## Supplementary materials

## Assessment of modelling strategies for drug response prediction in cell lines and xenografts

## Roman Kurilov, Benjamin Haibe-Kains, Benedikt Brors

## Cell line drug response metrics.

Cell line drug response data included three metrics:  $IC_{50}$ , AUC and viability at 1  $\mu$ M (Fig. s0).  $IC_{50}$  (half maximal inhibitory concentration) metric values were obtained via PharmacoGx package. Particularly "ic50\_recomputed" values were used. In order to estimate  $IC_{50}$  dose response curves were fitted on raw viability data to the equation:

$$y = E_{\infty} + \frac{1 - E_{\infty}}{1 + (\frac{x}{IC50})^{HS}}$$

"where the maximum viability is normalized to be y = y(0) = 1,  $E_{\infty}$  denotes the minimum possible viability achieved by administering any amount of the drug,  $IC_{50}$  is the concentration at which viability is reduced to half of the viability observed in the presence of an arbitrarily large concentration of drug, and HS is a parameter describing the cooperativity of binding. HS < 1 denotes negative binding cooperativity, HS = 1 denotes noncooperative binding, and HS > 1 denotes positive binding cooperativity. The parameters of the curves are fitted using the least squares optimization framework" (Smirnov, P., et al. "PharmacoGx: an R package for analysis of large pharmacogenomic datasets." *Bioinformatics* 32.8 (2015): 1244-1246.)

In order to handle outlier values in  $IC_{50}$  data we truncated the distribution of  $IC_{50}$  values at the 85th percentile for each drug.

**AUC** (area under the drug response curve) metric values were also obtained via PharmacoGx package. Particularly "auc\_recomputed" values were used. AUC values are calculated as area *above* the drug response curve fitted to the data (see  $IC_{50}$  section). In order to get the actual area *under* the curve we then subtracted obtained values from 1 (the total area):

AUC\_final = 1 - AUC\_recomputed

**Viability at 1 \muM** metric values were calculated by fitting logistic regression drug response curve on the raw viability data using nplr package (Commo, F., and Briant M.B., "R package nplr n-parameter logistic regressions." *V. 0.1–7* (2016).) and taking the curve's value at 1uM.

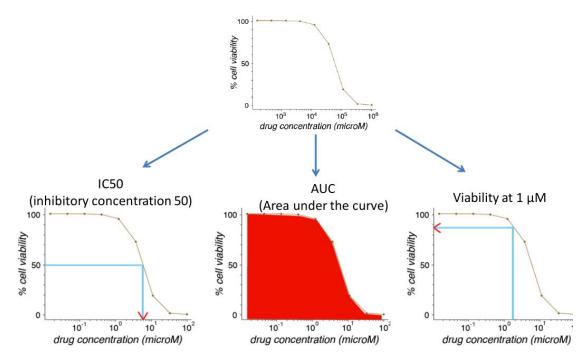



Figure s1. Cell line drug response metrics. Figure depicts raw drug response data and three derived metrics, IC50, Area under the curve, and Viability at 1uM.

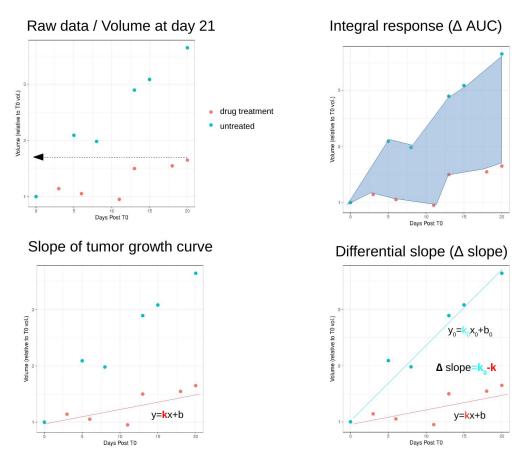
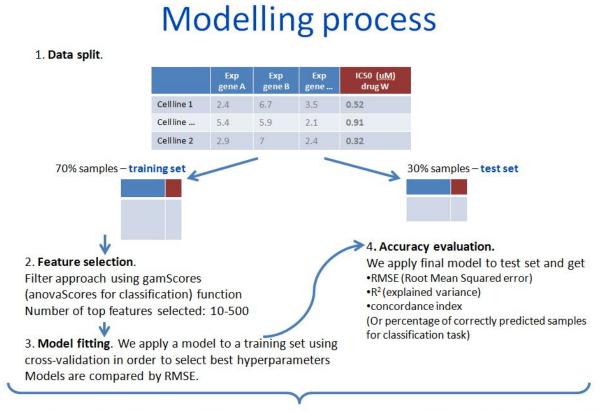




Figure s2. Xenograft's drug response metrics. Figure depicts four drug response metrics: Volume (day 21), Slope of tumor growth curve, Integral response, and Differential slope.



5. Getting final accuracies. We repeat steps 1-4 ten times and get averaged RMSE, R<sup>2</sup> and concordance index

Figure s3. Steps of the modelling process. 1. Data split. 2. Feature selection. 3. Model fitting. 4. Accuracy evaluation.

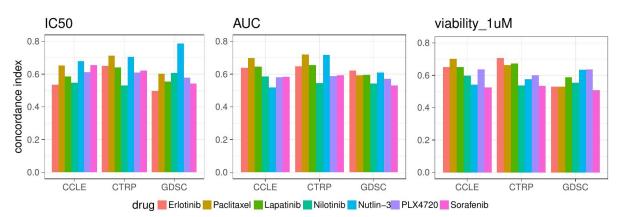
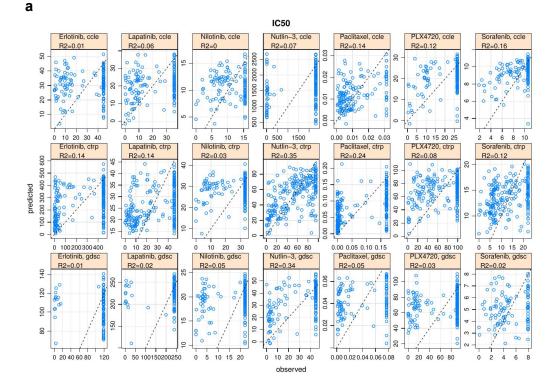




Figure s4. (a) Concordance index for 7 drugs across multiple testing conditions, number of variables=500.



Figure s5.  $R^2$  for 7 drugs across multiple testing conditions. Rows represent different drug response metrics, IC50, AUC, Viability at 1µM, columns represent different drugs. On each plot there results for three tested datasets: CCLE, CTRP, GDSC. Color coding reflects number of variables in the model.



b AUC 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Nutlin-3, ccle PLX4720, ccle Lapatinib, ccle Nilotinib, ccle Erlotinib, ccle Paclitaxel, ccle Sorafenib, ccle R2=0.19 R2=0.38 R2=0.07 R2=0 R2=0.28 R2=0.28 R2=0.08 1.0 é 0.8 0.6 0.4 0.2 8 0.0 Nilotinib, ctrp Paclitaxel, ctrp Sorafenib, ctrp Erlotinib, ctrp Lapatinib, ctrp Nutlin-3, ctrp PLX4720, ctrp R2=0.28 =0.29 R2=0.17 R2=0.43 R2=0.35 R2=0.08 1.0 0.8 predicted 0.6 0.4 0.2 0.0 Nutlin-3, gdsc PLX4720, gdsc Erlotinib, gdsc Lapatinib, gdsc Nilotinib, gdsc Paclitaxel, gdsc Sorafenib, gdsc R2=0.15 R2=0.2 R2=0.07 R2=0.21 R2=0.02 R2=0.13 R2=0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 observed

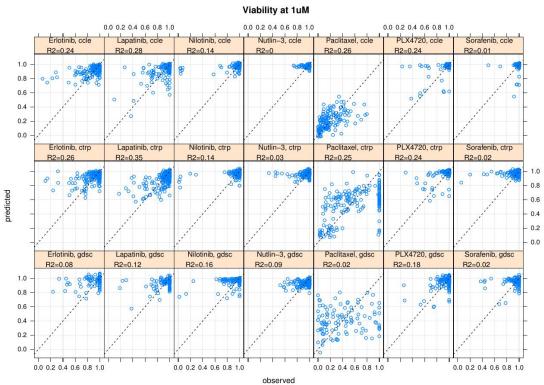



Figure s6. Observed vs. predicted values for different drugs/datasets combinations within each drug response metric (IC50, AUC, viability at 1μM). On each plot columns represent different datasets, rows represent different drugs. (a) IC50 values. (b) AUC values. (c) viability\_1uM values.

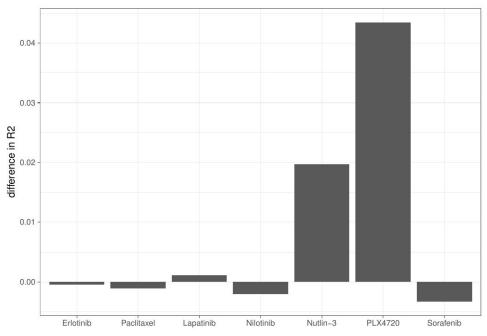



Figure s7. Difference in average R<sup>2</sup> between models that use all genomic features and models that use only expression features for 7 drugs.

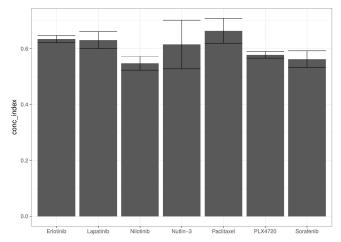



Figure s8. Average (across three datasets) concordance index values for each drug separately (for models with AUC metric).

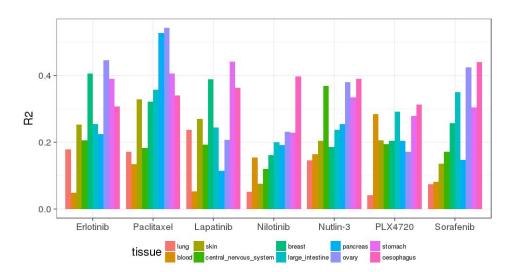



Figure s9. Average (across three datasets)  $R^2$  values for each tissue and each drug separately (for models with AUC metric).

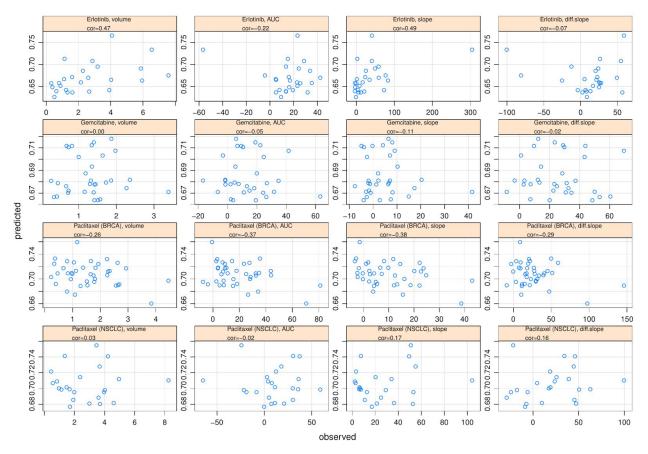



Figure s10. Observed vs. predicted values for [cell lines  $\rightarrow$  xenografts] type of prediction and corresponding correlation coefficients

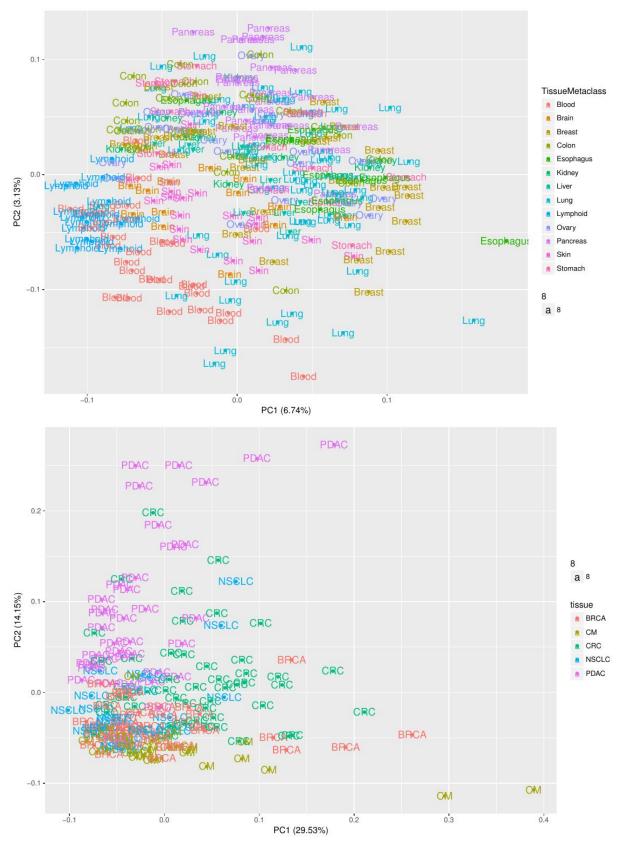



Figure s11. PCA plots based on molecular data with tissue labels for each samples. Top -- cell lines (gCSI), bottom -- xenografts (NIBR PDXE).

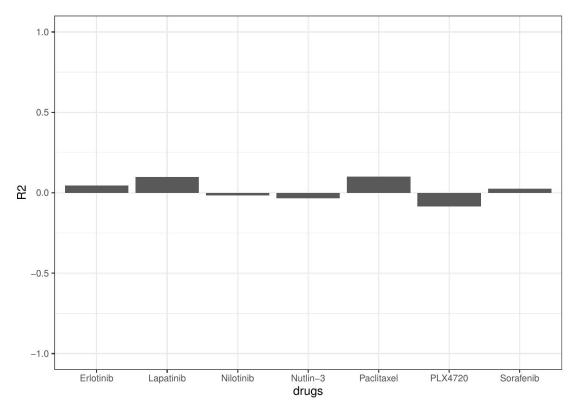



Figure s12. Average correlation between number of features in the model and resulting R2 for each drug. Plotted R2 are values averaged across datasets (CCLE, CTRP, GDSC) and drug response metrics (IC50, AUC, viability\_1uM). In these tests we tested the following numbers of variables: 100, 500, 2500 and 5000.

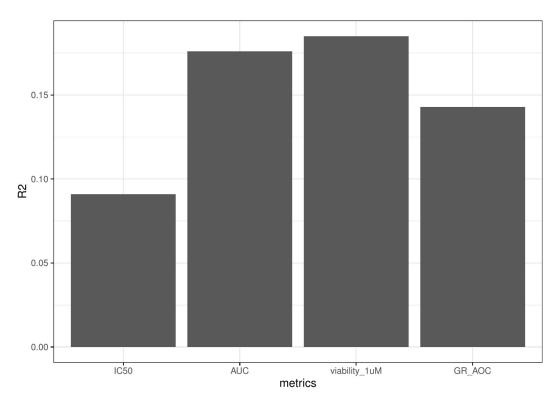



Figure s13. Average R2 across 7 drugs for different drug response metrics including GR\_AOC metric. In these tests we used only data on 146 cell lines from CTRP dataset, since only on these cell lines we had GR\_AOC values available via <a href="http://www.grcalculator.org">http://www.grcalculator.org</a>.

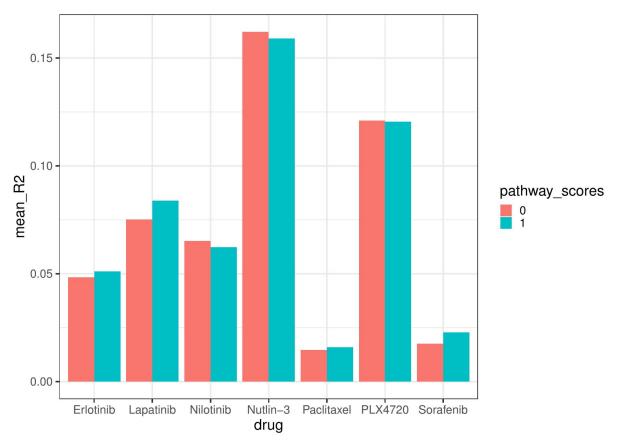



Figure s14. Average R2 across 7 drugs for models with (pathway\_scores=1) and without (pathway\_scores=0) pathway signature features calculated using PROGENy tool. Base model include 200 genomic features selected via feature selection procedure. For these tests we used only data from GDSC dataset.

|                   | Overlap between top 400 features selected via anovaScores for<br>the 2 classification tasks:<br>(lung vs. others[-breast]) and and (breast vs. others[-lung])                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Overlap between gCSI and NIBR<br>for the task<br>(breast+lung vs. others)                                                                                                                                                                                                                                                       |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                   | gCSI                                                                                                                                                                                                                                         | NIBR PDXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |  |  |
| genes             | APOBEC3C<br>C14orf162<br>C15orf59<br>CCDC149<br>CYP1B1<br>ENAH<br>FAM127C<br>FERMT2<br>FOXA1<br>HMGCLL1<br>LDC1<br>LOC100507372<br>LOC115110<br>NOTCH3<br>NPR3<br>NRK<br>PALMD<br>SIX2<br>TNFRSF14<br>TRIM16L<br>ZNF793<br>ZSCAN18<br>ZYG11A | ARHGEF26-AS1<br>BCL6<br>BNIPL<br>CAMK1D<br>CD97<br>FBXO27<br>GRHL1<br>HMGB3<br>HS6ST1<br>IRX3<br>IRX4<br>KIAA0922<br>LTBP1<br>MTMR12<br>NOTCH3<br>NT5C3<br>NTN1<br>NXN<br>PACSIN3<br>PAPD7<br>PC<br>PGPEP1<br>PIAS3<br>PAPD7<br>PC<br>PGPEP1<br>PIAS3<br>PKP1<br>PLAC2<br>PSME4<br>PTPRF<br>PXDN<br>RGMA<br>RPS27L<br>SEMA4A<br>SIX4<br>SLC6A11<br>SLC6A9<br>SUSD4<br>TCF7L1<br>TMEM132A<br>TMEM25<br>TMPRSS13<br>UBE2E2<br>VIPR2<br>ZDHHC18<br>ZNF436<br>ZNF750<br>ZYG11A | ABHD14B<br>ARHGEF26-AS1<br>BNIP3<br>C10orf35<br>C5orf38<br>EFHD1<br>EFS<br>ENAH<br>FAM127C<br>GHDC<br>GIMAP2<br>GPR156<br>HMGB3<br>IRX2<br>IRX3<br>KIAA2022<br>LDOC1<br>LOC100506930<br>MB<br>NOTCH3<br>PALLD<br>PAQR8<br>PXDN<br>S1PR3<br>SNAP47<br>SUSD4<br>TMEM132A<br>TMEM25<br>TPBG<br>TSPYL5<br>VASN<br>ZNF512B<br>ZYG11A |  |  |
| DAVID<br>clusters | DNA binding/transcription regulation/homeobox<br>Membrane/transmembrane                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                 |  |  |
|                   |                                                                                                                                                                                                                                              | transcription from RNA<br>polymerase II promoter<br>immunoglobulin domain<br>Zinc-finger<br>ATP-binding                                                                                                                                                                                                                                                                                                                                                                    | leucine rich repeat                                                                                                                                                                                                                                                                                                             |  |  |
|                   |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                 |  |  |

Table s1. Gene expression features, selected for different tissue type classification tasks, which can distinguish lung and breast samples from other samples. Top DAVID annotation clusters are also shown.

| drug       | Number of tested cell lines |      |      |  |
|------------|-----------------------------|------|------|--|
|            | CCLE                        | CTRP | GDSC |  |
| Erlotinib  | 494                         | 764  | 323  |  |
| Lapatinib  | 495                         | 719  | 349  |  |
| Nilotinib  | 410                         | 753  | 646  |  |
| Nutlin-3   | 493                         | 751  | 662  |  |
| Paclitaxel | 492                         | 708  | 357  |  |
| PLX4720    | 486                         | 760  | 662  |  |
| Sorafenib  | 491                         | 761  | 355  |  |

Table s2. Number of cell lines tested with each drug in CCLE, CTRP and GDSC datasets.

| Drug, tissue          | Number of tested samples |           |
|-----------------------|--------------------------|-----------|
|                       | gCSI                     | NIBR PDXE |
| Erlotinib, lung       | 68                       | 25        |
| Gemcitabine, pancreas | 26                       | 32        |
| Paclitaxel, breast    | 29                       | 38        |
| Paclitaxel, lung      | 68                       | 23        |

Table s3. Number of cell line or xenograft samples from certain tissue tested with Erlotinib, Gemcitabine, and Paclitaxel in gCSI and NIBR PDXE datasets.