Supplementary Information for

hipBA toxin-antitoxin systems mediate persistence in *Caulobacter crescentus* Charlie Y. Huang¹, Carlos Gonzalez-Lopez¹, Céline Henry², Ivan Mijakovic^{3, 4}, Kathleen R. Ryan^{1*}

¹Department of Plant & Microbial Biology, University of California, Berkeley, USA ²PAPPSO, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France ³Division of Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden ⁴Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark

This PDF includes Supplementary Figures S1-S10, Supplementary Tables S2-S4, and references cited in these elements.

Supplementary Figure S1. HipA₃ induction causes cell elongation. **a**, NA1000 cells harboring p*FLAG-hipA*₃ in exponential growth phase were diluted to $OD_{660} = 0.02$ and split into two cultures. At time 0, HipA₃ expression was induced in one culture using IPTG and theophylline. Differential interference contrast micrographs were obtained after 9 h of growth at 30°C. **a**, Uninduced culture. **b**, HipA₃-expressing culture. Scale bar, 5 µm.

E.coli	MPKLVTWMNNQRVGEL-TKLANGAHTFKYAPEWLASRYARPLSLSLPLQRGNITS	54
HipA1	MAMTRVLTVWWGDGVVGSL-ALDETGDIRFAYDAAWLADEACPAVSVSLPKQPGAFSR	57
HipA2	MSGPAGLIVRMDGFNLPAGYL-ASDEARAISFAYDDRYIAAG-GPPLSLSMPLEQVSFGD	58
HipA3	MTTVAEVRLWGS-RIGAVSLEDGAETAVFAYEPSFIASGI-QPAPLMMPLKAGVFSF	55
E.coli	DAVFNFFDNLLPDSPIVRDRIVKRYHAKSRQPFDLLSEIGRDSVGAVT	102
HipA1	RKTRSFFAGLLPDDLQRDNVARALGVSRQNDFGLLERLGGDVAGALT	104
HipA2	VTARAFFDNLLPENDQMQRVMDREGLARDDIVGLLSHLGADCSGAIS	105
HipA3	PDLPPRSFHGLPGMLADALPDKYGHVLIDAWLATQGRSPESFNAVERLCYTGRRGMGALE	115
E.coli	LIPEDETVTHPIMAWEKLTEARLEEVLTAYKADIPLGMIREENDFRI S VA	152
HipA1	LWPEGEAPPKRQGGRTAEPLNDKRLLAILDELPRRPFLAGEDGVRL S LA	153
HipA2	CLPIGADPIKVPGVLSEDYELLAPGAIAEIARSLAERQRLPDTITDP S PVA	156
HipA3	FSPMAGPRRRVSSKIDIDALVTLASEVLTHRHDLRASFADADKADALRDILSVGT S AG	173
E.coli HipA1 HipA2 HipA3	# GAQEKTALLRIGNDWCIPKGITPTTHII K LPIGEIRQPNATLDLSQSVDNEYYC GAQEKLPVVLVDGAVALPALGQPSTHIL K PANARWPAMTENEALA GVQRKIALTHTPQGFAKPRPGRKVPTTHIL K VPETRLRRDARLEAAA GARAKAVIAWNPATN-EVRSGQVEAGAGFGYWLL K FDGVSGNRDKELADPKGYGAVEHAY	206 198 203 232
E.coli	LLLAKELGLNVPDAEIIKAGNVRALAVERFDRRWNAERTVLLRLPQEDMCQTFGLP	262
HipA1	MRLAAAVGLPTAGVEPRRIGERTFLLVTRYDRVVSSD-GAVRRLHQEDFCQALGVS	253
HipA2	ARLASALGLDVSIPEAIVIDGVDALLITRFDRVV-RD-GVVYRLHQEDFAQAMGLP	257
HipA3	GQMAAAAGIDVAESRLLEEGGRRHFMSKRFDRLDGGGKLHMQSLAAIAHLDFNDP	287
E.coli HipA1 HipA2 HipA3	* ‡ # SSVKYESDGGPGIARIMAFLMGSSEALKDRYDFMKFQVFQWLIGATDGHAKNFSVF PEHKYAAEGGPIFPDCF-NLVRNVCQPSAPAVLALLDAAIFNVIVGNADAHGKNYSLL ATLKYQRNGAPGRQFDAQAIARVLDQTEAPALSRTAFLSATIFNLLIGNTDNHAKNHGLL VANSYEQALFTMRRMGLSMAQLEEQFRRMVFNVLARNQDDHVKNIAFL	318 310 317 335
E.coli HipA1 HipA2 HipA3	<pre> # IQAGGSYRLTPFYDIISAFPVLGGTGIHISDLKLAMGLNASKGKKTAIDKIYPRHFLATA HQAG-AIVMAPLYDLMCTAAYPEVHAKLAMKIAGRAQLEAFKADTWRDFG YRQGRAPILAPLYDLLPSRMNLDFNDQLSFNIGAADHPDAITFDDMMAFF MDRAGRWRLSPAFDITWSYNPDGEWTSRHQMSINGKRDGFDFADLEACA</pre>	378 359 367 384
E.coli	KVLRFPEVQMHEILSDFARMIPAALDNVKTSLPTDFPENVVTAVESNVLRLHG	431
HipA1	RDIGAVESNVLRLHG	398
HipA2	EVFGARFIENVLDQVGPVADAIAACGFDR	401
HipA3	KTASISRGHVGRIFDEVREAVMRWPTFADAAGV-DERWRDQIGATVRLEL	433
E.coli HipA1 HipA2 HipA3	RLSREYGSK440EALRGLRDLIAERARAVLKLGQGER423ERLKDMDDLIGRETEQLVEVLGLDVAVRERDYYPKVRHALAPS444RR435	

Supplementary Figure S2. Protein alignment of *E. coli* **HipA and NA1000 HipA toxins**. Alignment was obtained using ClustalOmega. Functionally critical residues are indicated: *, catalytic aspartate residue targeted for mutation; **‡**, Mg⁺⁺ binding residues; **#**, ATP-binding residues; **†**, autophosphorylated serine residue¹.

Supplementary Figure S3. HipA3 does not phosphorylate LysS or TrpS, and only weakly phosphorylates GltX. Full images are shown. *, protein samples not related to this experiment are shown in order to provide complete gel images. Arrow indicates phosphorylated FLAG-GltX species with reduced mobility in *Caulobacter* coexpressing HipA₃. Molecular size standards are omitted because they do not migrate at the correct sizes in Phos-tag gels, according to manufacturer's information (APExBIO).

Supplementary Figure S4. Biphasic killing curves describe two sub-populations (sensitive and persistent) and their different rates of killing by antibiotics. The first phase primarily describes the survival of the sensitive fraction, while the second phase describes the killing of the remaining persistent population. The persister fraction can be approximated using the y-intercept of the second phase of the curve. This explanatory diagram was created using actual experimental data that re-appears in Supplementary Fig. S5.

Supplementary Figure S5. The *C. crescentus* NA1000 Δbla strain displays persistence toward carbenicillin. The Δbla strain was grown to stationary phase in PYE and analyzed in a persistence assay using 100 µg/ml carbenicillin as described in Methods. The MIC of carbenicillin toward NA1000 Δbla was measured at 10-20 µg/ml.

Supplementary Figure S6. NA1000 $\Delta hipBA$ strains do not have a growth defect. Growth curves of NA1000 and the $\Delta hipBA$ operon knockout strains in PYE medium. Exponential phase cultures were diluted to OD₆₆₀= 0.02 at time zero. At the indicated times, samples were withdrawn for CFU enumeration. Data points are the mean and standard deviation of three independent biological replicates.

Supplementary Figure S7. The $\Delta spoT$ strain has reduced tolerance to the conditions of stationary phase in PYE. Exponential phase cultures of WT and $\Delta spoT$ strains were diluted to OD_{660} = 0.02 and grown to stationary phase in PYE medium. Samples were withdrawn for CFU enumeration at the indicated times. Data points are the means of two independent biological replicates, each with six technical replicates.

Supplementary Figure S8. Identical putative binding motifs with the indicated spacing are observed in the promoter regions upstream of *hipBA*₁ and *hipBA*₂. Repetitive inverted repeats were identified using the EMBOSS bioinformatics suite². The *E. coli hipBA* operon and HipB-binding operator sequence are included for comparison.

Supplementary Figure S9. Full gel image corresponding to Fig. 1d. Whole-cell lysates were analyzed by Phos-tag mobility shift and Western blotting with anti-FLAG antibodies. Molecular size standards are omitted because they do not migrate at the correct sizes in Phostag gels, according to manufacturer's information (APExBIO).

Supplementary Figure S10. Full gel images corresponding to Fig. 4. Molecular size standards are omitted because they do not migrate at the correct sizes in Phos-tag gels, according to manufacturer's information (APExBIO).

Supplementary Table S2. Strains used in this study.

Number	Description	Expanded genotype	Reference
KR3707	NA1000 or wild-type (WT)	Caulobacter crescentus NA1000	3
KR4280	WT + pFLAG- <i>hipA</i> ₁		This study
KR4281	WT + pFLAG- <i>hipA</i> 2		This study
KR4282	WT + pFLAG- <i>hipA</i> ₃		This study
KR658	Δbla		4
KR3744	∆hipBA₁		This study
KR3714	ΔhipBA ₂		This study
KR3631	∆hipBA₃		This study
KR3794	ΔhipBA _{1,2}	Δ hipBA $_1$ Δ hipBA $_2$	This study
KR3750	ΔhipBA _{1,2,3}	Δ hipBA $_1 \Delta$ hipBA $_2 \Delta$ hipBA $_3$	This study
KR4283	<i>ΔhipBA</i> _{1,2,3} + pMR20		This study
KR4284	<i>ΔhipBA_{1,2,3}</i> + pJS71 + pMR20		This study
KR4285	ΔhipBA1,2,3 + pFLAG-hipA1		This study
KR4286	$\Delta hipBA_{1,2,3} + pFLAG-hipA_2$		This study
KR4287	ΔhipBA1,2,3 + pFLAG-hipA3		This study
KR4288	$\Delta hipBA_{1,2,3}$ + pFLAG-hipA ₁ + pJS71		This study
KR4289	$\Delta hipBA_{1,2,3} + pFLAG-hipA_2 + pJS71$		This study
KR4290	ΔhipBA _{1,2,3} + pFLAG-hipA ₃ + pJS71		This study
KR4291	ΔhipBA1,2,3 + pFLAG-hipA1D301Q		This study
KR4292	ΔhipBA1,2,3 + pFLAG-hipA2D308Q		This study
KR4293	ΔhipBA _{1,2,3} + pFLAG-hipA ₃ D326Q		This study
KR4294	ΔhipBA _{1,2,3} + pMR20 + pFLAG-hipB ₁		This study
KR4295	ΔhipBA _{1,2,3} + pMR20 + pFLAG-hipB ₂		This study
KR4296	ΔhipBA _{1,2,3} + pMR20 + pFLAG-hipB ₃		This study
KR4297	ΔhipBA _{1,2,3} + pFLAG-hipA ₁ + pFLAG-hipB ₁		This study
KR4298	$\Delta hipBA_{1,2,3}$ + pFLAG-hipA ₂ + pFLAG-hipB ₁		This study
KR4299	$\Delta hipBA_{1,2,3} + pFLAG-hipA_3 + pFLAG-hipB_1$		This study
KR4300	$\Delta hipBA_{1,2,3}$ + pFLAG-hipA ₁ + pFLAG-hipB ₂		This study

KR4301	ΔhipBA1,2,3+ pFLAG-hipA2 + pFLAG-hipB2	This study
KR4302	$\Delta hipBA_{1,2,3} + pFLAG-hipA_3 + pFLAG-hipB_2$	This study
KR4303	$\Delta hipBA_{1,2,3} + pFLAG-hipA_1 + pFLAG-hipB_3$	This study
KR4304	$\Delta hipBA_{1,2,3} + pFLAG-hipA_2 + pFLAG-hipB_3$	This study
KR4305	$\Delta hipBA_{1,2,3} + pFLAG-hipA_3 + pFLAG-hipB_3$	This study
KR3063	ΔspoT	5
KR4306	<i>ΔspoT</i> + pMR20	This study
KR4307	<i>ΔspoT</i> + pFLAG <i>-hipA</i> ₁	This study
KR4308	$\Delta spoT + pFLAG-hipA_2$	This study
KR4309	<i>ΔspoT</i> + pFLAG <i>-hipA</i> ₃	This study
KR4310	WT + pFLAG <i>-metG</i>	This study
KR4311	WT + pFLAG <i>-ly</i> sS	This study
KR4312	WT + pFLAG- <i>trpS</i>	This study
KR4313	WT + pFLAG-gltX	This study
KR4314	WT + pMR20 + pFLAG <i>-lysS</i>	This study
KR4315	WT + pMR20 + pFLAG- <i>trpS</i>	This study
KR4316	WT + pMR20 + pFLAG <i>-gltX</i>	This study
KR4317	WT + p <i>hipA</i> ₁ + pFLAG <i>-ly</i> sS	This study
KR4318	WT + p <i>hipA</i> ₁ + pFLAG <i>-trpS</i>	This study
KR4319	WT + p <i>hipA</i> ₁ + pFLAG <i>-gltX</i>	This study
KR4320	WT + p <i>hipA</i> 2 + pFLAG <i>-ly</i> sS	This study
KR4321	WT + p <i>hipA</i> ₂ + pFLAG <i>-trpS</i>	This study
KR4322	WT + p <i>hipA</i> ₂ + pFLAG <i>-gltX</i>	This study
KR4323	WT + p <i>hipA</i> ₃ + pFLAG <i>-ly</i> sS	This study
KR4324	WT + phipA ₃ + pFLAG-trpS	This study
KR4325	WT + p <i>hipA</i> ₃ + pFLAG <i>-gltX</i>	This study

Name	Description	Reference
pMR20	Broad-host-range, low-copy-number vector: <i>tetAR</i>	6
pJS71	Broad host-range cloning vector; high copy; chlor ^R ; pBBR1MCS derivative with unique EcoRI site	7
pNPTS138	kan ^R ; <i>sacB</i> -containing integration vector	GenBank Accession Number MK533795.1
pCYH1	pNPTS138-hipBA1KO (CCNA_00481-00482)	This study
pCYH2	pNPTS138-hipBA ₂ KO (CCNA_02821-02822)	This study
рСҮН3	pNPTS138- <i>hipBA</i> ₃KO (<i>CCNA_02858-02859</i>)	This study
p <i>hipA</i> ₁	pMR20 - PriboA - <i>hipA</i> 1(CCNA_00482)	This study
phipA ₂	pMR20 - PriboA - <i>hipA</i> 2(CCNA_02821)	This study
p <i>hip</i> A₃	pMR20 - PriboA - <i>hipA</i> 3(<i>CCNA_02858</i>)	This study
pFLAG- <i>hipA</i> ₁	pMR20 - PriboA - FLAG- <i>hipA</i> ₁	This study
pFLAG-hipA2	pMR20 - PriboA - FLAG- <i>hipA</i> ₂	This study
pFLAG- <i>hipA</i> ₃	pMR20 - PriboA - FLAG- <i>hipA</i> ₃	This study
pFLAG- <i>hipA</i> 1D301Q	pMR20 - PriboA - FLAG- <i>hipA</i> ₁D301Q	This study
pFLAG- <i>hipA</i> 2D308Q	pMR20 - PriboA - FLAG- <i>hipA</i> 2D308Q	This study
pFLAG- <i>hipA</i> 3 ^{D326Q}	pMR20 - PriboA -pFLAG- <i>hipA</i> 3D326Q	This study
pFLAG- <i>hipB</i> ₁	JS71 - PriboA - FLAG- <i>hipB₁(CCNA_00481</i>)	This study
pFLAG-hipB ₂	JS71 - PriboA - FLAG- <i>hipB</i> ₂ (<i>CCNA_02822</i>)	This study
pFLAG- <i>hipB</i> ₃	JS71 - PriboA - FLAG- <i>hipB</i> 3(CCNA_02859)	This study
pFLAG-metG	JS71 - PriboA - FLAG-metG(CCNA_01547)	This study
pFLAG- <i>ly</i> sS	JS71 - PriboA - FLAG-lysS(CCNA_00082)	This study
pFLAG- <i>trpS</i>	JS71 - PriboA - FLAG- <i>trpS</i> (CCNA_00062)	This study
pFLAG- <i>gltX</i>	JS71 - PriboA - FLAG-gltX (CCNA_01982)	This study
p <i>hipBA</i> ₁	pMR20 - <i>hipBA</i> 1	This study
p <i>hipBA</i> ₂	pMR20 - <i>hipBA</i> ₂	This study
p <i>hipBA</i> ₃	pMR20 - <i>hipBA</i> ₃	This study
p <i>hipBA</i> 1,2	pMR20 - <i>hipBA</i> 1,2	This study

Supplementary Table S3. Plasmids used in this study.

Supplementary Table S4. Primers used in this study.

Name	Sequence (5'-3')	Purpose
hipBA1 Up F	attgaagccggctggcgccaTCGACCCGGGCGATCTTC	hipBA1 chromosomal
hipBA1 Up R	tctagcgctcGAGGGTCATGAAAATTCTCCCG	knockout
hipBA1 Dn F	catgaccctcGAGCGCTAGACTCGATCCCGC	
hipBA1 Dn R		
hipBA2 Up F	attgaagccggctggcgccaTTGCCTCTTGAGGAGCCG	hipBA2 chromosomal
hipBA2 Up R	acacctcctaCAGGAGCATAAGTAGCTAACGAAG	knockout
hinBA2 Dn F	tatactectataoGAGGTGTTCGGCATGAGG	
hinBA2 Dn R		
hipBA31In F		hipBA₃ chromosomal
hipBA3 Up R		knockout
hip DA3 DH F		
піразі дії к	CyliacyyccyaayciaycyGACAGCGGCACCAGCCGTC	pJS71 protein
riboA to pJS71 F	cggccgctctagaactagtgTGGTGCAAAACCTTTCGC	expression vector
riboA to pMR10		pMR10/pMR20
		riboA promoter for
riboA to FLAG R		protein expression
riboA to hipA1 R		
riboA to hipA2 R		
ridoa to nipa3 R	cgacggtggtCATCTTGTTGATACCCCC	hipA₁ for pMR20
hipA1 to riboA F	caacaagatgGCGATGACTAGAGTGCTGACG	expression vector
hipA1 F	gactacaaagacgatgacgacaagGCGATGACTAGAGTGCTGACG	FLAG-hipA1 for pMR20
hipA1 R	ttgtaaaacgacggccagtgCTAGCGCTCGCCCTGACC	expression vector
bin A2 to ribo A E	casesagetgAGTGGGCCCGCAGGCCTG	hipA ₂ for pMR20
hinA2 F		FLAG- <i>hipA</i> ² for pMR20
hipA2 R	ttgtaaaacgacggccagtgTCAACTCGGCGCCAAGGCG	expression vector
		<i>hipA</i> ₃ for pMR20
hipA3 to riboA F	caacaagatgACCACCGTCGCCGAGGTT	expression vector
hipA3 F	gactacaaagacgatgacgacaagACCACCGTCGCCGAGGTT	FLAG- <i>nipA</i> ³ for piviR20
hipA3 R	ttgtaaaacgacggccagtgCTACCGCCTGAGCTCCAG	
hipA1 D301Q F	tcttgccgtgagcctgggcgttgccgacg	mutagenic primers
hipA1 D301Q R	cgtcggcaacgcccaggctcacggcaaga	hinA ₂ D308Q
hipA2 D308Q F		mutagenic primers
hipA2 D306Q K	attettaacataatectaattaatteacaccaa	hipA ₃ D326Q
hipA3 D3260 R		mutagenic primers
hipB1 F		FLAG- <i>hipB</i> ₁ for pJS71
hipB1 R		expression vector
hipB2 F	gactacaaagacgatgacgacaagCTCCTGAGCGGGAGCGAAAAC	FLAG-hipB2 for pJS71
hipB2 R	cgaggtcgacggtatcgataTCATCTGGGCGCCGCCAT	expression vector
hipB3 F	gactacaaagacgatgacgacaagAAATTTGAATCTCTCCTGTCC	FLAG-hipB ₃ for pJS71
hipB3 R	cgaggtcgacggtatcgataTCATTTTTCATCGCCCCAC	expression vector

gltX F altX R	gactacaaagacgatgacgacaagTCGAACCCCACCCCTACC	FLAG- <i>gltX</i> for pJS71 expression vector
lysS F	gactacaaagacgatgacgacaagTTTGAAGGCCTCTCCCCC	FLAG- <i>ly</i> sS for pJS71 expression vector
metG F	gactacaaagacgatgacgacaagGCTCGCATCCTGATTACCTCCG	FLAG- <i>metG</i> for pJS71
metG R	cgaggtcgacggtatcgataTTACTCCGCGCCGCCGAA	
trpS F trpS R		FLAG- <i>trpS</i> for pJS71 expressi2n vector
hipBA1 F	ctatgaccatgattacgccaGGGGCCCAGCCCATGGC	<i>hipBA</i> ₁ operon and promoter for pMR10 complementation
hipBA1 R	ttgtaaaacgacggccagtgCTAGCGCTCGCCCTGACCCAG	vector
hipBA2 F	ctatgaccatgattacgccaTCAACTCGGCGCCAAGGC	nipBA ₂ operon and promoter for pMR10 complementation
hipBA2 R	ttgtaaaacgacggccagtgCTGCGGGGAGGGTGTGGG	vector
hipBA1 to hipBA2 R	gccgagttgaCTAGCGCTCGCCCTGACCCAG	<i>hipBA</i> ¹ and <i>hipBA</i> ² operons for pMR10 complementation
hipBA2 to hipBA1 F	cgagcgctagTCAACTCGGCGCCAAGGC	vector
CCNA_03445 qPCR F	CTGGATCTGTCTCGCCTTGG	RT-PCR
CCNA_03445 qPCR R	GGTGGGATGGGGCTTCTG	oligonucleotides
CCNA_03181 qPCR F	TTCAGACGCTTGAGACCACC	
CCNA_03181 qPCR R	CGTACATGGTTTTCGGCACG	
CCNA_01674 qPCR F	CAGACCCTAGCGGACACTCC	
CCNA_01674 qPCR R	GGCGTGAACATCTCGTCGTA	
CCNA_01596 qPCR F	ATGTTTCCCGACACCGACTC	
CCNA_01596 qPCR R	CTGCTCGGGGTTCAGGC	
CCNA_00520 qPCR F	GCGATCGCGGAATATCTCGAC	
CCNA_00520 qPCR R	CTGGTCGACTGGATGACGAA	
rho1 F	AGACACCGAAAACCAGGTTCC	
rho1 R	CGCTTCAGTGGTGATGTCGG	
rho2 F	ACCGAAGACACCGAAAACCAG	
rho2 R	GCCGCTTCAGTGGTGATGT	

References

1. Correia, F. F. *et al.* Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in *Escherichia coli. J.Bacteriol.* **188**, 8360-8367 (2006).

2. Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. *Trends Genet.* **16**, 276-277 (2000).

3. Evinger, M. & Agabian, N. Envelope-associated nucleoid from *Caulobacter crescentus* stalked and swarmer cells. *J.Bacteriol.* **132**, 294-301 (1977).

4. Docquier, J. D. *et al.* CAU-1, a subclass B3 metallo-beta-lactamase of low substrate affinity encoded by an ortholog present in the *Caulobacter crescentus* chromosome. *Antimicrob. Agents Chemother.* **46**, 1823-1830 (2002).

5. Boutte, C. C. & Crosson, S. The complex logic of stringent response regulation in *Caulobacter crescentus*: starvation signalling in an oligotrophic environment. *Mol.Microbiol.* **80**, 695-714 (2011).

6. Roberts, R. C. *et al.* Identification of a *Caulobacter crescentus* operon encoding *hcrA*, involved in negatively regulating heat-inducible transcription, and the chaperone gene *grpE*. *J.Bacteriol.* **178**, 1829-1841 (1996).

7. Jensen, R. B., Wang, S. C. & Shapiro, L. A moving DNA replication factory in *Caulobacter crescentus*. *EMBO J.* **20**, 4952-4963 (2001).