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Materials and Methods 
Materials  
Acetonitrile (HPLC grade, 99.9%), acetic acid (HPLC grade), water (HPLC grade), 6-mercapto-1-
hexanol (97%), and 2-amino-3-hydroxypyridine (98%) were purchased from Sigma-Aldrich (St. 
Louis, MO). 1-(1,3-Benzodioxol-5-yl)ethanamine was purchased from ChemBridge (San Diego, 
CA). Bare fused silica capillary with 49 µm i.d. and 104 µm o.d. was purchased from Polymicro 
Technologies (Phoenix, AZ). 
 
Animals and Breast Tumor Lysates  
Mice used in this study were maintained under pathogen-free conditions in the University of 
Notre Dame Freimann Life Sciences animal facility. Animal experiments were conducted in 
accordance with the University of Notre Dame Institution Animal Care and Use Committee 
guidelines after IACUC approval (protocol # 15-10-2724 and 18-11-5000). Breast tumors derived 
from MMTV-Wnt1[1] mice and MMTV-Neu[2] and normal mammary glands from FVB/N mice 
were collected and used for this study.  
 
The tumor was lysed by first grinding it with mortar and pestle in liquid nitrogen and then 
resuspending it into three times its volume of lysis buffer (10 mM Tris HCl, pH 7.6, 5 mM EDTA, 
and 120 mM NaCl). The sample then was lysed using a sonicator for 10 second lysis, pause, and 
repeat for one minute. The sample was then centrifuged at 14,000 g for 5 min, and the 
supernatant was collected. From the supernatant, a small sample was used to determine the 
protein concentration by Bradford assay using a standard curve of BSA. From the remaining 
supernatant, samples were diluted with methanol to the final protein concentration of 1 
mg/mL, incubated at -80 C for 30 minutes to precipitate, and then centrifuged at 14,000 g for 
20 minutes to remove proteins. The supernatant was then taken into a plastic vial, SpeedVac to 
dryness, and reconstituted in water with 0.1% acetic acid. The final metabolites solution was 
then used for SERS.  
 
SERS Substrate Preparation  
The SERS-active substrate was prepared by a thermal evaporation protocol as previously 
reported.[3] Briefly, silver shot was evaporated onto an aluminum anodized oxide (AAO) filter 
with 0.1 μm pores. The filter was dissolved with 0.1 M NaOH solution for 4 hours to reveal a 
thin layer of highly enhanced SERS substrate with Ag nanostructures on the surface. It is then 
affixed onto a standard microscope glass slide, predrilled with 2 holes (35 mm apart) and 
incorporated into a custom-built flow cell.[3]  
 
For experiments reported in Figures 3 and 4, a self-assembled monolayer was attached to the 
bare substrate by immersing the substrate in a 10 mM ethanolic solution of 6-mercapto-1-
hexanol for 24 h before the NaOH immersion. 
 
Liquid Chromatography 
For SERS detection, chromatographic separation was achieved using an Ultimate 3000 
RSLCnano HPLC system (Thermo Fisher) with two C18 columns—one trap column (Thermo 



Fisher, 0.075 x 20 mm, 3 µm) and one separation column (Thermo Fisher, 0.075 x 150 mm, 2 
µm). Mobile phases are A: water (0.1 % acetic acid) and B: acetonitrile (0.1 % acetic acid). Flow 
rate was 300 nL/min. Two different separation methods were used. Method I: t = 0-3 min, 20% 
B; t = 8 min, 65% B; t = 10-14 min, 85% B; t= 16 min, 35% B; t = 18-20 min, 20% B. Method II: 
20% B isocratic for 20 min. 
 
SERS Detection 
The sheath-flow SERS cell was connected online to the outlet of the HPLC system with a bare 
fused silica capillary (~90 cm). The flow cell consists a plastic base with an inlet and outlet for 
sheath flow, a silicone gasket (with a 2 mm slit defining the sheath-flow channel), a cover slip 
and stainless steel top plate. The end of the silica capillary is affixed onto the SERS substrate 
where analytes confinement occurs by hydrodynamic focusing. The sheath flow rate of water 
was 30 μL/min.  
 
SERS spectral acquisitions were performed on a home-built setup. In general, a 632.8 nm HeNe 
laser was focused onto the SERS-active substrate in the flow cell through a 40× water 
immersion objective (Olympus, NA = 0.8). Raman scattering was collected through the same 
objective and directed to a Shamrock 303i spectrograph (Andor) and EMCCD (Newton 970, 
Andor). Raman spectra were recorded in series with a 0.2 s acquisition time and 0.5 mW of 
laser power at the sample. 
 
LC-MS 
LC-MS experiments were performed at the CCIC Mass Spectrometry and Proteomics (MSP) 
Facility of The Ohio State University. 
 
For MS detection, chromatographic separation was achieved using an Ultimate 3000 RSLC HPLC 
system (Thermo Fisher) with a C18 column (Agilent Zorbax SB-Aq, 3 x 150 mm, 3.5 um). Flow 
rate was 350 μL/min. Separation method II was used. Injection volume was 3 μL. 
MS measurement was performed on Thermo LTQ Orbitrap XL mass spectrometer. Positive 
mode with data dependent analysis was performed Mass Range was 100 to 1200 m/z. 
Metabolite identification was achieved by matching detected MS spectra with publicly available 
databases. 
 
Data Analysis 
Background Removal 
The background removal algorithm addresses the following observations and concerns. First, 
the shape of background along frequency channels can change steeply, and thus no smoothing 
should be applied along the frequency. Second, the shape of background changes over time; 
this change is typically slower but may trend differently on different frequency regions. The 
algorithm is described as follows. 
 
First, the original matrix of spectra is divided into time-frequency blocks by taking fixed-size 
windows at both the time domain and the frequency domain. For instance, a dataset with 5,000 
spectra and 1,600 frequency channels will be divided into 50 × 16 blocks when the window 



sizes in time and in frequency are both set to 100, and the first block, for example, contains the 
frequency channels from 1 to 100 in the first 100 spectra. 
 
Next, within each time-frequency block, the fragments of spectra at different time points are 
scaled by their average intensities. This scaling removes the difference in the overall intensities 
and keeps only the shape. This shape is then captured by taking a pointwise median within the 
block. This median is taken over the time domain for every individual frequency channel and 
will not result in any smoothness on the frequency domain. Since median is used instead of 
mean, the signals, if present, will have no virtually effect on the estimation of this shape, and 
this shape reflects the shape of the background. Finally, the background (shape) is projected on 
each spectrum, and this projection is removed to give the background-removed spectrum. 
Algorithm 1 gives the whole algorithm for background removal.  
 
Algorithm 1 for background removal is described as follows: 
 

• Input: original SERS data in T time points and W frequency channels, which is given as a matrix 
𝑋 = (𝑋)*+,×-, window size in the time domain 𝑤,, and window size in the frequency domain 
𝑤/.  

• Output: a matrix of background-removed spectra (𝑌)*+,×-. 
1. Segment time and frequency dimensions evenly by the corresponding window sizes to obtain 

𝑛, × 𝑛/ , where 𝑛, = 𝑇/𝑤, and 𝑛/ = 𝑊/𝑤/. Denote the fragments of spectra in each block by 
a matrix 𝑋∗ = (𝑋)*∗ +67×68

. 

2. Scale each spectrum fragment at a time point, 𝑋)⋅∗	(𝑖 ∈ {1, 2, … ,𝑤,}), by its average intensity 
𝑋)⋅D = 𝑋)⋅∗/𝑚𝑒𝑎𝑛(𝑋)⋅∗). Then estimate the background for this block 𝐵 = (𝐵I,… , 𝐵68) in a 
pointwise manner by 𝐵* = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑋)*D , 1 ≤ 𝑖 ≤ 𝑤,}. Note that median, instead of mean, is 
used to make the estimate robust to the possible presence of signals.  

3. For each spectrum fragment in the block, calculate its pointwise projection vector onto the 
background 𝑃) = (𝑃)I,… , 𝑃)68) by 𝑃)* = 𝑋)*/𝐵*. Then take the q’th (𝑞 = 40 was usedby default) 
percentile of the values in 𝑃) as an overall scaling factor and denote it by 𝑄). Finally, remove the 
estimated background at the original intensity scale by 𝑌)⋅ = 𝑋)⋅∗ − 𝑄) ⋅ 𝐵. 

Signal Detection 
Background-removed spectra consist of signals of interest as well as random noises. Noises 
typically have relatively low magnitudes, and/or their values alter rapidly between positive and 
negative values. Signals, on the other hand, are usually positive and look like a set of bumps, 
which are defined as consecutive positive sections with relatively high magnitudes. Based on 
this, we have a mathematical definition (shown in Algorithm 2) that depends on three cutoffs: a 
cutoff for statistical significance that controls the false positive findings measured by false 
discovery rate (FDR), a cutoff for practical significance that controls the minimum magnitude of 
signals compared to the noise, and a cutoff of the length of the bump. The last cutoff is 
introduced based on the observation of presence, although rare, of sharp peaks with large 
magnitude but minimal length in frequency domain. These peaks are speculated to be due to 



cosmic rays, and a length cutoff effectively rules them out. The whole algorithm is shown in 
Algorithm 2. 
 
Algorithm 2 for signal detection is described as follows: 

• Input: A matrix of background-removed spectra Y obtained from Algorithm 1. A cutoff 𝛼 for the 
relative intensities of signals and an FDR cutoff 𝛽, a cutoff 𝛾 for bump length. 

• A set of time indices of signals, denoted by t.  
1. For a background-removed spectrum, 𝑌)⋅	(𝑖 = 1,… , 𝑇), estimate the standard deviation of 

noises 𝜎) by 𝜎U) = 𝑘 ⋅ 𝑚𝑒𝑑𝑖𝑎𝑛{W𝑌)*W, 𝑗 = 1,… ,𝑊}, where 𝑘 = 1/(ΦZI(0.75)), and ΦZI is the 
inverse cumulative function of the standard normal distribution. This estimate that uses MAD 
(median absolute deviation) is highly robust to the possible presence of signals.  

2. Calculate the p-value for frequency channel j of 𝑌)⋅ by  

𝑝)* = {2 × Φ^−
W𝑌)*W
𝜎U)
_ 𝑌)* > 0

1 𝑌)* ≤ 0
 

where Φ is the cumulative function of the standard normal distribution. Then convert p-values 
(𝑝)I,… , 𝑝)-) into (𝐹)I, … , 𝐹)-), where 𝐹)* is the FDR of the frequency channel j in spectrum i. 
 

3. Find all bumps in 𝑌), where a bump is defined as a consecutive region of frequencies on which 
the magnitude satisfies 𝑌)* > 𝛼 and 𝐹)* < 𝛽.  

4. Let 𝐿)⋅ be a vector that records the length of bumps in 𝑌)⋅. If maxg𝐿)*, 𝑗 = 1,… ,𝑊h ≥ 𝛾, claim 
that spectrum 𝑌)⋅ has at least one signal and add its time index i into set t. Otherwise, claim 𝑌)⋅ as 
a spectrum without any signal. Repeat this procedure for all background-removed spectra. 
Finally, the time index set t contains all the time indices that have at least one signal.  

Barcode Analysis 
Here we describe the algorithm to obtain the barcode plot, which exhibits the recurrent signals 
across technical replicates and the reproducibility of them. First, for each signal in a replicate, 
we match it with signals in other replicates. Signals are matched according to their Pearson’s 
correlation and the difference between the time they appear, and Pearson’s correlation 
represents the reproducibility of the signal. Second, we record how many times each signal 
reoccurs across replicates. If the times of recurrence is big enough, for example larger than 
three, then the corresponding signals will be exhibited in the barcode plot. Besides, we sum up 
the Pearson’s correlation coefficients of each recurrent signal and turn it into color shade in the 
barcode plot. Hence, the darker color indicates the better reproducibility of a signal. The details 
of the algorithm are as follows. 
 
Algorithm: barcode plot 
Input: the set of signals from N replicates, tolerance of time difference denoted by w, the cutoff 
of Pearson’s correlation denoted by 𝛼, and the cutoff of the recurrence time K. 
Output: a vector B for the barcode plot 
For 𝑖 = 1,2,…𝑁: 

1. 𝑠),l is a signal in replicate i coming at time t. For 𝑗 ≠ 𝑖, find all signals 𝑠*,l∗’s that 
satisfies: 



𝑐𝑜𝑟(𝑠*,l∗, 𝑠),l+ > 𝛼 
|𝑡∗ − 𝑡| < 𝑤 

If there exists such a signal in replicate j, we say 𝑠),l is recurrent in replicate j. 
2. 𝑅),l denotes the times that 𝑠),l recurs in other replicates, and the reproducibility of 

𝑠),l is defined as 𝐶),l = ∑ ∑ 𝑐𝑜𝑟(𝑠*,l∗ , 𝑠),l+l∗*v) . 
3. Considering the variance of time, we modify 𝑅),l by 𝑅),l∗ = max

{wx:|wxZw|z{}
𝑅),lx
∗  and 𝐶),l 

by 𝐶),l∗ = ∑ 𝐶),l{lx:|lxZl|z6}  
Across all replicates, 𝑅l∗ is the times of recurrence for the signal at time t, where 𝑅l∗ =
∑ 𝑅),l∗|
)}I , and 𝐶l∗ is the accumulative reproducibility, where 𝐶l∗ = ∑ 𝐶),l∗|

) . For the barcode plot, 
𝐵 = (𝑏I,… , 𝑏,) is calculated as: 

𝑏l = 𝐶l∗ if 𝑅l∗ ≥ 𝐾 and 𝑏l = 0 otherwise. 
 
  



 

Figure S1. Parallel LC-MS (a) and LC-SERS (b) chromatograms of the same MMTV-Wnt1 tumor 
sample. Red box: 2-amino-3-hydroxypyridine (AHP). The retention times for AHP in LC-MS and 
LC-SERS are 16.537 min and 17.977 min, respectively. The absolute difference in retention time 
is expected due to the differences in the LC instruments used for MS and SERS experiments. 
The similar relative retention time supports the detection of AHP. 

 

Table S1. Selective metabolites identified by MS. 

 



 

Figure S2. Continuous detection of metabolites (a) 2-amino-3-hydroxypyridine (AHP, 287 μM) 
and (b) 1-(1,3-Benzodioxol-5-yl)ethanamine (142 μM) using sheath-flow SERS detector. Sample 
solutions were injected continuously at a flow rate of 1.5 μL/min, while sheath flow was kept at 
60 μL/min. 

 

 

Figure S3. Reference SERS spectrum of AHP. AHP solution (1 µL, 14.4 µM) was injected and run 
through a 20-min LC separation using Method II. Spectrum on the right is the average of 24 
spectra in the SERS chromatogram (highlighted in the red box). 



 

Figure S4. Background spectra of 6-mercapto-1-hexanol monolayer covered SERS substrate 
before and after 4 consecutive LC-SERS runs. 

 

 

Figure S5. SERS spectra of representative matched signals from 2 replicate LC-SERS experiments 
of the MMTV-Wnt1 sample. Figure legends denoted replicate#-spectrum#.  
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