	1935411	1935412	1935413	1935414	1935415

	7	9	9-Ph·1(hexane)	10
empirical form.	C ₃₉ H ₇₀ CIN ₅ NiSi ₂	C41H74CIN5NiSi2	C56H89CIN5NiSi2	C23H38CINSi2
formula wt	759.34	787.39	982.66	420.17
crystal syst.	orthorhombic	monoclinic	monoclinic	monoclinic
space group	Pbca	P21/c	P21/c	C2/c
a (Å)	18.6232(5)	10.7905(2)	10.3865(2)	15.5485(3)
b (Å)	18.4205(6)	25.2369(5)	22.2433(6)	9.5907(2)
<i>c</i> (Å)	24.8498(6)	16.9414(4)	25.0818(5)	33.9484(7)
α (deg.)	90	90	90	90
β (δεγ)	90	92.780(2)	99.863(2)	104.255(2)
γ (deg.)	90	90	90	90
vol (Å ³)	8524.7(4)	4608.03(17)	5709.0(2)	4906.54(18)
Z	8	4	4	8
ρ(calc) (g.cm ⁻³)	1.183	1.135	1.143	1.138
μ (mm ⁻¹)	2.004	1.870	1.604	2.355
<i>F</i> (000)	3296	1712	2132	1824
Т (К)	150(2)	150(2)	150(2)	150(2)
refins collect.	33492	18612	22039	10172
unique reflns	8002	8692	10306	4624
R _{int}	0.0456	0.0416	0.1013	0.0220
R1 [<i>l</i> >2 <i>σ</i> (<i>l</i>)]	0.0334	0.0539	0.1296	0.0246
wR2 (all data)	0.1170	0.1324	0.2945	0.0908
CCDC No.	1935416	1935417	1935418	1935419

 Table S2. Summary of crystallographic data for compounds 7, 9, 9-Ph, and 10.

3. Computational methods and data

DFT calculations were performed at the B97-D/cc-pVTZ//B97-D/6-31G(d)[Ni: cc-pVTZ] level of theory,⁴ with the GAUSSIAN 09.D01 software.⁵ Stationary points were verified by harmonic vibrational frequency calculations. Transition states were analyzed by intrinsic reaction coordinate (IRC) calculations.

Figure S45. Reaction pathway for the addition of H_2CO to 1. L = NHC, NR₂ = ^{TMS}L.

Figure S46. Reaction pathway for the addition of 2 equiv. C_2H_2 to **1**. L = NHC, NR₂ = ^{TMS}L.

Figure S47. LUMO+1 (-0.181 eV).

Figure S48. LUMO (-0.594 eV).

Figure S49. HOMO (-3.300 eV)

Figure S50. HOMO-2 (-3.408 eV).

Figure S51. HOMO-3 (-3.812 eV).

Figure S52. HOMO-5 (4.667 eV).

Figure S53. HOMO-7 (-4.846 eV).

Figure S54. HOMO-9 (-5.144 eV).

Figure S55. HOMO-10 (-5.487 eV).

Figure S56. HOMO-12 (-6.031 eV).

Figure S57. LUMO+1 (-0.120 eV).

Figure S58. LUMO (-0.431 eV).

Figure S59. HOMO (-3.211 eV).

Figure S60. HOMO-1 (-3.466 eV).

Figure S61. HOMO-2 (-3.579 eV).

Figure S62. HOMO-3 (-3.699 eV).

Figure S63. HOMO-4 (-4.190 eV).

Figure S64. HOMO-5 (-4.331 eV).

Figure S65. HOMO-11 (-5.692 eV).

Cartesian coordinates and energies

1

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3371.856956 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3371.41674 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3371.41674 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{0} \end{array}$

Ni	-0.75050	-0.04473	0.26808
CI	1.29840	-0.80101	3.38397
Si	0.98035	-0.84012	1.20508
Si	2.83774	-0.63112	-1.16196
Ν	2.61456	-1.03843	0.56473
Ν	-3.68669	-0.53064	0.13594
Ν	-0.49037	2.39073	-1.38472
Ν	-0.29826	2.85649	0.71563
Ν	-2.60971	-2.22019	-0.66114
С	-2.39711	-0.96579	-0.11821
С	-0.52584	1.78699	-0.13643
С	-0.12405	4.05165	0.02503
С	-0.23287	3.75666	-1.30360
С	-3.96018	-2.54200	-0.73250
С	-0.63463	1.64135	-2.62354
Н	-1.11429	2.27789	-3.38285
С	-1.52394	-3.09321	-1.08853
Н	-0.64855	-2.85646	-0.46484
С	-4.64263	-1.47558	-0.21837
С	4.46378	-1.42228	-1.76338
Н	5.34479	-1.01761	-1.23867
Н	4.59853	-1.22701	-2.84153
Н	4.46021	-2.51616	-1.61977
С	1.41572	-1.32123	-2.21863
Н	1.38010	-2.42145	-2.15463

Н	1.55810	-1.04612	-3.27954
Н	0.43872	-0.93271	-1.88524
С	-3.98110	0.74584	0.77529
Н	-3.12810	1.41280	0.58411
С	-0.28222	2.72279	2.16707
Н	0.03922	1.70129	2.41201
С	2.94957	1.25686	-1.37835
Н	2.01933	1.73592	-1.03548
Н	3.12094	1.54065	-2.43228
Н	3.78141	1.67194	-0.78324
Н	-1.82600	-4.14196	-0.94914
Н	-1.26847	-2.92044	-2.14586
Н	-4.10464	0.62045	1.86309
Н	-4.90443	1.16690	0.34789
Н	-5.70481	-1.31264	-0.07138
Н	-4.31130	-3.48423	-1.13892
Н	0.42424	3.45086	2.59262
Н	-1.28500	2.89685	2.59127
Н	0.05378	4.99271	0.53396
Н	-0.14497	4.38375	-2.18402
Н	0.34435	1.29828	-2.99275
Н	-1.26113	0.76334	-2.40792
С	3.86401	-1.27173	1.32562
Н	4.51721	-0.37853	1.31545
Н	3.63708	-1.50676	2.37352
Н	4.43367	-2.11233	0.89509

TS1

$$\begin{split} &\mathsf{E}(\mathsf{RB97D}) = \text{-}3450.389516 \ \mathsf{E}_{\mathsf{h}} \\ &\mathsf{Sum} \ \text{of electronic and thermal Enthalpies} = \text{-}3449.894436 \ \mathsf{E}_{\mathsf{h}} \\ &\mathsf{Sum} \ \text{of electronic and thermal Free Energies} = \text{-}3450.001962 \ \mathsf{E}_{\mathsf{h}} \\ &\mathsf{Number of imaginary frequencies 1, v} = \text{-}38.8 \ \text{cm}^{-1} \end{split}$$

Ni	-0.97793	0.04723	-0.21208
CI	0.61521	0.95255	2.87226
Si	0.73311	-0.37889	1.06516
Si	3.50952	-1.38663	0.07212
Ν	-3.29045	-1.15654	1.25534
Ν	0.64259	2.13338	-1.58153
Ν	2.41547	-0.07781	0.54480
Ν	-3.78448	-0.83667	-0.81938
Ν	-0.68438	2.92467	-0.06855
С	-2.74224	-0.68922	0.07824
С	-4.60481	-1.57873	1.09036
С	-0.30715	1.72769	-0.65882
С	-1.65398	3.01877	1.01774
Н	-2.31594	2.14434	0.94430
С	-4.91911	-1.37896	-0.22468
С	-0.81998	-2.59033	-1.71375
Н	-0.49512	-2.86156	-0.70857
Н	-1.85243	-2.83009	-1.97712
С	0.83993	3.50874	-1.55864
С	0.01006	-1.98358	-2.57848
Н	-0.30946	-1.69832	-3.58473

Н	1.03824	-1.74761	-2.30078
С	-2.54962	-1.18686	2.51520
Н	-1.62310	-1.76440	2.38062
С	0.00736	4.00646	-0.59690
С	1.37049	1.19834	-2.42846
Н	0.70220	0.75900	-3.18353
С	-3.67115	-0.48465	-2.22828
Н	-2.81294	0.19486	-2.32972
С	4.16372	-1.08030	-1.69861
Н	3.37283	-1.22005	-2.45501
Н	4.98050	-1.78312	-1.93933
Н	4.56324	-0.05884	-1.81906
С	5.00428	-1.42430	1.25265
Н	5.54464	-0.46251	1.25176
Н	5.72381	-2.21135	0.96658
Н	4.67798	-1.62023	2.28806
С	2.62497	-3.06794	0.10934
Н	2.23974	-3.30504	1.11417
Н	3.34026	-3.86032	-0.17660
Н	1.77812	-3.11493	-0.59275
С	3.05128	1.25454	0.67895
Н	3.61552	1.34818	1.62289
Н	3.74677	1.44308	-0.16039
Н	2.28835	2.04634	0.66295
Н	-2.26563	-0.16896	2.81436
Н	-3.18326	-1.64754	3.28623
Н	-4.59299	0.01634	-2.56200
Н	-3.49779	-1.38024	-2.84691
Н	-5.83492	-1.56366	-0.77548
Н	-5.19451	-1.96729	1.91343
Н	-1.14344	2.99646	1.99138
Н	-2.23015	3.95043	0.90684
Н	-0.15565	5.02055	-0.24973
Н	1.53883	4.00221	-2.22481
Н	1.77751	0.40316	-1.79227
Н	2.18991	1.73536	-2.92665

IM1

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3450.404154 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3449.906798 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3450.00789 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{0} \end{array}$

Ni	0.62083	0.08553	-0.70345
CI	-0.71625	-3.02181	0.90321
Si	-1.02860	-0.81685	0.62142
Si	-3.82606	0.47381	0.31421
Ν	0.91448	2.95589	0.25856
Ν	2.47630	-2.25886	-0.33127
Ν	-2.68060	-0.82834	-0.06074
Ν	2.77732	2.15087	-0.45473
Ν	2.56611	-0.90170	1.33731
С	1.44879	1.81262	-0.29077
С	1.87153	3.94669	0.45598
С	1.91212	-1.09357	0.13582

С	2.27742	0.19251	2.26019
Н	2.84898	1.09540	1.99478
С	3.05435	3.43648	0.00303
С	-0.49501	0.66449	-2.28690
Н	-1.50608	0.96538	-2.00516
Н	0.05025	1.39442	-2.89553
С	3.43436	-2.76626	0.53785
С	-0.18497	-0.71877	-2.37596
Н	0.63190	-1.04508	-3.03094
Н	-0.96641	-1.46911	-2.24118
С	-0.49546	3.09576	0.60021
Н	-1.02027	2.23779	0.16648
С	3.49267	-1.90601	1.59578
С	2.02744	-2.94004	-1.54103
Н	2.37715	-2.40919	-2.43883
С	3.78627	1.23628	-0.98053
Н	3.27710	0.49417	-1.60639
С	-3.88125	1.80370	-1.05688
Н	-2.95830	2.40470	-1.09548
Н	-4.72663	2.49547	-0.89226
Н	-4.01526	1.34477	-2.05133
С	-5.57679	-0.27050	0.44658
Н	-5.93864	-0.65866	-0.51972
Н	-6.29141	0.49989	0.78510
Н	-5.60354	-1.09928	1.17396
С	-3.41250	1.30158	1.97792
Н	-3.54159	0.58584	2.80669
Н	-4.09480	2.15306	2.15339
Н	-2.37917	1.67385	2.02672
С	-3.22446	-1.86794	-0.96711
Н	-3.50250	-1.43534	-1.94735
Н	-2.47621	-2.65355	-1.13906
Н	-4.11896	-2.35311	-0.53977
Н	-0.63296	3.08927	1.69276
Н	-0.88936	4.03685	0.18655
Н	4.30422	0.71194	-0.16174
Н	4.51502	1.80378	-1.57798
Н	4.04542	3.87331	-0.05572
Н	1.62650	4.91592	0.87647
Н	1.20429	0.41404	2.20479
Н	2.54405	-0.12775	3.27756
Н	4.08343	-1.92797	2.50463
Н	3.96591	-3.68920	0.33574
Н	0.93261	-2.96839	-1.53675
Н	2.43125	-3.96193	-1.53625

TS2

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3450.376761 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3449.881862 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3449.98274 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{1}, \ \mathsf{v} = -314.6 \ \mathsf{cm}^{-1} \end{array}$

Ni	-1.03650	-0.09591	-0.42886
CI	1.62986	2.74993	-0.03655
Si	1.12360	0.58971	-0.07774

Si	3.16180	-1.64449	0.56281
Ν	-2.14774	-2.75339	-0.04126
N	-2.02623	2.62404	0.38291
N	2.69891	-0.20359	-0.33429
N	-3.70933	-1.34035	-0.52903
Ν	-1.89045	1.27993	2.06426
С	-2.34267	-1.42238	-0.35473
С	-3.34488	-3.46078	-0.02110
С	-1.75195	1.31349	0.69769
С	-1.53082	0.09848	2.83965
Н	-2.09990	-0.76657	2.47226
С	-4.33103	-2.57125	-0.33571
С	-0.19473	-0.84303	-2.05398
Н	0.50483	-1.68279	-1.95122
Н	-0.99704	-1.06628	-2.77406
С	-2.26515	3.38900	1.52118
С	0.44631	0.50300	-2.08771
H	-0.18239	1.31115	-2.48551
Н	1.42346	0.54932	-2.59499
С	-0.84213	-3.33646	0.25322
Ĥ	-0.10179	-2.53226	0.16253
C	-2.17905	2,53743	2.58545
č	-1 89727	3 15957	-0.96796
н	-2 12857	2 35302	-1 67703
C	-4 40039	-0 12966	-0.95925
н	-3 83381	0.72000	-0 58841
C	2 91365	-3 21303	-0 50649
н	1 85621	-3 34882	-0 78873
н	3 24580	-1.12655	0.01850
н	3 10133	-3 1/058	-1 44264
\hat{c}	5 01602	-1 55587	1 00856
с ц	5 66322	-1.55316	0.11/06
н	5 30022	-2 42557	1 62275
н Ц	5 24060	-0.64280	1.02273
\hat{c}	2 17945	-0.04200	2 1 9 2 7 5
С Ц	2.17040	-1.82393	2.10375
п Ц	2.23029	-0.90100	2.70072
	2.01039	-2.04051	2.70330
	1.11401	-2.04401	2.01400
С Ц	3.00020	0.19933	-1.43033
п u	3.40000 2.41020	-0.43093	-2.33330
	3.41030	1.24000	-1.71320
	4.66199	0.13225	-1.11697
H	-0.82895	-3.74575	1.27556
	-0.61430	-4.13882	-0.46521
н	-5.41647	-0.12597	-0.53785
н	-4.45921	-0.08558	-2.05886
н	-5.40331	-2.69/8/	-0.43521
н	-3.38656	-4.51621	0.22356
н	-0.456/6	-0.10287	2.69/53
н	-1./6104	0.28021	3.89902
H	-2.30898	2.70627	3.64860
Н	-2.48104	4.45003	1.46960
Н	-0.86607	3.50201	-1.13862
н	-2.60489	3.99182	-1.09956

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3450.412696 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3449.916141 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3450.017285 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{0} \end{array}$

Ni	0.65383	0.00460	-0.51682
Cl	-2.16011	-2.65393	-1.05293
Si	-1.41434	-0.57491	-1.15015
Si	-2.98629	1.07513	1.04078
Ν	2.11387	2.54252	-0.04937
Ν	1.31862	-2.71015	0.40771
Ν	-2.76867	0.40382	-0.56413
Ν	3.48113	0.99666	-0.66978
Ν	1.52694	-1.31756	2.04199
С	2.15196	1.20508	-0.38088
С	3.37104	3.13604	-0.12953
С	1.16429	-1.36991	0.70900
С	1.62297	-0.09135	2.82421
Н	1.69558	0.74663	2.12180
С	4.23635	2.15975	-0.53265
С	-0.01576	0.94078	-2.20467
Н	-0.46738	1.92417	-1.99267
Н	0.89326	1.11236	-2.81098
С	1.73188	-3.45091	1.50837
С	-1.04831	-0.01523	-2.90866
Н	-0.51620	-0.79014	-3.48501
Н	-1.79093	0.46935	-3.56787
С	0.89777	3.22200	0.38855
Н	0.04371	2.61461	0.06642
С	1.85865	-2.57371	2.54478
С	1.17831	-3.27566	-0.93221
Н	0.81388	-2.48301	-1.59571
С	3.99783	-0.28264	-1.14363
Н	3.30482	-1.06433	-0.80865
С	-3.16665	2.97485	0.91996
Н	-2.25277	3.43274	0.50383
Н	-3.35759	3.43140	1.90748
Н	-4.00362	3.25778	0.25869
С	-4.56731	0.37717	1.84675
Н	-5.46373	0.60686	1.24638
Н	-4.72736	0.79391	2.85675
Н	-4.50133	-0.72045	1.93619
С	-1.49016	0.66786	2.12890
Н	-1.37303	-0.41984	2.25460
Н	-1.59485	1.13096	3.12680
Н	-0.56284	1.03596	1.66499
С	-3.98989	0.40449	-1.40429
Н	-3.72626	0.33593	-2.47176
Н	-4.65628	-0.44379	-1.16332
Н	-4.56189	1.34137	-1.26957
Н	0.88017	3.32525	1.48580
Н	0.84610	4.21964	-0.07197
Н	4.99843	-0.45506	-0.71906
Н	4.05814	-0.29619	-2.24359
Н	5.30091	2.18865	-0.73769
Н	3.53419	4.18167	0.10730

Н	0.73615	0.04426	3.45951
Н	2.52797	-0.13393	3.44976
Н	2.14516	-2.72406	3.57980
Н	1.89526	-4.52140	1.45333
Н	0.44763	-4.09481	-0.92284
Н	2.15718	-3.64034	-1.28588

TS3

 $E(RB97D) = -3528.932355 E_{h}$ Sum of electronic and thermal Enthalpies = -3528.378246 E_{h} Sum of electronic and thermal Free Energies = -3528.479471 E_{h} Number of imaginary frequencies 1, v = -109.3 cm⁻¹

Ni	0.45059	-0.22640	-0.67947
CI	-2.36725	-0.42585	1.96722
Si	-1.76621	-0.47047	-0.20392
Si	-3.52739	1.96972	-1.22706
Ν	2.83568	-2.14742	-0.33106
Ν	0.60842	2.49019	0.80142
Ν	-3.15760	0.24509	-1.06181
Ν	2.17245	-1.22273	1.49653
Ν	2.33882	2.06544	-0.40337
С	1.93138	-1.21505	0.13902
С	3.59496	-2.70863	0.69266
С	0.06268	0.77860	-2.88944
Н	-0.97344	0.44672	-2.94054
Н	0.22239	1.82262	-2.62996
С	1.10643	1.52626	-0.05775
С	1.09133	0.00542	-3.33243
Н	2.10791	0.38772	-3.41471
Н	0.91863	-1.00826	-3.69599
С	3.31324	1.45517	-1.29942
Н	3.07175	0.39257	-1.38742
С	3.17353	-2.12089	1.84914
С	-0.35474	-2.00395	-1.33688
Н	-0.58753	-1.81819	-2.39772
Н	0.39934	-2.80490	-1.28027
С	1.48435	3.55670	0.97250
С	-1.65894	-2.32186	-0.55586
Н	-1.43951	-2.86476	0.37741
Н	-2.41747	-2.89078	-1.12341
С	2.98654	-2.51693	-1.73177
Н	2.37473	-1.82599	-2.31959
C	2.57703	3.29173	0.20486
С	-0.64587	2.40775	1.54253
H	-1.43955	2.05497	0.88313
С	1.44143	-0.39344	2.45339
Н	0.38490	-0.37110	2.16107
С	-4.29883	2.65364	0.38175
Н	-5.21824	2.10110	0.63953
н	-4.56902	3.71974	0.27630
H	-3.61659	2.55331	1.24133
C	-2.01099	3.02259	-1.68749
Н	-1.10005	2.75058	-1.13980
н	-2.23607	4.08395	-1.48161

Н	-1.79166	2.92934	-2.76286
С	-4.80726	2.19865	-2.62463
Н	-4.47966	1.69496	-3.55024
Н	-4.92830	3.27234	-2.85189
Н	-5.80065	1.80258	-2.35801
С	-4.40474	-0.56924	-1.00024
Н	-4.99774	-0.35985	-0.08959
Н	-5.03883	-0.37409	-1.88162
Н	-4.16303	-1.64179	-0.99530
Н	4.04511	-2.43730	-2.02732
Н	2.63651	-3.54682	-1.90092
Н	1.84249	0.63127	2.45785
Н	1.54427	-0.83733	3.45358
Н	3.48031	-2.26549	2.87907
Н	4.34661	-3.46786	0.50712
Н	3.27400	1.92578	-2.29413
Н	4.32119	1.58419	-0.87619
Н	3.48575	3.85642	0.02879
Н	1.24516	4.39566	1.61586
Н	-0.89569	3.41169	1.91273
Н	-0.56212	1.70712	2.38193

IM2

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3528.939723 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3528.384341 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3528.485495 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{0} \end{array}$

0.38869	-0.27001	-0.88078
-2.38453	0.50321	2.10105
-1.76964	-0.32557	0.11054
-3.94425	1.15358	-1.73000
2.45553	-2.30871	0.04155
1.05218	2.61186	0.05147
-3.24600	-0.22395	-0.88844
1.89952	-0.94439	1.61215
2.77410	1.53667	-0.65909
1.63515	-1.22670	0.28976
3.19399	-2.67583	1.16236
-0.32794	0.38675	-2.71269
-1.31715	-0.04190	-2.87689
-0.28244	1.47720	-2.76177
1.40505	1.40078	-0.50095
0.83669	-0.36484	-2.96531
1.76429	0.14857	-3.23049
0.74284	-1.39288	-3.32594
3.68793	0.49386	-1.11977
3.11394	-0.23214	-1.69802
2.84348	-1.80890	2.15504
-0.60994	-2.06888	-1.01370
-1.25087	-2.01534	-1.90996
0.12454	-2.87266	-1.16468
2.14606	3.44763	0.24181
-1.44051	-2.18646	0.28727
-0.77026	-2.36845	1.14295
-2.23374	-2.95490	0.28157
	0.38869 -2.38453 -1.76964 -3.94425 2.45553 1.05218 -3.24600 1.89952 2.77410 1.63515 3.19399 -0.32794 -1.31715 -0.28244 1.40505 0.83669 1.76429 0.74284 3.68793 3.11394 2.84348 -0.60994 -1.25087 0.12454 2.14606 -1.44051 -0.77026 -2.23374	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	2.62711	-2.94434	-1.25929
Н	2.10488	-2.32748	-1.99690
С	3.23784	2.76631	-0.20647
С	-0.28920	2.98814	0.48349
Н	-0.95882	2.17225	0.20766
С	1.32242	0.17591	2.35326
Н	0.33377	0.39477	1.94107
С	-5.67701	1.54729	-1.02806
Н	-6.37299	0.69710	-1.12324
Н	-6.13109	2.40598	-1.55402
Н	-5.60775	1.80132	0.04324
С	-2.90235	2.73003	-1.55101
Н	-2.91879	3.09699	-0.51293
Н	-3.33629	3.51706	-2.19265
Н	-1.85539	2.58700	-1.85082
С	-4.13967	0.74037	-3.58503
Н	-3.15760	0.62792	-4.07458
Н	-4.69699	1.52989	-4.11982
Н	-4.68933	-0.20636	-3.72580
С	-4.16129	-1.39163	-0.81766
Н	-3.69283	-2.29219	-1.25076
Н	-4.45154	-1.62129	0.22260
Н	-5.09179	-1.20970	-1.38304
Н	3.70056	-3.00120	-1.50040
Н	2.19992	-3.95872	-1.25746
Н	1.96554	1.06552	2.26292
Н	1.22747	-0.10932	3.41024
Н	3.15860	-1.73870	3.19010
Н	3.88048	-3.51516	1.15233
Н	4.47011	0.95362	-1.74236
Н	4.15118	-0.01558	-0.26028
Н	4.28524	3.04190	-0.25963
Н	2.04207	4.44228	0.66042
Н	-0.59579	3.91795	-0.01564
Н	-0.30908	3.12019	1.57523

TS4

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3528.912393 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3528.359667 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3528.462209 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{1}, \ \mathsf{v} = -191.9 \ \mathsf{cm}^{-1} \end{array}$

Ni	0.60671	-0.31410	-0.85850
CI	-2.34167	0.24824	1.94957
Si	-1.98089	-0.29408	-0.21336
Si	-4.57751	1.34248	-0.93018
Ν	2.46933	-2.21410	0.38999
Ν	1.23630	2.58206	-0.06019
Ν	-3.63600	-0.14306	-0.86281
Ν	1.74798	-0.79857	1.85351
Ν	2.97146	1.46139	-0.66106
С	1.56460	-1.17527	0.53943
С	3.17220	-2.46067	1.56560
С	-0.99346	0.60337	-2.13278
Н	-1.85020	0.07329	-2.56462

Н	-1.20323	1.66599	-1.98736
С	1.60537	1.34174	-0.52702
С	0.29850	0.27886	-2.74758
Н	0.92676	1.12047	-3.05642
Н	0.31260	-0.56215	-3.44821
С	3.82571	0.38326	-1.14458
Н	3.22989	-0.21716	-1.84417
С	2.71698	-1.56609	2.48847
С	-0.29710	-2.12214	-1.25995
Н	-0.66702	-2.11381	-2.29920
Н	0.35247	-2.99862	-1.13538
С	2.32945	3.43095	0.09524
С	-1.45897	-2.13435	-0.25543
Н	-1.08928	-2.39451	0.75094
Н	-2.26721	-2.84590	-0.51252
С	2.80823	-2.86312	-0.87416
Ĥ	2.31375	-2.30350	-1.67696
C	3.43018	2.71846	-0.28182
č	-0.13757	2.98590	0.21502
Ĥ	-0.75033	2.08051	0.27321
C	1,10965	0.35710	2,47406
н	0 27839	0.66339	1 83727
C	-5 99941	1 29028	0.33745
н	-6 65238	0 41530	0 17704
н	-6 63235	2 19331	0 27714
н	-5 59260	1 21972	1 35973
C	-3 48973	2 85795	-0.55607
н	-3 01515	2 77371	0 43384
н	-4 12217	3 76308	-0 55173
н	-2 70380	3 00823	-1 31275
C	-5 32266	1 53972	-2 67752
н	-4 52526	1.64328	-3 43323
н	-5.97005	2 / 3210	-2 74089
н	-5 93627	0.66747	-2 96120
$\hat{\mathbf{C}}$	-4 42172	-1 38371	-1 05201
н	-3 00810	-2 08213	-1 73572
н	-4 60963	-1 91350	-0 10049
н	-5 40443	-1 16342	-1 50589
н	3 00130	-7.83007	-1.00303
н	2 46021	-2.00997	-0.8837/
н Ц	2.40021	-3.90003	2 57031
	0 72010	0.07099	2.07031
п u	0.72019	0.07900	3.40370
	2.97000	-1.41733	3.33000
	3.91439	-3.24003	1.03033
	4.09877	0.81743	-1.65400
	4.10930	-0.20084	-0.31304
	4.4/9/5	2.98770	-0.32202
	2.22041	4.45236	0.44237
н	-0.52147	3.62870	-0.59068
Н	-0.17887	3.52981	1.17003

8

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3528.969959 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3528.415458 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3528.51941 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{0} \end{array}$

Ni	0.81215	-0.17976	-0.74447
CI	-2.31267	0.66431	1.76841
Si	-2.56186	-0.16135	-0.24482
Si	-5.36352	0.77581	-1.24922
Ν	2.59748	-2.44480	0.04175
N	1.70904	2.54062	0.16875
N	-4.27954	-0.39978	-0.47291
Ν	1.97629	-1.27271	1.73938
Ν	3.30848	1.40990	-0.72208
С	1.83281	-1.34603	0.37272
С	3.19955	-3.01948	1.15989
С	-1.86010	1.14806	-1.42954
н	-2.55108	1.24830	-2.28828
H	-1.92996	2.10790	-0.89148
С	1.96665	1.31993	-0.41401
Č	-0.39107	0.92685	-1.91728
Ĥ	0.04428	1.92354	-2.11302
н	-0.41691	0.39774	-2.88651
C	4.05609	0.31624	-1.33020
н	3 38320	-0 21732	-2 01239
C	2 80473	-2 27565	2 23472
č	-0.40186	-1 72039	-1 19520
н	-0 76980	-1 61629	-2 23276
н	0.13008	-2 68853	-1 14397
C	2 84244	3 34777	0 22518
Ĉ	-1 61333	-1 80004	-0 23230
й	-1 27033	-2 02085	0.20200
н	-2 31240	-2.02305	-0 52257
C	2.01240	-2.01240	-1 32670
й	2.75025	-2 30784	-1 97236
\hat{c}	2.14174	2 63056	-0.33000
č	0 30550	2.00000	0.66102
й	-0 27702	2.00000	0.54649
\hat{c}	1 37013	-0 20571	2 530/5
ц	0 /3212	0.2007	2.00340
\hat{c}	-7 1/625	0.00334	-0 67099
й	-7.50537	-0 56420	-1.00500
н	-7.82022	1 18310	-1.00000
н	-7.2322	0 45014	0 42746
C	-4 91860	2 56094	-0 76128
й	-4.31000	2.00004	0.33040
н	-4.70723	2.04012	-1 06315
н	-3.086/3	2 00282	-1.00515
\hat{c}	-5.300-3	0 50306	-3 1//57
ц	-4 20818	0.33330	-3 5/66/
	-4.29010 5.00442	1 21070	2 62129
	-5.99445	0.42272	-3.03130
$\hat{\mathbf{C}}$	-5.01301	-0.42273	-3.44740
С Ц	-4.90034	-1.40020	0.34723
	-4.1/029	-2.2/02/	0.00942
п u	-5.24017	-1.09062	1.32014
п	-0./0200	-1.91000	-0.1/313
	3.84817	-2.10000	-1.02/49
	2.52928	-3.97025	-1.41257
н	2.05166	0.66590	2.58161
н	1.19159	-0.57914	3.55640

Н	3.01769	-2.38014	3.29300
Н	3.82876	-3.90025	1.09213
Н	4.91079	0.72790	-1.88675
Н	4.41420	-0.38728	-0.56227
Н	4.89938	2.87716	-0.51178
Н	2.82067	4.34755	0.64480
Н	0.01295	3.79332	0.08297
Н	0.45813	3.21448	1.72600

TS1'

$$\begin{split} E(RB97D) &= -3486.289415 \ E_h \\ Sum of electronic and thermal Enthalpies &= -3485.817662 \ E_h \\ Sum of electronic and thermal Free Energies &= -3485.919982 \ E_h \\ Number of imaginary frequencies 1, v &= -213.0 \ cm^{-1} \end{split}$$

Ni	-0.74596	0.26002	0.03469
Si	0.70603	-1.12356	0.75645
Si	2.98676	-0.36448	-1.02264
CI	0.44631	-1.79968	2.79661
0	0.47430	-3.34084	-0.08044
Ν	-3.54264	-0.57530	0.35258
С	-0.17741	2.02426	0.37250
Ν	0.16243	3.00277	-0.54703
Ν	-3.08070	-0.49090	-1.74951
Ν	0.03463	2.66257	1.58110
Ν	2.40293	-1.25902	0.40325
С	-2.38678	-0.23628	-3.00504
Н	-1.30767	-0.30064	-2.81804
С	-0.25897	2.04744	2.86889
Н	-0.11395	0.96402	2.77633
С	-2.52765	-0.22343	-0.51353
С	-0.55281	-2.62895	-0.37538
Н	-0.72997	-2.28337	-1.41845
С	0.57798	4.18131	0.06845
С	0.16965	2.76874	-1.98206
Н	-0.62545	2.04493	-2.20901
С	-4.67969	-1.01382	-0.31784
С	-4.38982	-0.95894	-1.65120
С	1.71332	-0.46912	-2.43808
Н	1.52507	-1.52581	-2.69162
Н	2.06275	0.05217	-3.34779
Н	0.75244	-0.02600	-2.12617
С	0.48416	3.96904	1.41280
С	3.33625	1.45219	-0.57855
Н	2.44569	1.93431	-0.14968
Н	3.65693	2.03564	-1.46061
Н	4.14242	1.51252	0.17263
С	-3.39861	-0.47393	1.80291
Н	-2.41501	-0.87032	2.09117
С	4.60192	-1.17411	-1.62156
Н	5.41416	-1.08331	-0.88164
Н	4.94191	-0.68630	-2.55165
Н	4.45983	-2.24626	-1.83498
С	3.24678	-2.35751	0.93601
Н	4.30195	-2.04402	0.98516
Н	2.92259	-2.61945	1.95249

Н	3.16605	-3.25954	0.30747
Н	-1.49110	-2.70580	0.21848
Н	-4.19442	-1.06006	2.28403
Н	-3.46844	0.57839	2.12091
Н	-5.57068	-1.34195	0.20607
Н	-4.97931	-1.22361	-2.52202
Н	-2.67672	-0.99527	-3.74649
Н	-2.63300	0.76599	-3.39503
Н	-1.30010	2.24960	3.17136
Н	0.42636	2.45012	3.62911
Н	0.68922	4.62103	2.25462
Н	0.90473	5.04592	-0.49842
Н	-0.02191	3.71649	-2.50740
Н	1.13517	2.35191	-2.30684

4'

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = \text{-}3486.348472 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = \text{-}3485.874081 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = \text{-}3485.972521 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{0} \end{array}$

Ni	-0.62421	-0.12206	0.59016
Si	1.43935	0.04333	1.35374
Si	2.77882	-0.89280	-1.26736
CI	2.22288	1.96607	2.02909
0	1.17995	-0.84503	2.76505
N	-3.59967	-0.31599	0.48776
С	-0.79763	1.30476	-0.67049
Ν	-0.98369	1.27248	-2.03725
Ν	-2.70894	-2.22019	0.02243
Ν	-0.83488	2.65555	-0.39123
Ν	2.78551	-0.67497	0.47422
С	-1.72831	-3.26973	-0.24255
Н	-0.77054	-2.94542	0.17677
С	-0.79066	3.21647	0.95649
Н	-0.55803	2.40480	1.65450
С	-2.37321	-0.92848	0.36112
С	-0.17303	-1.16191	2.24293
Н	-0.26331	-2.25847	2.14167
С	-1.10375	2.54830	-2.58162
С	-0.99711	0.04344	-2.81825
Н	-1.37751	-0.76049	-2.17642
С	-4.65200	-1.18687	0.22169
С	-4.08756	-2.39381	-0.07634
С	1.39119	-2.11844	-1.72363
Н	1.60916	-3.11000	-1.29092
Н	1.25253	-2.23986	-2.81290
Н	0.44332	-1.76607	-1.28616
С	-1.01886	3.42191	-1.53713
С	2.51182	0.74942	-2.20022
Н	1.61242	1.27239	-1.84189
Н	2.41126	0.59332	-3.29000
Н	3.36976	1.42320	-2.03518
С	-3.74930	1.10221	0.80074
Н	-2.90806	1.40187	1.43611

С	4.44658	-1.63084	-1.82047
Н	5.29324	-0.97342	-1.56133
Н	4.45241	-1.76726	-2.91611
Н	4.63416	-2.61634	-1.36191
С	4.01237	-0.90182	1.27694
Н	4.64618	-1.67367	0.81291
Н	4.60917	0.02217	1.38419
Н	3.74156	-1.25358	2.28592
Н	-0.92346	-0.81166	2.97917
Н	-4.69788	1.25682	1.33485
Н	-3.73612	1.70750	-0.11914
Н	-5.69011	-0.88027	0.28837
Н	-4.53424	-3.35003	-0.32516
Н	-2.05426	-4.20579	0.23465
Н	-1.61332	-3.43120	-1.32617
Н	-1.76552	3.66720	1.20679
Н	0.00080	3.97500	1.02316
Н	-1.07214	4.50433	-1.50366
Н	-1.22820	2.71328	-3.64601
Н	-1.65725	0.17674	-3.68815
Н	0.01714	-0.21374	-3.15362

TS1"

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3449.127882 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3448.657474 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3448.763281 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{1}, \ \mathsf{v} = -97.0 \ \mathsf{cm}^{-1} \end{array}$

Ni	0.98489	0.06614	0.26550
CI	-0.47732	-0.23868	-2.98490
Si	-0.70394	-0.81834	-0.82379
Si	-3.49203	-1.35753	0.38612
Ν	3.26508	-1.61785	-0.78963
Ν	-0.82717	2.36656	0.85336
Ν	-2.38686	-0.30969	-0.52011
Ν	3.86556	-0.40388	0.88774
Ν	0.50976	2.72112	-0.80819
С	2.75956	-0.70501	0.11361
С	4.61655	-1.86802	-0.58117
С	0.18509	1.75779	0.13377
С	1.50015	2.51937	-1.86178
Н	2.19992	1.74717	-1.51298
С	4.99722	-1.10222	0.48453
С	-1.10710	3.64322	0.38266
С	2.46875	-2.21446	-1.86056
Н	1.54579	-2.63395	-1.43489
С	-0.26879	3.86269	-0.67338
С	-1.50477	1.73291	1.97507
Н	-0.98397	1.94473	2.92193
С	3.82310	0.52497	2.01108
Н	2.98471	1.21471	1.84090
С	-4.66276	-0.28325	1.44533
Н	-4.09925	0.35897	2.14167
Н	-5.32521	-0.92911	2.04756
Н	-5.30713	0.36688	0.83060

С	-4.55765	-2.40183	-0.79914
Н	-5.09992	-1.76255	-1.51700
Н	-5.30717	-3.00136	-0.25279
Н	-3.92661	-3.09287	-1.38330
С	-2.51794	-2.50175	1.55319
Н	-1.82930	-3.16557	1.00559
Н	-3.22004	-3.13784	2.12166
Н	-1.92225	-1.92532	2.27950
С	-3.01657	0.84396	-1.20183
Н	-3.63178	0.53179	-2.06530
Н	-3.66232	1.40345	-0.50179
Н	-2.24730	1.53480	-1.57323
Н	2.18122	-1.45215	-2.59709
Н	3.06297	-3.00395	-2.34215
Н	4.77138	1.08200	2.05957
Н	3.65441	-0.01226	2.95643
Н	5.95624	-0.99142	0.97850
Н	5.18043	-2.55011	-1.20781
Н	1.01364	2.16311	-2.78112
Н	2.02857	3.46729	-2.04661
Н	-0.16064	4.71600	-1.33353
Н	-1.86398	4.27266	0.83741
Н	-1.50903	0.65321	1.79859
Н	-2.53618	2.10890	2.02550
С	0.65319	-1.02169	2.50108
Н	0.46325	-1.88759	1.89362
С	0.78806	-0.30717	3.49123
Н	0.94952	0.47739	4.20296

IM1"

$$\begin{split} &\mathsf{E}(\mathsf{RB97D}) = \text{-}3449.152765 \ \mathsf{E}_{\mathsf{h}} \\ &\mathsf{Sum} \ \text{of electronic and thermal Enthalpies} = \text{-}3448.680076 \ \mathsf{E}_{\mathsf{h}} \\ &\mathsf{Sum} \ \text{of electronic and thermal Free Energies} = \text{-}3448.781605 \ \mathsf{E}_{\mathsf{h}} \\ &\mathsf{Number of imaginary frequencies 0} \end{split}$$

Ni	0.81794	0.04337	-0.89110
CI	-0.64004	-3.20270	0.24155
Si	-0.95057	-0.98911	0.51996
Si	-3.78182	0.23991	0.56363
Ν	0.39807	2.92397	-0.14675
Ν	2.80730	-2.02740	-0.09183
Ν	-2.55916	-0.77370	-0.21846
Ν	2.49275	2.43230	-0.22491
Ν	2.43362	-0.67936	1.54730
С	1.24522	1.86465	-0.38385
С	1.08840	4.09141	0.16343
С	2.04060	-0.93700	0.24944
С	1.89518	0.39749	2.37358
Н	2.44188	1.33778	2.20336
С	2.41665	3.78021	0.11719
С	-0.10344	0.25446	-2.54376
С	3.63066	-2.43602	0.95011
С	0.09299	-0.99946	-2.30726
С	-1.04855	2.85500	-0.32525
Н	-1.32201	1.80101	-0.44590
С	3.39780	-1.58026	1.98749

С	2.66134	-2.75655	-1.34942
Н	2.54700	-2.03579	-2.16795
С	3.74628	1.70054	-0.38300
Н	4.10000	1.30868	0.58352
С	-4.40837	1.55380	-0.67382
Н	-3.61102	2.24468	-0.99298
Н	-5.22530	2.15674	-0.23965
Н	-4.80340	1.06938	-1.58321
С	-5.27863	-0.82408	1.07721
Н	-5.73950	-1.33746	0.21691
Н	-6.06026	-0.20361	1.55058
Н	-4.97313	-1.59821	1.80094
С	-3.10542	1.07848	2.13420
Н	-2.87059	0.33182	2.90985
Н	-3.87568	1.75909	2.54112
Н	-2.19098	1.66364	1.95702
С	-3.02000	-1.44300	-1.45702
Н	-2.72369	-0.85481	-2.34296
Н	-2.56857	-2.44240	-1.53940
Н	-4.11732	-1.57289	-1.47153
Н	-1.55855	3.27870	0.55165
Н	-1.34553	3.41660	-1.22544
Н	4.50445	2.37430	-0.80787
Н	3.56719	0.85907	-1.06152
Н	3.30007	4.38643	0.28534
Н	0.58074	5.02614	0.37448
Н	0.83811	0.53266	2.11372
Н	1.98451	0.10630	3.42983
Н	3.81690	-1.53433	2.98638
Н	4.28645	-3.29485	0.86367
Н	1.76433	-3.38969	-1.30141
Н	3.55852	-3.37307	-1.50450
Н	-0.51261	0.99961	-3.21919
Н	-0.07258	-2.02419	-2.62367

TS2"

$$\begin{split} &\mathsf{E}(\mathsf{RB97D}) = \text{-}3449.144831 \ \mathsf{E}_{\mathsf{h}} \\ &\mathsf{Sum} \ \text{of electronic and thermal Enthalpies} = \text{-}3448.673712 \ \mathsf{E}_{\mathsf{h}} \\ &\mathsf{Sum} \ \text{of electronic and thermal Free Energies} = \text{-}3448.775502 \ \mathsf{E}_{\mathsf{h}} \\ &\mathsf{Number of imaginary frequencies 1, v} = \text{-}133.8 \ \text{cm}^{-1} \end{split}$$

Ni	0.91409	0.06192	-0.85554
CI	-1.16607	-3.14035	-0.03310
Si	-1.10441	-0.89695	-0.06822
Si	-3.72463	0.57529	0.66683
Ν	0.98686	2.89507	-0.16468
Ν	2.48081	-2.32676	0.02973
Ν	-2.79640	-0.45180	-0.41993
Ν	2.98723	2.08404	-0.28958
Ν	2.22980	-0.92841	1.65254
С	1.66531	1.73204	-0.46225
С	1.85555	3.91891	0.19724
С	1.96499	-1.08647	0.31325
С	1.73490	0.20972	2.42226

Н	2.26968	1.12897	2.14324
С	3.11919	3.40765	0.12256
С	0.02089	0.33896	-2.44855
С	3.01234	-2.93579	1.16091
С	-0.47436	-0.84154	-2.09951
С	-0.46424	3.04330	-0.25954
Н	-0.90986	2.04102	-0.22625
С	2.85539	-2.04980	2.18865
С	2.31498	-2.98551	-1.26343
Н	2.19509	-2.20597	-2.02682
С	4.10416	1.15912	-0.45333
Н	4.38985	0.71655	0.51396
С	-4.26037	2.16664	-0.25056
Н	-3.38565	2.77673	-0.53514
Н	-4.92328	2.79458	0.37079
Н	-4.80629	1.92357	-1.17838
С	-5.30417	-0.32720	1.24338
Н	-5.92990	-0.64534	0.39254
Н	-5.92496	0.32152	1.88655
Н	-5.04349	-1.23119	1.81902
С	-2.71766	1.06829	2.20638
Н	-2.36782	0.18186	2.75935
Н	-3.35686	1.66563	2.88258
Н	-1.83178	1.67048	1.95242
С	-3.50729	-0.97041	-1.60889
Н	-3.16937	-0.45704	-2.52733
Н	-3.31819	-2.05055	-1.72516
Н	-4.60091	-0.83538	-1.52630
Н	-0.82535	3.64527	0.58703
Н	-0.73965	3.53522	-1.20563
Н	4.96083	1.69982	-0.88219
Н	3.77999	0.35704	-1.12628
Н	4.08627	3.85918	0.31363
Н	1.50061	4.90868	0.46153
Н	0.66358	0.33115	2.19753
Н	1.88413	0.00366	3.49121
Н	3.12963	-2.11238	3.23576
Н	3.44410	-3.92970	1.13306
Н	1.40958	-3.60992	-1.24611
Н	3.20346	-3.59851	-1.47728
Н	0.04156	0.99656	-3.31833
Н	-0.72536	-1.71845	-2.70941

6

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3449.190864 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3448.716416 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3448.813325 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{0} \end{array}$

Ni	0.61829	0.13142	-0.66883
CI	-2.29946	-2.05317	-1.91381
Si	-1.51064	-0.07235	-1.36802
Si	-2.73347	0.96533	1.26893
Ν	2.70008	2.21453	-0.18545
Ν	0.81340	-2.63341	0.33216
Ν	-2.83968	0.65794	-0.45579

N	3.60187	0.26577	-0.35833
Ν	0.98343	-1.23507	1.96456
С	2.37837	0.89418	-0.41288
С	4.06575	2.39115	0.01825
С	0.77775	-1.28153	0.60140
С	1.01221	0.00113	2.73462
Н	1.68982	-0.12539	3.59199
С	4.63800	1.15644	-0.09476
С	0.17531	1.17401	-2.25475
С	1.01984	-3.38885	1.48114
С	-1.02504	0.89855	-2.85592
С	1.71607	3.29351	-0.11020
Н	0.77983	2.92559	-0.54478
C	1.11842	-2.50630	2.51708
С	0.77385	-3.20306	-1.01245
H	0.56014	-2.39323	-1.71891
C	3.76658	-1.17647	-0.51707
H	3.62969	-1.69369	0.44515
C	-4.35314	1.77332	1.87243
н	-4.56112	2.72059	1.34654
н	-4.27914	2.00121	2.95032
H	-5.22474	1.11234	1.73115
	-2.46955	-0.63829	2.27041
	-3.30123	-1.28278	2.18020
	-2.30085	-0.43829	3.34450
	-1.01409	-1.21400	1.00007
С Ц	-1.30040	2.10033	1.09307
	-0.36240	1.01709	1.12113
н	-1.11290	2.35317	2.00025
\hat{c}	-1.34404	0 76068	-1 17601
н	-3 95747	1 10438	-2 21262
н	-4 65338	-0 21040	-1 22790
н	-4.79354	1.49124	-0.69061
Н	1.54010	3.58195	0.93804
Н	2.08435	4.16369	-0.67376
Н	4.77271	-1.38173	-0.91013
Н	3.00874	-1.53308	-1.22338
Н	5.67346	0.83994	-0.03354
Н	4.50147	3.36631	0.20545
Н	1.37835	0.80055	2.07963
Н	0.00493	0.26077	3.08786
Н	1.25708	-2.66197	3.58109
Н	1.07482	-4.47141	1.45600
Н	-0.02569	-3.95218	-1.08149
Н	1.74661	-3.66625	-1.24836
Н	0.91221	1.86529	-2.71074
Н	-1.38077	1.27143	-3.82626

TS3"

$$\begin{split} & E(RB97D) = -3526.442159 \ E_h \\ & Sum of electronic and thermal Enthalpies = -3525.936815 \ E_h \\ & Sum of electronic and thermal Free Energies = -3526.038558 \ E_h \\ & Number of imaginary frequencies 1, v = -101.0 \ cm^{-1} \end{split}$$

Ni -0.19619 -0.51072 0.63646

Cl	2.21959	-0.36009	-2.10636
01	2 90512	-0.22793	1 02006
N	2.00012	2.09437	0.06205
N	-0.88081	2 16563	-0 7/000
N	-0.00901	2.10303	-0.74999
IN NI	1 69601	1.11400	1 62907
N	-7.56080	-1.00000	-1.02097
C	-2.30909	-1 00102	-0.20000
c c	-2 30061	-3.8787/	-1 00002
C C	-2.30001	-3.07074	2 70066
c c	-0.42733	1 05960	0.01837
č	-1 38671	-0.61247	3 16263
c c	-3.44010	0.35705	0 00760
й	-3.04008	-0.65964	0.99709
C	-2 25280	-3 03723	-2 08095
č	1 00148	-1 87681	1 23120
č	-1 00232	2 07218	-1 00174
Č	2 38668	-1 84766	0.81080
C C	-1 62887	-3 74855	1.39508
н	-1 42299	-2 93419	2 09606
C	-3 05425	2 39296	-0 37594
C C	0.41353	2.00200	-1 34012
н	1 21508	2 27387	-0.62280
C	-1 47616	-0.68719	-2 49135
н	-0 49055	-0 26479	-2 27686
C	4 17534	3 41873	2 08912
н	5,17161	2,98779	2,28082
н	3.95105	4,11647	2.91500
н	4.23498	4.01008	1.15937
C	1.14827	3.03502	1.93345
Ĥ	1.22663	3.89352	1.24499
Н	0.90361	3.43381	2.93380
н	0.30900	2.41329	1.59447
С	2.92938	1.02519	3.56966
H	2.33466	0.10157	3.48612
Н	2.60861	1.56716	4.47707
Н	3.97821	0.71604	3.72291
С	4.46760	0.85367	0.18303
Н	5.05547	1.78378	0.23510
Н	4.93965	0.10626	0.85033
Н	4.53730	0.47800	-0.84908
Н	-2.56504	-4.26016	1.66950
Н	-0.79640	-4.46766	1.42599
Н	-2.25404	0.07080	-2.31576
Н	-1.51392	-1.02030	-3.53789
Н	-2.55761	-3.17407	-3.11253
Н	-2.65407	-4.89947	-0.91351
Н	-3.46882	0.66197	2.05338
Н	-4.45196	0.40133	0.56729
Н	-4.09251	2.69428	-0.29363
Н	-1.91499	3.87716	-1.59317
Н	0.42225	3.53674	-1.60927
Н	0.58829	1.86084	-2.23544
Н	-2.22319	-1.27067	3.26900
Н	0.32932	0.81270	3.02168

Н	3.18146	-2.56925	1.02942
Н	0.68315	-2.64192	1.91436

IM2"

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3526.447465 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3525.941487 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3526.042673 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{0} \end{array}$

Ni	0.91582	-0.22900	-0.86837
CI	-1.32542	-0.55041	2.23659
Si	-1.05206	-0.91403	0.08744
Si	-4.15677	-0.09786	0.20969
Ν	3.22704	-1.92526	0.15911
Ν	0.30276	2.68201	-0.04725
Ν	-2.61347	-0.39048	-0.61576
Ν	2.61904	-0.51415	1.66361
N	2.40178	2.30997	-0.32878
C	2.32633	-0.90567	0.37475
č	4.03762	-2.15854	1.26470
č	0.59210	0.32056	-2.78266
č	1 17670	1 67305	-0.36816
č	1 80668	-0.04308	-2 78198
Č	3 69391	1 67775	-0.58298
н	3 53540	0.83654	-1 26321
C	3 65624	-1 26007	2 21636
č	0.00024	-2 07978	-1 17572
č	0.95347	3 88438	0 20518
č	-0 67252	-2 64700	-0 34145
č	3 30683	-2 71004	-1 06821
й	2 93561	-2 08608	-1 88862
C	2.0001	3 64951	0.02661
č	-1 14506	2 52414	0.02001
й	-1 40443	2.02414	1 08200
C	1 99148	0 59447	2 37944
н	0.98936	0.74593	1 97631
C	-4 71076	-1 59031	1 25457
н	-4 79725	-2 49477	0.62778
н	-5 69659	-1 40731	1 71870
н	-3 98849	-1 80454	2 05774
C	-4 12704	1 46355	1 30330
н	-3 39324	1 38829	2 11913
н	-5 12321	1 61452	1 75651
н	-3 89529	2 36301	0 70779
C	-5 49055	0 20929	-1 12412
н	-5 25704	1 08469	-1 75398
н	-6 45785	0 40509	-0 62919
н	-5 62627	-0.65692	-1 79233
C	-2 71430	-0 70576	-2.06388
й	-3 25372	-1 65308	-2 25550
н	-3 23726	0 09907	-2.20000
н	-1 71208	-0 81272	-2 50356
н	4 35506	-2 99579	-1 24243
н	2 68215	-3 61195	-0.99052
Н	2.58530	1.51531	2.26293
-			

Н	1.91792	0.33195	3.44383
Н	4.01160	-1.09021	3.22656
Н	4.79074	-2.93858	1.27495
Н	4.36618	2.42085	-1.03603
Н	4.13410	1.30314	0.35428
Н	3.14516	4.30569	0.09391
Н	0.41238	4.78618	0.46805
Н	-1.49872	1.78867	-0.65011
Н	-1.62027	3.49941	-0.09988
Н	2.73554	-0.15589	-3.32801
Н	-0.28488	0.72122	-3.27521
Н	-1.06022	-3.67239	-0.37797
Н	0.71078	-2.57166	-2.04706

TS4"

$$\begin{split} & \mathsf{E}(\mathsf{RB97D}) = \text{-}3526.424408 \ \mathsf{E}_{\mathsf{h}} \\ & \mathsf{Sum} \ \text{of electronic and thermal Enthalpies} = \text{-}3525.919584 \ \mathsf{E}_{\mathsf{h}} \\ & \mathsf{Sum} \ \text{of electronic and thermal Free Energies} = \text{-}3526.018804 \ \mathsf{E}_{\mathsf{h}} \\ & \mathsf{Number of imaginary frequencies 1, v} = \text{-}212.6 \ \text{cm}^{-1} \end{split}$$

Ni	0.47283	-0.59914	-0.56728
CI	-2.22518	-0.32972	1.82801
Si	-1.94094	-0.51192	-0.36544
Si	-4.53434	1.42397	-0.12382
Ν	2.54885	-2.55743	0.01678
Ν	0.93249	2.29215	0.23305
Ν	-3.34644	0.40348	-0.95458
Ν	2.07414	-1.37509	1.76697
Ν	2.75314	1.31471	-0.37230
С	1.70403	-1.56139	0.45847
С	3.42359	-2.95955	1.02059
С	-0.62168	0.30084	-2.06547
С	1.41187	1.07505	-0.17993
С	0.39939	-0.27687	-2.65696
С	3.68620	0.32347	-0.90213
Н	3.14343	-0.28471	-1.63716
С	3.12676	-2.21199	2.12400
С	-0.47742	-2.33350	-0.70788
С	1.93730	3.25215	0.29533
С	-1.83323	-2.30276	-0.71295
С	2.60344	-3.04286	-1.36133
Н	1.97184	-2.37752	-1.97168
С	3.09240	2.63292	-0.08535
С	-0.47389	2.56182	0.52534
Н	-0.82227	1.90941	1.33222
С	1.46932	-0.37635	2.64521
Н	0.41479	-0.27052	2.36842
С	-5.74114	0.39725	0.93159
Н	-6.25142	-0.36167	0.31318
Н	-6.51907	1.03371	1.39035
Н	-5.20538	-0.12960	1.73655
С	-3.73715	2.77963	0.95206
Н	-3.10391	2.36747	1.75025
Н	-4.53454	3.37822	1.42756
Н	-3.12969	3.46812	0.34080

С	-5.55026	2.33834	-1.45918
Н	-4.90244	2.92691	-2.13143
Н	-6.25066	3.03978	-0.97288
Н	-6.14645	1.65304	-2.08350
С	-3.75679	-0.02629	-2.32056
Н	-4.69354	-0.61507	-2.30028
Н	-3.90946	0.84113	-2.98466
Н	-2.98200	-0.65880	-2.78218
Н	3.64714	-3.01586	-1.71234
Н	2.22497	-4.07428	-1.42135
Н	1.97972	0.59292	2.53253
Н	1.55419	-0.72272	3.68517
Н	3.54433	-2.21433	3.12438
Н	4.15628	-3.74302	0.86370
Н	4.52248	0.84970	-1.38393
Н	4.07014	-0.32538	-0.10077
Н	4.10597	3.00395	-0.18627
Н	1.73703	4.27379	0.59736
Н	-1.08770	2.37599	-0.36535
Н	-0.57327	3.61310	0.82598
Н	0.84861	0.05246	-3.60255
Н	-1.22032	1.20391	-2.23128
Н	-2.50059	-3.16019	-0.86571
Н	0.10493	-3.26181	-0.80324

IM3"

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3526.526266 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3526.018505 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3526.12184 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{0} \end{array}$

1.26032	-0.07141	-0.66024
-1.60655	-0.23232	2.25891
-2.00459	-0.54775	0.11948
-4.91660	0.31520	-0.47418
3.50334	-2.04875	-0.64632
1.96307	2.49519	0.74045
-3.71649	-0.89058	0.02292
2.96809	-1.41660	1.34223
3.41342	1.97849	-0.76544
2.65019	-1.20820	0.02619
4.33033	-2.75363	0.22741
-1.48824	0.95935	-0.83716
2.23065	1.54521	-0.21379
-0.20318	1.01434	-1.28419
4.11680	1.24769	-1.81252
3.37630	0.65074	-2.35851
3.98849	-2.35196	1.48706
0.27520	-1.70541	-0.95890
2.95378	3.47238	0.79088
-0.95952	-1.96985	-0.45710
3.51131	-2.19386	-2.09798
2.62787	-1.67168	-2.48677
	1.26032 -1.60655 -2.00459 -4.91660 3.50334 1.96307 - 3.71649 2.96809 3.41342 2.65019 4.33033 - 1.48824 2.23065 - 0.20318 4.11680 3.37630 3.98849 0.27520 2.95378 - 0.95952 3.51131 2.62787	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	3.87332	3.14676	-0.16418
С	0.79509	2.46226	1.62138
Н	1.06856	2.06120	2.60918
С	2.28736	-0.72750	2.43849
Н	1.23248	-0.59074	2.16886
С	-6.65784	-0.38502	-0.14214
Н	-6.85555	-1.29886	-0.72723
Н	-7.41850	0.36244	-0.42714
Н	-6.80887	-0.62678	0.92310
С	-4.71302	1.92243	0.52894
Н	-4.86699	1.72411	1.60325
Н	-5.44123	2.69130	0.21463
Н	-3.70201	2.34617	0.41833
С	-4.74640	0.67514	-2.33499
Н	-3.70535	0.91983	-2.59876
Н	-5.38931	1.51689	-2.64822
Н	-5.03666	-0.21151	-2.92444
С	-4.16656	-2.11251	0.72749
Н	-4.38091	-1.92326	1.79593
Н	-5.07583	-2.52273	0.26034
Н	-3.39037	-2.89451	0.67974
Н	4.42557	-1.75278	-2.52730
Н	3.46022	-3.25929	-2.36747
Н	2.75284	0.25357	2.62112
Н	2.35824	-1.34384	3.34550
Н	4.36203	-2.65276	2.45948
Н	5.06278	-3.47344	-0.12047
Н	4.60380	1.96034	-2.49444
Н	4.87343	0.57529	-1.37754
Н	4.78498	3.64137	-0.48052
Н	2.90232	4.30839	1.47942
Н	0.03703	1.82091	1.16183
Н	0.40194	3.48287	1.73617
Н	0.05382	1.86206	-1.94640
Н	-2.20713	1.73947	-1.12331
Н	-1.38323	-2.98408	-0.52169
Н	0.80992	-2.55583	-1.42167

TS5"

$$\begin{split} & \mathsf{E}(\mathsf{RB97D}) = \text{-}3526.491612 \ \mathsf{E}_{\mathsf{h}} \\ & \mathsf{Sum} \ \text{of electronic and thermal Enthalpies} = \text{-}3525.986943 \ \mathsf{E}_{\mathsf{h}} \\ & \mathsf{Sum} \ \text{of electronic and thermal Free Energies} = \text{-}3526.09313 \ \mathsf{E}_{\mathsf{h}} \\ & \mathsf{Number of imaginary frequencies 1, v} = \text{-}439.7 \ \text{cm}^{-1} \end{split}$$

Ni	-0.90877	0.42336	-0.65321
CI	2.30905	-0.01202	1.96609
Si	2.54422	0.03794	-0.18715
Si	5.00271	-1.61821	-1.02263
Ν	-2.11816	3.19574	-0.60627
Ν	-1.87391	-2.06464	0.75499
Ν	4.25040	-0.09340	-0.51126
Ν	-1.61918	2.47377	1.35976
Ν	-3.42061	-1.14902	-0.43088
С	-1.64612	2.07175	0.04257
С	-2.36083	4.24939	0.27293

С	1.52782	-1.22330	-1.09365
С	-2.09424	-0.98683	-0.07738
С	0.41006	-0.60198	-1.62493
С	-4.10757	-0.24720	-1.34583
Н	-3.67607	0.75372	-1.21141
С	-2.03657	3.79121	1.51818
С	0.61556	1.26032	-1.54868
С	-3.01331	-2.84772	0.91762
С	1.79536	1.58140	-0.91966
С	-2.32294	3.25907	-2.04674
Н	-2.03398	2.28470	-2.46173
С	-3.99170	-2.27412	0.15711
С	-0.61553	-2.27969	1.46617
Н	-0.64053	-1.79943	2.45733
С	-1.09978	1.62065	2.42624
Н	-0.00724	1.71462	2.50357
С	6.88762	-1.46332	-0.79789
Н	7.32462	-0.69524	-1.45777
Н	7.37333	-2.42394	-1.04226
Н	7.15483	-1.20707	0.24085
С	4.36799	-3.05264	0.05649
Н	4.66776	-2.90644	1.10787
Н	4.77732	-4.02014	-0.28448
H	3.26876	-3.12402	0.03702
С	4.61396	-1.96024	-2.85290
H	3.52605	-1.91686	-3.02326
H	4.97759	-2.95246	-3.17398
H	5.08241	-1.20025	-3.50163
С	5.09264	1.04804	-0.09088
H	5.41667	0.95820	0.96253
H	5.99230	1.12552	-0.72161
H	4.53748	1.99609	-0.19139
н	-3.38109	3.46405	-2.27965
н	-1.69563	4.04760	-2.49149
н	-1.34139	0.58129	2.16873
н	-1.5/56/	1.90147	3.37791
н	-2.06879	4.27680	2.48759
н	-2.74669	5.20759	-0.05785
н	-3.96933	-0.56409	-2.39250
н	-5.18184	-0.23469	-1.10701
н	-5.02128	-2.56399	-0.02241
н	-3.02414	-3.72741	1.55190
н	0.19490	-1.84444	0.87096
H	-0.45163	-3.36056	1.58983
H	-0.07360	-1.05918	-2.50/2/
	1.849/4	-2.20749	-1.44058
	2.32016	2.51857	-1.12856
	0.2009	1.90030	-2.30/00

IM4"

 $\begin{array}{l} \mathsf{E}(\mathsf{RB97D}) = -3526.570116 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Enthalpies} = -3526.061362 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Sum} \ \mathsf{of} \ \mathsf{electronic} \ \mathsf{and} \ \mathsf{thermal} \ \mathsf{Free} \ \mathsf{Energies} = -3526.166306 \ \mathsf{E}_{\mathsf{h}} \\ \mathsf{Number} \ \mathsf{of} \ \mathsf{imaginary} \ \mathsf{frequencies} \ \mathsf{0} \end{array}$

Ni	-0.75482	0.00509	-0.62643
CI	2.38389	1.41048	1.13400
SI	2.38973	-0.36789	-0.08965
21	5.19034 0.44412	-1.02302	0.04536
IN NI	-0.44412	2.04100	-1.40004
N	-2.77307	-1.10409	-0.60220
N	-0.89206	2 67951	0.61547
N	-3.67918	-0.41230	-0.58058
С	-0.74061	1.90505	-0.51471
С	-0.38171	4.13169	-0.96825
С	1.75529	-1.85786	0.83207
С	-2.44580	-0.56242	0.02526
С	0.70970	-2.33854	0.08714
С	-3.83750	0.18533	-1.90013
H	-2.99815	0.87810	-2.05228
C	-0.65754	4.02673	0.36426
C	0.30507	-1.60935	-1.13582
	-4.14312	-1.40939	1.33510
C C	-0 16200	-0.36290	-1.30333
н	-0.10200	2.30209	-3 00375
C	-4.71550	-0.92674	0.19393
č	-1.79293	-1.52880	2.24154
Ĥ	-2.03220	-1.01339	3.18628
С	-1.12824	2.11401	1.93898
Н	-0.17894	1.77402	2.37821
С	6.92616	-1.21149	-0.62689
Н	6.99966	-1.36590	-1.71666
H	7.67541	-1.86676	-0.14963
H	7.21099	-0.16738	-0.41445
C	5.20212	-1.41442	1.93841
H L	5.45014	-0.37555	2.21313
п	0.94301 1 01700	-2.00291	2.41109
$\hat{\mathbf{C}}$	4.21722	-1.04271	-0 39254
н	3,70308	-3.62678	-0.11585
н	5.39962	-4.14277	0.13197
Н	4.84975	-3.59505	-1.47746
С	4.45991	0.53745	-1.63725
Н	4.77003	1.46599	-1.12135
Н	5.30532	0.18684	-2.24942
H	3.63816	0.79615	-2.32925
Н	-0.79126	3.10634	-3.54772
H	0.89967	2.68401	-3.10617
		1.20890	1.82813
п	-1.30001	2.00120	2.57900
н	-0.16261	4.77023	-1 58704
н	-3 81868	-0.58529	-2 68811
н	-4.79283	0.73036	-1.94414
H	-5.75005	-0.90228	-0.13089
Н	-4.58040	-1.88015	2.20886
Н	-0.80452	-1.21759	1.88274
Н	-1.78696	-2.61659	2.41475
Н	0.13831	-3.22945	0.37946

Н	2.05905	-2.31305	1.77538
Н	1.19995	-0.04517	-2.41557
Н	-0.16304	-2.18863	-1.94139

- 1 T. J. Hadlington, T. Szilvasi, M. Driess, Angew. Chem. Int. Ed. 2017, 56, 7470-7474.
- 2 G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8
- **3** G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8

5 Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., J. E. P.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, 2009.

^{4 (}a) Frisch, M. J.; Pople, J. A.; Binkley, V. J. Chem. Phys., 1984, 80, 3265-3269; (b) A. D. Becke, J. Chem. Phys., 1997, 107, 8554-8560; (c) S. Grimme J. Comput. Chem., 2006, 27, 1787-1799.