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Supplementary Methods 

Elevated plus maze test 

The elevated plus maze test is a well-established model used to evaluate anxiety behavior 

in rodents. The EPM consisted of two opposing open arms (30×8 cm) and two opposing 

closed arms (30×8×15 cm) that originated from a common central platform (8×8 cm), and 

are elevated 70 cm above the floor. At the start of the trial, animals were placed into an open 

field box for 5 min to avoid the mice hiding along the length of enclosed arms. Then, the 

mouse was placed in the center with the head facing towards an open arm and allowed to 

explore for 5 min. The percentage of open arms entries was calculated. All the data was 

recorded automatically using a video tracking system (SuperMaze software, Shanghai 

Xinruan Information Technology Co., Ltd, China). 

Bioinformatics and Statistics for OMICs Data 

RNA-Seq Data Analysis 

We filtered and trimmed the reads using Trimmomatic v0.38 with parameters 

“HEADCROP:15 LEADING:20 TRAILING:20 SLIDINGWINDOW:5:20 MINLEN:50 

AVGQUAL:20” 1. Clean reads were mapped to the Mus musculus genome sequence 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/635/GCF_000001635.26_GRCm38.p

6) using Hisat2 v2-2.1.0 2. The reads per sample were then assembled into transcripts and 

compared with reference gene models using StringTie v1.3.4d  

(https://ccb.jhu.edu/software/stringtie/). StringTie emerges as a  novel and widely used 

network flow algorithm aiming to assemble and quantitate full-length transcripts representing 

multiple splice variants for each gene locus 3. We merged the 31 transcripts to obtain a 

consensus transcript using StringTie-Merge program. Transcripts that did not exist in the 



CDS database of the Mus musculus genome were extracted to predicted new genes. The 

gene expression FPKM values were calculated using StringTie based on the consensus 

transcript. DEG analysis was performed using Ballgown v2.12.0  4, 5, 6, which is an R 

programming based tool designed to facilitate flexible differential expression analysis of 

RNA-Seq data. We filtered the genes using ‘subset’ with parameters 

rowVars(gexpr(all_gene_fpkm))>1, and then obtained the differential expression genes 

using function ‘stattest’ with parameters false positive rate (FDR)-p < 0.05.   

An unsupervised co-expression network analysis of all genes was performed using 

Weighted Correlation Network Analysis (WGCNA, R package WGCNA v1.64) 7. Co-

regulation networks describe functional relationships that can reflect both physical and non-

physical interactions between objects including genes. The scale-free topology overlap 

matrix was computed using the ‘‘signed’’ and “bicor” parameter and using a best soft 

threshold power of 6 obtained from WGCNA function ‘pickSoftThreshold’, and co-expressing 

modules were then defined from this network. For each identified module of co-expression 

biomolecules, representative eigengenes were calculated (WGCNA function 

‘moduleEigengenes’) and correlations between module eigengenes (ME) and phenotype 

data were calculated, as well as correlations between module eigengenes and each intra-

module gene. For each identified module, the hub genes were defined by module 

connectivity (Pearson's correlation > 0.8) and correlations between each intra-module gene 

and treatments (correlation > 0.85). The co-expression network of hub genes was visualized 

using the free sofware Cytoscape 8. The Gene ontology (and KEGG pathway were 

annotated using WebGestalt (http://www.webgestalt.org/2019/) and pathway with an false 

discovery rate (FDR) adjusted p-value of 0.05 considered to be significant.  



16S rRNA Microbiome sequencing  

The raw sequencing reads were merged and trimmed, following by removing chimera 

and constructing zero-radius Operational Taxonomic Units (zOTUs) with UNOISE 

implemented in Vsearch (v2.6.0) 9, 10, 11. UNOISE is denoising algorithm to infer accurate 

biological template sequences from noisy illumina reads, which had comparable or better 

accuracy and much faster than DADA2 12. Raw reads were merged with fastq_mergepairs 

(Vsearch2) using defined parameters of fastq_minovlen = 16 and fastq_maxdiffs = 5. Merged 

reads were filtered with fastq_filter (Vsearch2) using defined parameters of fastq_truncqual 

= 4 and fastq_minleng = 400 and primers were chopped from both ends. In order to generate 

zOTUs, remaining high quality reads were dereplicated, clustering and denoised using 

derep_fullength, cluster_unoise and uchime3_denovo (Vsearch 2) sequentially. Reads were 

mapped back to the zOTU sequence. The Greengenes (13.8) 13. 16s rRNA gene database 

was used for taxonomy annotation of each zOTU using assign_taxonomy.py implemented 

in Qiime (v1.9.1) 14. 

All the samples were rarefied to 28257 counts (lowest sample depth) to calculated the 

observed OTU index using alpha_diversity.py in Qiime (v1.9.1)14. Using 

normalized_table.py in Qiime (v1.9.1) 14. The raw OTU table was normalized with cumulative 

sum scaling (CSS) 15 to calculate unweighted Unifrac distance. Permutational multivariate 

analysis of variance (PERMANOVA),  a non-parametric multivariate statistical test, was 

adopted to detect differences among intervention groups using Adonis function in Vegan 16. 

Constrained analysis of principal coordinate (CAP) in R package Vegan 16 was conducted 

to identify the influence of mice gene-type and IF on microbiota after setting time as a 

condition effect. The CSS normalized zOTU table was used to calculate relative abundance 

and summarized in different levels using Taxonomic-Binning. R in Rhea 17 Specific taxa 



comparisons among groups was analyzed by analysis of composition of microbiomes 

(ANCOM) 18. In brief, ANCOM algorithm,accounts for the underlying dependence structure 

of microbiota data, makes no distributional assumptions and scales well to compare samples 

involving thousands of taxa, which  has been widely used in recent microbiota researches 

18. Using Correlation.R in Rhea 17, the Pearson correlation analysis was conducted between 

centered log-ratio transformed relative abundance of genera and body weight, blood 

glucose, food intake, water intake, lipopolysaccharide (LPS), leptin, gamma-Aminobutyric 

acid (GABA), 5-hydroxytryptamine (5-HT), insulin and short-chain-fatty-acids (SCFAs). The 

rarified OTU table was used to predict functional gene with Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PICRUSt v1.1.3) 19 following the 

official guide. PICRUSt helps to predict metagenome functional content from marker gene, 

including 16S rRNA surveys and full genomes. Briefly, the zOTU representative sequence 

were re-mapped with usearch_global in Usearch 20 to the reference OTU sequence in the 

Greengene (13.5) database as PICRUst utilized the same Greengenes 13.5 assigned OTUs 

to conduct the prediction. Then, the realigned zOTU table followed the standard PICRUst 

processing procedure using normalize_by_copy_number.py and predict_metagenomes.py. 

Predicted gene was annotated with KEGG 21 at different levels using 

categorize_by_function.py in PICRUst, and the significantly abundant pathways (at least 

appearing in 3 samples) were identified by edgeR 22 with FDR-p < 0.1.  

Plasma metabolomics  

The raw liquid chromatography-mass spectrometry (LC-MS) metabolomics data was 

processes using commercial software package Progenesis QI 2.0 (Nonlinear Dynamics; 

Newcastle upon Tyne, UK). Progenesis QI has emerged as a standard software for 

processing LC-MS metabolomics data and has been widely applied for data deconvolution, 



peak-picking, alignment, and identifications of metabolites. Samples were analyzed in one 

batch with a randomized injection order. The stability and functionality of the system were 

monitored throughout all the instrumental analyses using quality controls, i.e. the pooling of 

all samples acquired at the beginning of analytical sequence and after every 10 injections. 

Data files of the information dependent acquisition scan mode were incorporated in the 

software for identification purposes to have MS/MS spectra of the most abundant detected 

metabolites. For the MS/MS detection, all precursors were fragmented using 20-40 eV, and 

the scan time was 0.2 seconds. During the acquisition, the signal was acquired every 3 

seconds to calibrate the mass accuracy. Metabolite features that were detected in ≤ 50% 

QCs or 80% of biological samples were excluded. Missing values were imputed using k-

nearest neighbor. Metabolite identification was carried out accurate mass (ppm<5) and 

product ion spectrum (MS/MS ppm<10) matching against different online databases 

including METLIN the Human Metabolome Database (HMDB, V4.0), NIST and Lipidblast. 

The list of microbial metablites (i.e. metabolites whose levels were modified by gut 

microbiota, n=26) was determined according to Rowan et al., 2017  23 and detailed 

annotation information is provided in Supplementary Spreadsheet 9. 

Integrated multi-omics analysis  

Integrated multi-omics data analysis was performed on a priori selected parsimonious set of 

36 genes, 17 ANCOM-derived OTUs that differed significantly between db/db and db/db-IF 

treatment and 26 pre-defined plasma microbial metablites. A detailed data processing 

workflow and R script are provided as an R markdown file.  

First, multivariate predictive modelling on each omics dataset was conducted using partial 

least square-discriminant analysis incorporated into a repeated double cross-validation 

framework (rdCV-PLSDA) 24. The rdCV separates cross validation into an outer “testing” 



loop and an inner “tuning” (or validation) loop to effectively reduce bias from overfitting 

models to experimental data, which have shown better results than other cross-validation 

approaches 25 26. To gain a robust and reliable estimate of model performance, 200 

repetitions of the outer cross validation loop was performed. Data was log-transformed and 

auto-scaled prior to the rdCV-PLSDA. We further applied permutation analysis (n=1000) to 

evaluate whether the constructed models outperformed than random classifications. 

Second, a multivariate dimension reduction method, DIABLO (Data Integration Analysis for 

Biomarker discovery using a Latent component method for Omics), was employed for 

multiple omics integration 27. DIABLO is a novel R programing based approach that is 

available in R package ’mixOmics’, which is designd for objectively integrating multiple 

‘omics datasets measured on the same biological samples. This algorithm is based on a 

variant of the multivariate methodology Generalised Canonical Correlation Analysis. Since 

each omics dataset has shown good predictive performance, as assessed by rdCV-PLSDA, 

we applied a full design matrix to seek for linear combinations of variables from each OMICs 

dataset that are maximally correlated (Supplementary Figure 6A). Subsequently, a tuning 

procedure (tune.block.splsda function) was applied to determine the optimal number of key 

predictors in each dataset for a minimum misclassification rate. Model performance was 

evaluated by 10-fold cross validation. The optimal number of component for each omics 

dataset was determined by rdCV-PLSDA. DIABLO model was then generated using 

block.splsda. A global overview of the correlation structure at the component level was 

represented with the plotDiablo function. A clustered image map that represents the multi-

omics molecular signature expression for each sample was created using cimDiablo 

function. The loading weights of each selected variables on each component was 

represented with plotLoadings function.  



Supplementary Table1 Key Resources in Current Study 

Reagent or resource Source Identifier 

Antibodies 

Claudin-1 Abcam Cat# ab15098; RRID:AB_301644 

Iba-1 Abcam Cat# ab178847 

mTOR Abcam Cat# ab2732; RRID:AB_303257 

Anti-mTOR (phospho S2448) Abcam Cat# ab109268; RRID:AB_10888105 

PPARα Abcam Cat# ab8934; RRID:AB_306869 

Phospho-IRS-1 (Tyr896) Abcam Cat# ab46800; RRID:AB_881460 

AKT Cell Signaling Technology Cat# cs9272; RRID:AB_329827 

AMPKα Cell Signaling Technology Cat# cs2603; RRID:AB_490795 

CREB Cell Signaling Technology Cat# cs9197; RRID:AB_331277 

p44/42 MAPK (Erk1/2) Cell Signaling Technology Cat# cs9102; RRID:AB_330744 

SAPK/JNK Cell Signaling Technology Cat# cs9252; RRID:AB_2250373 

NF-κB p65 Cell Signaling Technology Cat# cs8242; RRID:AB_10859369 

Phospho-SAPK/JNK 

(Thr183/Tyr185) 

Cell Signaling Technology Cat# cs9255; RRID:AB_2307321 

p38 MAPK Cell Signaling Technology Cat# cs8690; RRID:AB_10999090 

Phospho-Akt (Ser473) Cell Signaling Technology Cat# cs4060; RRID:AB_2315049 

Phospho-AMPKα (Thr172) Cell Signaling Technology Cat# cs2535; RRID:AB_331250 

Phospho-CREB (Ser133) Cell Signaling Technology Cat# cs9198; RRID:AB_2561044 

Phospho-NF-κB p65 

(Ser536) 

Cell Signaling Technology Cat# cs3033; RRID:AB_331284 

Phospho-p38 MAPK 

(Thr180/Tyr182) 

Cell Signaling Technology Cat# cs4511; RRID:AB_2139682 

Phospho-p44/42 MAPK 

(Erk1/2) (Thr202/Tyr204) 

Cell Signaling Technology Cat# cs9101; RRID:AB_331646 

PSD-95 Cell Signaling Technology Cat# cs3450; RRID:AB_2292883 

BDNF SANTA CRUZ Cat# sc65514; RRID:AB_1128219 

COX4 SANTA CRUZ Cat# sc69360; RRID:AB_2085281 

IRS-1 SANTA CRUZ Cat# sc559; RRID:AB_631842 

ND1 SANTA CRUZ Cat# sc20493; RRID:AB_2149734 

PGC-1α SANTA CRUZ Cat# sc518025 

α-tubulin SANTA CRUZ Cat# sc5286; RRID:AB_628411 



β-actin SANTA CRUZ Cat# sc1616; RRID:AB_630836 

Goat anti-Rabbit IgG (H+L) 

Cross-Adsorbed Secondary 

Antibody, HRP 

Thermo Fisher Scientific Cat# a16110; RRID:AB_2534783 

Goat anti-Mouse IgG (H+L) 

Cross-Adsorbed Secondary 

Antibody, HRP 

Thermo Fisher Scientific Cat# a16078; RRID:AB_2534752 

HRP-conjugated Affinipure 

Rabbit Anti-Goat IgG(H+L) 

Proteintech Cat# sa00001-4 

Primers 

APLP2 ACCTGGAGCAGATGCAGATT TCATGCACAACCCAGAACAT 

Atp5d GCTGAAGAAGCTGTGACACT TTGGCCTCAATACGGATCTG 

b-globin GAAGCGATTCTAGGGAGCAG GGAGCAGC GATTCTGAGTAGA 

Claudin-1 CGACTCCAAACACTGGAACTCA GCCTGCTTCTCATCTGTTGTCA 

COX2 GCCGACTAAATCAAGCAACA CAATGGGCATAAAGCTATGG 

Gpx4 TACCGGGGCTTCGTGTGCAT TAGCCCGCGGCGAACTCTTT 

ND4 CCATTCTCCTCCTATCCCTCAAC 
CACAATCTGATGTTTTGGTTAAACT

ATATTT 

NDUFA TTATGGGGGTGTGCTTGGTC GTTTTTCCTTGCCCCCGTTG 

NT5C CGCTTTGCGAGAGATGAACG GTCTCCTCTAGGCCTTGAATGT 

SOD CGGATGAAGAGAGGCATGTT GTACGGCCAATGATGGAATG 

Uqcrc1 TGCTGAGCAGGTTTCTAGGC TCCTTCTTAAACTTGCCGTTG 

16S AGAGTTTGATCCTGGCTCAG CTGCTGCCTCCCGTAGGAGT 

PSD95 TCTGTGCGAGAGGTAGCAGA AAGCACTCCGTGAACTCCTG 

GADPH TGGAGAAACCTGCCAAGTATGA TGGAAGAATGGGAGTTGCTGT 

Chemicals 

Metronidazole Dalian Meilun biological Technology Co CAS 443-48-1 

Penicillin G sodium Dalian Meilun biological Technology Co CAS 69-57-8 

Streptomycin sulfate DIYIbio  CAS 3810-74-0 

Vancomycin hydrochloride DIYIbio  CAS 1404-93-9 

Neomycin Sulfate MP biomedicals  CAS 100541 

Hematoxylin Poly-scientific Cat# S212 

Eosin StatLab Cat# SL98-1; CAS:2321-07-5 

Insulin Solarbio Cat# I8040; CAS:11070-73-8 



TB Green™ Premix Ex 

Taq™ II 

TaKaRa Cat# RR820Q 

Sodium dodecyl sulfate MP biomedicals  Cat# 190522 

Fluorescein - Reference 

Standard 

Thermo Fisher Scientific Cat# F1300 

Acetic acid Aladdin Cat# A116173 

Propionic acid Aladdin Cat# P110446 

Butyric acid Aladdin Cat# B110438 

Experimental Models: Organisms  

Mouse: BKS.Cg-Dock7m+/+ 

Leprdbdb/J 

The Jackson Laboratory Stock No: 000642 

Sterile chow diet TROPHIC Animal Feed High-tech Co. AIN-93M 

Critical Commercial Assays 

TRIzol Kit Jingcai Bio. JC-PR001 

Stool DNA Kit Omega D4015 

DNA extraction Kit Bioteke Co. DP1901 

Leptin Kit Xinle Bio. xl-Em0230 

Insulin Kit Xinle Bio. xl-Em0483 

5-HT Kit Xinle Bio. xl-Em1037 

TC Kit Nanjing Jiancheng Bio. A111-1 

TG Kit Nanjing Jiancheng Bio. A110-1 

HDL Kit Nanjing Jiancheng Bio. A112-1 

LDL Kit Nanjing Jiancheng Bio. A113-1 

LPS Kit Xinle Bio. xl-Em1110 

Software and Algorithms 

ImageJ v1.42 National Institutes of Health  RRID:SCR_003070 

GraphPad Prism 7 GraphPad Software https://www.graphpad.com/scientifics

oftware/ 

prism/ 

R version 3.5.1 R Core Team, 2018 https://www.r-project.org/ 

R package MixOmics 28 http://mixomics.org/ 

R package MetNormalizer 29 https://link.springer.com/article/10.100

7/s11306-016-1026-5 



R package WGCNA 7 https://bmcbioinformatics.biomedcentr

al.com/articles/10.1186/1471-2105-9-

559 

R package MUVR 24 https://academic.oup.com/bioinformati

cs/advance-

article/doi/10.1093/bioinformatics/bty7

10/5085367 

Progenesis QI (version 2.2) Waters company http://www.nonlinear.com/progenesis/

qi/ 

Qiime (version 1.9.1) 30 http://qiime.org/ 

Vsearch (version 2.6.0) 10,31 https://github.com/torognes/vsearch 

R package ANCOM 18 https://www.niehs.nih.gov/research/re

sources/software/biostatistics/ancom/i

ndex.cfm 

R package Rhea 17 https://github.com/Lagkouvardos/Rhe

a 

PICRUst (version 1.1.3) 19 http://picrust.github.io/picrust/ 

R package WGCNA (version 

1.64) 

7 https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/W

GCNA/index.html 

WebGestalt http://www.webgestalt.org http://www.webgestalt.org/2019/ 

Deposited Data   

Raw and processed data 

(RNA-seq) 

GEO (http://www.ncbi.nlm.nih.gov/geo/) GSE125387 

The secure token for reviewer is: 

opwxoiucndybjor 

Other raw data Mendeley dataset https://figshare.com/s/58ccac4aa614d

d4ade84 

 

  



 

Supplementary Figure 1 Effects of IF on adipocytes size, cognition, and anxiety in 

diabetic mice, related to Fig.2, related to Fig.1  

A Water intake (n=10 mice per group) and cage padding of each group; B H&E staining of eWAT (n=3, 4, 3 

mice in db/m, db/db, db/db-IF group, respectively); C eWAT weight (n=7 mice per group); D Distribution of 

adipocytes in eWAT (n=3, 4, 3 mice in db/m, db/db, db/db-IF group, respectively); E The representative tracks 

of mice on the 5th day of navigation test during the water maze test; The assessments of depression via the 



Elevated plus maze tests were described in the Supplementary Methods; F Total distance (n=10 mice per 

group) and G percentage of  the mice spent in the open arm entries compared with the total ones (n=10 mice 

per group); H Representative tracks of mice in elevated plus maze. Data presented as mean ± SEM. *p < 0.05, 

**p < 0.01, compared with db/m group, #p < 0.05, ##p < 0.01 versus db/db group. Significant differences 

between mean values were determined by one-way ANOVA with Tukey’s multiple comparisons test. Source 

data are provided as a Source Data file.  



Supplementary Figure 2 Effects of IF on neuroinflammation-related signaling in 

diabetic mice, related to Fig.2 

Western blots of NFκB/JNK/p38/Iba-1 signaling (n=3 mice per group). Data presented as mean ± SEM. *p < 

0.05, **p < 0.01, compared with db/m group, #p < 0.05, ##p < 0.01 versus db/db group. Significant differences 

between mean values were determined by one-way ANOVA with Tukey’s multiple comparisons test. Source 

data are provided as a Source Data file. 

 

 

  



 

Supplementary Figure 3 The KEGG analysis of DEG and the modules of WGCNA, 

related to Fig.3 



A KEGG of DEG analysis (group 1 oxidative phosphorylation); B KEGG of DEG analysis (group 3 & group 6 

oxidative phosphorylation); C Hierarchical cluster tree showing 5 modules of co-expressed genes (TOMType 

="signed", corType = "bicor"). Each of the 27,094 genes is represented by a tree leaf and each of the modules 

by a major tree branch. The lower panel shows modules in designated colours; D Module–trait correlations 

and corresponding p-values (in parentheses). The left panel shows the 5 modules and the number of member 

genes. The colour scale on the right shows module–trait correlations from -1 (blue) to 1 (red); E Overlap genes 

numbers of group 1 DEG analysis and WGCNA-brown module; F qPCR analysis of mitochondrial biogenesis 

and specific genes from DEG and WGCNA analysis (n=8 biologically independent samples per group). Data 

of F presented as mean ± SEM; G  *p < 0.05, **p < 0.01, compared with db/m group, #p < 0.05, ##p < 0.01 

versus db/db group. Significant differences between mean values were determined by one-way ANOVA with 

Tukey’s multiple comparisons test. Source data are provided as a Source Data file. 

 

  



 Supplementary Figure 4 Effects of IF on gut barrier permeability and SCFAs 

generation in db/db mice related to Fig.4 

A Representative images and analysis of H&E staining of the colon (n=9, 9, 8 mice in db/m, db/db, db/db-IF 

group, respectively) and the immunochemical staining of claudin-1 (n = 5 mice per group), based on B The villi 

length (n=9 mice per group);  C The muscular thickness; D The numbers of goblet cell; and E the claudin-1 

integrity; F qPCR analysis of claudin-1 (n=4 mice per group); G The rate of fluorescence changes during the 

using chamber analysis (n=3 mice per group); H Plasma LPS level (n=7 mice per group); I-K the 

concentrations of short chain fatty acids in the fecal samples  (n=8 mice per group). Data presented as mean 

± SEM. *p < 0.05, **p < 0.01, compared with db/m group, #p < 0.05, ##p < 0.01 versus db/db group. Significant 

differences between mean values were determined by one-way ANOVA with Tukey’s multiple comparisons 

test. Source data are provided as a Source Data file. 



 Supplementary Figure 5 Effects of IF on gut microbiome and plasma metabolome in 

db/db mice related to Fig.4 



A The relative abundance of prokaryotic Microbiota members at genus level, all genera with an average 

relative abundance below 1% were grouped to “others”; B Pearson correlationsbetween genera relative 

abundance (centered log-ratio transformed) and body weight, blood glucose, food intake, water intake, LPS, 

and SCFAs; C The scatter plots of principal component analysis performed on mice plasma untargeted 

metabolomics data aqucised by peverse phase chromatography using both positive (C, RP+) and negative 

electrospray ionization mode (D, RP-). Principal component analysis was performed on auto-scaled intensities 

(mean=0, standard deviation=1) of all quantified metabolite features detected in RP+ (5604) and RP- (5230), 

respectively. Volcano plots of qualified features from RP+ (E) and RP- (F) shows fold change in plasma levels 

of metabolite features between db/db and db/db-IF and their significances. p-values were adjusted for multiple 

testing using Benjamini–Hochberg false discovery rate (FDR). Significant features are marked in red.  

  



Supplementary Figure 6 Predictive performance of variables from multi-omics 

datasets that were selected as input variables for DIABLO and their variable loadings 

obtained from DIABLO, related to Fig.5 

A Graphic illustration of the full design matrix in DIABLO used for the multi-omics integration analysis; B 

Permutation analysis of multivariate predictive modelling. H1 denotes number of misclassification obtained 



from actual models. H0 are distributions of misclassification from random permutations. Model performance of 

variables from multi-OMICs datasets outperformed random permutations (One-tailed Student’s t-test, p < 0.05). 

Variables loading reflected the contribution of variables for DIABLO modeling; C Pyramid barplot displays the 

loading weights associated to each selected feature in increasing order of importance (from bottom to top). 

The loading plot represents the top 10 contributors selected from each of omics datasets on the first component 

of the DIABLO model. Colors indicate the sample group, i.e. db/db and db/db-IF where the mean expression 

levels of the variables is maximal. 

 

  



 

Supplementary Figure 7 Effects of antibiotics treatment and IF regimen on db/m 

mice, related to Fig.6 

The mice were administrated with antibiotics in the drinking water starting 14 days before the 4-week IF 

regimen and throughout the experiment (The detailed antibiotics treatment was as described in Methods 

section) (n=10 mice per group); A Body weight; B Bodyweight gain; C Food intake; D Water intake; E-F Morris 

water maze test (n=10, 10 ,5, 5 mice in db/m, db/m-Antibiotics, db/m-IF and db/m-Antibiotics-IF group, 

respectively). Data presented as mean ± SEM. *p < 0.05, **p < 0.01, compared with db/m group, &p < 0.05, 

&&p < 0.01, compared with db/dm-Antibiotics group, #p < 0.05, ##p < 0.01 versus db/dm-IF group. Significant 

differences between mean values were determined by two-way ANOVA (IF regimen and antibiotics treatment 

as two factors) with Tukey’s multiple comparisons test. Source data are provided as a Source Data file. 

 

  



Supplementary Figure 8 Effects of antibiotics treatment and IF regimen on db/db 

mice, related to Fig.6 

The mice were administrated with antibiotics in the drinking water starting 14 days before the 4-week IF 

regimen and throughout the experiment (The detailed antibiotics treatment was as described in Methods 

section). A Timeline depicting the treatment of IF and antibiotics on db/db mice (n=7, 13 mice in non-antibiotics 

and antibiotics treatment groups, respectively); B The qPCR of 16S rRNA analysis to ensure the removal 



efficacy of microbiota, as assessed byStudent’s t-test, ** p < 0.01, compared with control mice fed with normal 

water; C Food intake; D Water intake; E-G The weight of eWAT, liver, and cecum in different groups (n=7 mice 

per group); H Insulin tolerance test (n=7 mice per group); I Fasting insulin level (n=5 mice per group); J Fasting 

glucose (n=5 mice per group); K HOMA-IR value (n=5 mice per group); L The representative tracks of mice 

on the 5th day of navigation test and M the time spent in the target quadrant (s) during the probe trial during 

the water maze test (n=7 mice per group). Data presented as mean ± SEM. *p < 0.05, **p < 0.01, compared 

with db/db group, &p < 0.05, &&p < 0.01, compared with db/db- Antibiotics group, #p < 0.05, ##p < 0.01 compared 

with db/db-IF group. Significant differences between mean values were determined by two-way ANOVA (IF 

regimen and antibiotics treatment as two factors) with Tukey’s multiple comparisons test. Source data are 

provided as a Source Data file. 

  



 Supplementary Figure 9 Effects of antibiotics treatment and IF regimen on the 

microbial metabolites levels in db/db mice, related to Fig.6 

A-F The plasmamicrobial metabolites alteration of antibiotics-treated mice (n=5, 7, 6, 7 mice in different group) 

detected by metabolome. The unit is the log10 value of relative abundance; G-I The alteration of fecal SCFAs 

levels of of antibiotics-treated mice (n=7 mice per group). Data presented as mean ± SEM. *p < 0.05, **p < 

0.01, compared with db/m group, &p < 0.05, &&p < 0.01, compared with db/dm-Antibiotics group, #p < 0.05, ##p 

< 0.01 versus db/m-IF group. Significant differences between mean values were determined by two-way 

ANOVA (IF regimen and antibiotics treatment as two factors) with Tukey’s multiple comparisons test. Source 

data are provided as a Source Data file. 

  



Supplementary Figure 10 Effects of selected microbial metabolites on db/db mice, 

related to Fig.6 

The db/db mice were administratedwith IPA, 5-HT, TUDCA, or SCFAs, i.e acetate, butyrate and propionate, 

individually (n=8 mice per group). The treatment was described in the Methods section. A Food intake; B 

Water intake; C Insulin tolerance test (n=7 mice per group); D Fasting insulin level (n=7 mice per group); E 

Fasting glucose (n=7 mice per group); F HOMA-IR value (n=7 mice per group); G The representative tracks 

of mice on the 5th day of navigation test and H the time spent in the target quadrant (s) during the probe trial 

during the water maze test (n=8 mice per group); I-L qPCR analysis of mitochondrial biogenesis and specific 

genes from DEG and WGCNA analysis (n=6 mice per group); Data presented as mean ± SEM. *p < 0.05, **p 

< 0.01 versus db/db group. Significant differences between mean values were determined by one-way ANOVA 

with Tukey’s multiple comparisons test. Source data are provided as a Source Data file. 



R markdown file for multi-omics analysis 

This is an R Markdown document that presents the detailed procedure for multi-omics 

analysis. 

In brief, we first conducted multivariate predictive modellings on WGCNA-derived hub genes 

(n=36), ANCOM-derived OTUs (n=17) and the predefined microbial metabolites using 

partial least square-discriminant analysis incorporated into a repeated double cross-

validation framework (rdCV-PLSDA). Outperforming the standard cross-validation, the 

double cross-validation procedure separates cross-validation into an outer “testing” loop and 

an inner “tuning” (or validation) loop to further reduce bias from overfitting models to 

experimental data. To gain a robust and reliable estimate of model performance, 200 

repetitions of the outer cross-validation loop was performed, followed by permutation 

analysis (n=1000). 

A multivariate dimension reduction method, DIABLO (Data Integration Analysis for 

Biomarker discovery using a Latent component method for Omics), was employed for 

multiple omics integration. A use of full design matrix was applied to seek for linear 

combinations of variables from each omics dataset that are maximally correlated. The 

specified number of components for each omics dataset is determined by rdCV-PLS. A 

tuning procedure was applied to determine the optimal number of key variables in each 

dataset to be selected with a minimum misclassification rate and the model performance is 

then evaluated by 10-fold cross validation. 

Description of datasets 

Gene: WGCNA-derived hub genes (n=36) 

OTU: ANCOM-derived OTUs (n=17)  

Metabolite: a priori defined microbial metabolites (n=27) 



Integrated Multi-omics Analysis Procedure 

• Step 1: Load packages for analyses and check data information 
## Loading required package: foreach 

## Loading required package: iterators 

## Loading required package: parallel 

##  [1] "dbdb"   "dbdb"   "dbdb"   "dbdb"   "dbdb"   "dbdb"   "dbdb"   
##  [8] "dbdb"   "dbdb"   "dbdb"   "dbdbIF" "dbdbIF" "dbdbIF" "dbdbIF" 
## [15] "dbdbIF" "dbdbIF" "dbdbIF" "dbdbIF" "dbdbIF" "dbdbIF" 

##           Tmem160    Xrcc1    Psmc4  Ndufa13      Gpx4 
## db_db_1  2.669484 19.26067 112.6700 19.95793 105.79840 
## db_db_10 4.036271 20.44588 123.8790 27.96805 144.66346 
## db_db_2  2.611742 21.17438 115.4641 20.69619  98.19304 
## db_db_3  2.648136 19.85958 114.0726 20.81813 105.87250 
## db_db_4  3.327520 21.75117 120.6406 24.52895 120.38551 
## db_db_5  3.528933 18.48286 117.9990 23.22875 128.52778 

##          zOTU_105 zOTU_111 zOTU_121 zOTU_1213 zOTU_122 
## db_db_1    8.4187   8.1318   4.9934         0   6.6556 
## db_db_10   7.9026   8.0976   0.0000         0   7.5730 
## db_db_2    4.9509   4.9509   2.6512         0   5.8414 
## db_db_3    5.4095   4.7383  11.9120         0   5.9603 
## db_db_4    6.0469   7.8090   2.4985         0   3.9024 
## db_db_5    8.6686   6.8317   6.6505         0   7.2435 

##           Acetate Butyrate Propionate      TCDA Indole.3.pyruvate 
## db_db_1  489.2959 277.4953   89.53000 148474.29          52986.66 
## db_db_10 312.4716 121.4445   62.33240 110637.89          42107.37 
## db_db_2  361.4286 134.0848   59.57483 170988.32          70187.62 
## db_db_3   51.8564 150.7360   69.12925 108931.42          59676.15 
## db_db_4  891.5903 303.9216  113.28207  80591.94          42731.24 
## db_db_5  532.9761 130.7090   23.06470 114313.00          68074.64 

• Step 2: Perform comprehensive cross-validated partial least square-
discriminant analysis (rdCV-PLSDA) on each omics dataset to assess their 
predictive performance  It may take 3-5 mins for processing, due to multiple cross 
validations. 

set.seed(123)#### for reproducibility 
cl=makeCluster(2) 
registerDoParallel(cl) 
Group=OMICsD$Group 
GeneD=scale(log(OMICsD$Gene+0.01),center=T,scale=T)###36b overlapped genes 
G_mod=rdCV(X=GeneD,Y=Group,nRep=200,method='PLS',fitness = 'MISS') 

## Type 'citation("pROC")' for a citation. 

##  
## Attaching package: 'pROC' 



## The following objects are masked from 'package:stats': 
##  
##     cov, smooth, var 

##  
## Missing ID -> Assume all unique (i.e. sample independence) 
## Y is factor -> Classification (2 classes) 
##  Elapsed time 0.6753333 mins 

OTUD=scale(log(OMICsD$OTU+0.01),center=T,scale=T) 
O_mod=rdCV(X=OTUD,Y=Group,nRep=200,method='PLS',fitness = 'MISS') 

##  
## Missing ID -> Assume all unique (i.e. sample independence) 
## Y is factor -> Classification (2 classes) 
##  Elapsed time 0.8393333 mins 

MetaboliteD=scale(log(OMICsD$Metabolite+0.01),center=T,scale=T) 
M_mod=rdCV(X=MetaboliteD,Y=Group,nRep=200,method='PLS',fitness = 'MISS') 

##  
## Missing ID -> Assume all unique (i.e. sample independence) 
## Y is factor -> Classification (2 classes) 
##  Elapsed time 0.6541667 mins 

par(mfrow = c(1, 3), pty = "m",mar=c(3,4,2,1), par(cex.lab=1,las=2) ) 
plotMV(G_mod) 
plotMV(O_mod) 
plotMV(M_mod) 

 



• Step 3: Perform DIABLO for integrative modelling of genes, OTUs and 
metabolites  

library(mixOmics) 

## Loading required package: MASS 

## Loading required package: lattice 

## Loading required package: ggplot2 

##  
## Loaded mixOmics 6.6.2 
##  
## Thank you for using mixOmics! Learn how to apply our methods with our tutorials on www.mixO
mics.org, vignette and bookdown on  https://github.com/mixOmicsTeam/mixOmics 
## Questions: email us at mixomics[at]math.univ-toulouse.fr   
## Bugs, Issues? https://github.com/mixOmicsTeam/mixOmics/issues 
## Cite us:  citation('mixOmics') 

##  
## Attaching package: 'mixOmics' 

## The following objects are masked from 'package:rdCV': 
##  
##     nearZeroVar, pls, plsda, vip 

data = list(Genes = GeneD,OTUs = OTUD,Metabolites =MetaboliteD)### set dataset 
rownames(data$Genes)=rownames(data$OTUs)=rownames(data$Metabolites)=OMICsD$ID##
# set rownames for each dataset 
lapply(data, dim)## check datasets 

## $Genes 
## [1] 20 36 
##  
## $OTUs 
## [1] 20 17 
##  
## $Metabolites 
## [1] 20 26 

Y = as.factor(c(rep('dbdb',10),rep('dbdbIF',10))) 
design = matrix(1, ncol = length(data), nrow = length(data),dimnames = list(names(data), name
s(data))) 
##A full design matrix was applied to seek for linear combinations of variables from each omics dat
aset that are maximally correlated.  
diag(design) = 0 
ncomp=G_mod$nComp=O_mod$nComp=M_mod$nComp### the number of component is determ
ined by the rdCV-PLS 
test.keepX = list(OTUs =c(seq(10, 17, 4)), Genes = c(seq(10, 36, 4)), Metabolites = c(seq(10, 26,
 4))) 
tune = tune.block.splsda(X = data, Y = Y, ncomp = ncomp, test.keepX = test.keepX,  
       design = design,validation = 'Mfold', folds = 10, nrepeat = 20,cpus = 2) 



## You have provided a sequence of keepX of length: 2 for block OTUs and 7 for block Genes and
 5 for block Metabolites. 
## This results in 70 models being fitted for each component and each nrepeat, this may take som
e time to run, be patient! 

## As code is running in parallel, the progressBar will only show 100% upon completion of each nr
epeat/ component. 

##  
## comp 1  
##  
  |                                                                        
  |                                                                 |   0% 
  |                                                                        
  |===                                                              |   5% 
  |                                                                        
  |======                                                           |  10% 
  |                                                                        
  |==========                                                       |  15% 
  |                                                                        
  |=============                                                    |  20% 
  |                                                                        
  |================                                                 |  25% 
  |                                                                        
  |====================                                             |  30% 
  |                                                                        
  |=======================                                          |  35% 
  |                                                                        
  |==========================                                       |  40% 
  |                                                                        
  |=============================                                    |  45% 
  |                                                                        
  |================================                                 |  50% 
  |                                                                        
  |====================================                             |  55% 
  |                                                                        
  |=======================================                          |  60% 
  |                                                                        
  |==========================================                       |  65% 
  |                                                                        
  |==============================================                   |  70% 
  |                                                                        
  |=================================================                |  75% 
  |                                                                        
  |====================================================             |  80% 
  |                                                                        
  |=======================================================          |  85% 
  |                                                                        
  |==========================================================       |  90% 
  |                                                                        
  |==============================================================   |  95% 
  |                                                                        
  |=================================================================| 100% 



Here we have provided a sequence of keepX of length: 4 for block OTUs and 14 for block 
Genes and 9 for block Metabolites.This results in 504 models being fitted for each 
component and each nrepeat. 

list.keepX = tune$choice.keepX 
DIABLOmod = block.splsda(X = data, Y = Y, ncomp = 1, design = design,keepX=list.keepX) 

## Design matrix has changed to include Y; each block will be 
##             linked to Y. 

Step 4: DIABLO plots #A scatterplot displaying the first component in each data set (upper diago
nal plot) and Pearson correlation between components (lower diagonal plot).  
MICEplotDiablo(DIABLOmod) ### Figure 5B 

##  
## Attaching package: 'ellipse' 

## The following object is masked from 'package:graphics': 
##  
##     pairs 

 

# The Circos plot shows the positive (negative) correlation, denoted as brown (grey) lines, between
 selected multi-omics predictors 
circosPlot(DIABLOmod, cutoff = 0.4, line = FALSE,  color.blocks= c('gold','darkolivegreen2','red'), 
           color.cor = c("chocolate3","grey20"), size.labels = 1.2,size.variables = 0.6) 



 

# A clustered Image Map (Euclidean distance, Complete linkage) of the multi-omics predictors. Sa
mples are represented in rows, selected features on the first component in columns.  

 
MICEcimDiablo(DIABLOmod, color.blocks = c('gold','darkolivegreen2','red'),comp = 1, margin=c(1
0,10), legend.position = "right",size.legend = 0.6,row.names =FALSE) 



 
 
# loadings of multi-omics predictors selected for discriminating dbdb from dbdb-IF 
par(mfrow = c(3, 1), # 2 x 2 pictures on one plot 
    pty = "m",mar=c(4,3,4,2), par(cex.lab=2,cex=4) )  
MICEplotLoadings(DIABLOmod, comp = 1, contrib = 'max', method = 'median',legend=FALSE,titl
e = "Genes", block = 'Genes') 
MICEplotLoadings(DIABLOmod, comp = 1, contrib = 'max', method = 'median',legend=FALSE,titl
e = "OTUs", block = 'OTUs') 
MICEplotLoadings(DIABLOmod, comp = 1, contrib = 'max', method = 'median',legend=FALSE,titl
e = "Metabolites", block = 'Metabolites') 
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