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S1 Summary of the base model formulation

In this section, we describe the full base model formulation. In this for-
mulation, the membrane potential (v) is given in units of mV, and the
Ca2+ concentrations are given in units of mM. All currents are expressed
in units of A/F, and the Ca2+ fluxes are expressed as mmol/ms per total cell
volume (i.e., in units of mM/ms). Time is given in ms. The parameters of
the model are given in Tables S1–S6.

S1.1 The membrane potential

The membrane potential is governed by the equation

dv

dt
= −(INa + INaL + ICaL + Ito + IKr + IKs + IK1

+ INaCa + INaK + IpCa + IbCl + IbCa + If + Istim),
(1)

where Istim is an applied stimulus current, and INa, INaL, ICaL, Ito, IKr, IKs,
IK1, INaCa, INaK, IpCa, IbCl, IbCa, and If are membrane currents specified
below. In our simulations, Istim is given as a constant current of size −40 A/F
for adult cells and −5 A/F for hiPSC-CMs. The Istim current is applied until
the membrane potential reaches a value of −40 mV.

S1.2 Membrane currents

The currents through the voltage-gated ion channels on the cell membrane
are in general given on the form

I = go(v − E),

where g is the channel conductance, v is the membrane potential and E is
the equilibrium potential of the channel. Furthermore, o =

∏
i zi is the open

probability of the channels, where zi are gating variables, either given as a
function of the membrane potential or governed by equations of the form

z′i =
1

τzi
(zi,∞ − zi). (2)

The parameters τzi and zi,∞ are specified for each of the gating variables of
the model in Table S7.
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Fast sodium current The formulation of the fast sodium current is an ad-
justed version of the model given in [1], supporting slower upstroke velocities
more similar to those observed in the optical measurements of hiPSC-CMs.
The current is given by

INa = gNaoNa(v − ENa), (3)

where the open probability is given by

oNa = m3j, (4)

and m and j are gating variables governed by equations of the form (2).

Late sodium current The formulation of the late sodium current, INaL,
is based on [2] and is given by

INaL = gNaLoNaL(v − ENa), (5)

where the open probability is given by

oNaL = mLhL, (6)

and mL and hL are gating variables governed by equations of the form (2).

Transient outward potassium current The formulation of the tran-
sient outward potassium current, Ito, is based on [3] and is given by

Ito = gtooto(v − Eto), (7)

where the open probability is given by

oto = qtorto, (8)

and qto and rto are gating variables governed by equations of the form (2).

Rapidly activating potassium current The formulation of the rapidly
activating potassium current, IKr, is based on [3] and is given by

IKr = gKroKr(v − EK), (9)

where
oKr = xKr1xKr2, (10)

and the dynamics of xKr1 and xKr2 are governed by equations of the form (2).
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Slowly activating potassium current The formulation of the slowly
activating potassium current, IKs, is based on [1] and is given by

IKs = gKsoKs(v − EKs), (11)

where
oKs = x2

Ks, (12)

and the dynamics of xKs is governed by an equation of the form (2).

Inward rectifier potassium current The formulation of the inward
rectifier potassium current, IK1, is based on [1] and is given by

IK1 = gK1oK1(v − EK), (13)

where

oK1 =
aK1

aK1 + bK1

, (14)

aK1 =
3.9

1 + e0.6(v−EK−200)
, (15)

bK1 =
−1.5e0.0002(v−EK+100) + e0.6(v−EK−10)

1 + e0.45(v−EK)
. (16)

Hyperpolarization activated funny current The formulation for the
hyperpolarization activated funny current, If , is based on [3] and is given by

If = gfof(v − Ef), (17)

where
of = xf , (18)

and the dynamics of xf is governed by an equation of the form (2).

L-type Ca2+ current The formualtion for the L-type Ca2+ current, ICaL,
is based on the formulation in [1] and is given by

ICaL = gCaLoCaL
(2F )2v

RT

0.341cde
2Fv
RT − 0.341ce

e
2Fv
RT − 1

, (19)

where
oCaL = df(1− fCa), (20)

and the dynamics of d, f and fCa are governed by equations of the form (2).
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Background currents The formulation of the background currents, IbCa

and IbCl, are based on [1] and are given by

IbCa = gbCa(v − ECa), (21)

IbCl = gbCl(v − ECl). (22)

Sodium-calcium exchanger The formulation of the Na+-Ca2+ exchanger
current, INaCa, is based on [1] and is given by

INaCa = ĪNaCa
e
νFv
RT [Na+]3i ce − e

(ν−1)Fv
RT [Na+]3ecsl

sNaCa

(
1 +

(
Kact

csl

)2
)(

1 + ksate
(ν−1)Fv
RT

) , (23)

where

sNaCa = KCa,i[Na+]3e

(
1 +

(
[Na+]i
KNa,i

)3
)

+K3
Na,ecsl

(
1 +

csl
KCa,i

)
+KCa,e[Na+]3i + [Na+]3i ce + [Na+]3ecsl.

Sarcolemmal Ca2+ pump The formulation of the current through the
sarcolemmal Ca2+ pump, IpCa, is based on [1] and is given by

IpCa = ĪpCa
c2
sl

K2
pCa + c2

sl

. (24)

Sodium-potassium pump The current through the Na+-K+ pump, INaK,
is based on [1] and is given by

INaK = ĪNaK
fNaK

1 +
(
KNaK

Na,i

[Na+]i

)4

[K+]e
[K+]e +KK,e

, (25)

where

fNaK =
1

1 + 0.12e−0.1 Fv
RT

+
0.037

7

(
e

[Na+]e
67 − 1

)
e−

Fv
RT . (26)
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S1.3 Ca2+ dynamics

The Ca2+ dynamics are governed by

dcd
dt

=
1

Vd
(JCaL − J bd − J cd),

dbd
dt

=
1

Vd
J bd, (27)

dcsl
dt

=
1

Vsl
(Jsle − J csl − J bsl + Jsls ),

dbsl
dt

=
1

Vsl
J bsl, (28)

dcc
dt

=
1

Vc
(J csl + J cd − Jnc − J bc ),

dbc
dt

=
1

Vc
J bc , (29)

dcs
dt

=
1

Vs
(Jsn − Jsls − J bs),

dbs
dt

=
1

Vs
J bs , (30)

dcn
dt

=
1

Vn
(Jnc − Jsn), (31)

where cd is the concentration of free Ca2+ in the dyad, bd is the concentration
of Ca2+ bound to a buffer in the dyad, csl is the concentration of free Ca2+ in
the SL compartment, bsl is the concentration of Ca2+ bound to a buffer in
the SL compartment, cc is the concentration of free Ca2+ in the bulk cytosol,
bc is the concentration of Ca2+ bound to a buffer in the bulk cytosol, cs is the
concentration of free Ca2+ in the jSR, bs is the concentration of Ca2+ bound
to a buffer in the jSR, and cn is the concentration of free Ca2+ in the nSR.
The expressions for the fluxes are specified below.

S1.4 Ca2+ fluxes

Flux through the SERCA pumps The flux from the bulk cytosol to
the nSR through the SERCA pumps is given by

Jnc = J̄SERCA

(
cc
Kc

)2

−
(
cn
Kn

)2

1 +
(
cc
Kc

)2

+
(
cn
Kn

)2 . (32)

Flux through the RyRs The flux from the jSR to the SL compartment
is given by

Jsls = JRyR + Jleak, (33)

where JRyR represents the flux through the active RyR channels and Jleak

represents the flux through the RyR channels that are always open, given by

JRyR = p · r · αRyR(cs − csl), (34)

Jleak = γRyR · αRyR(cs − csl), (35)
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respectively. Here, p is the open probability of the active RyR channels given
by

p =
c3
d

c3
d + κ3

RyR

, (36)

and r represents the fraction of RyR channels that are not inactivated and
is governed by the equation

dr

dt
= −JRyR

βRyR

+
ηRyR

p
(1− r). (37)

Passive diffusion fluxes between compartments The passive diffu-
sion fluxes between compartments are given by

J cd = αcd(cd − cc), (38)

J csl = αcsl(csl − cc), (39)

Jsn = αsn(cn − cs). (40)

Buffer fluxes The fluxes of free Ca2+ binding to a Ca2+ buffer are given
by

J bd = Vd(k
d
oncd(B

d
tot − bd)− kdoffbd), (41)

J bsl = Vsl(k
sl
oncsl(B

sl
tot − bsl)− ksloffbsl), (42)

J bc = Vc(k
c
oncc(B

c
tot − bc)− kcoffbc), (43)

J bs = Vs(k
s
oncs(B

s
tot − bs)− ksoffbs). (44)

Membrane fluxes The membrane fluxes, JCaL, JbCa, JpCa, and JNaCa, are
given by

JCaL = −χCm
2F

ICaL, JpCa = −χCm
2F

IpCa, (45)

JbCa = −χCm
2F

IbCa, JNaCa =
χCm
F

INaCa, (46)

where ICaL, IbCa, IpCa, and INaCa are defined by the expressions given above.
Furthermore,

Jsle = JNaCa + JpCa + JbCa. (47)
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Parameter Description Value

Vd Volume fraction of the dyadic subspace 0.001

Vsl Volume fraction of the SL compartment 0.028

Vc Volume fraction of the bulk cytosol 0.917

Vs Volume fraction of the jSR 0.004

Vn Volume fraction of the nSR 0.05

χ Cell surface to volume ratio 0.6 µm−1

Table S1: Default geometry parameters of the base model.

S1.5 Nernst equilibrium potentials

The Nernst equilibrium potentials for the ion channels are defined as

ENa =
RT

F
log

(
[Na+]e
[Na+]i

)
, (48)

ECa =
RT

2F
log

(
[Ca2+]e
csl

)
, (49)

EK =
RT

F
log

(
[K+]e
[K+]i

)
, (50)

EKs =
RT

F
log

(
[K+]e + 0.018[Na+]e
[K+]i + 0.018[Na+]i

)
, (51)

ECl =
RT

F
log

(
[Cl+]e
[Cl+]i

)
, (52)

Ef = −17 mV, (53)

for the parameter values given in Table S2.
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Parameter Description Value

Cm Specific membrane capacitance 0.01 µF/µm2

F Faraday’s constant 96.485 C/mmol

R Universal gas constant 8.314 J/(mol·K)

T Temperature 310 K

[Ca2+]e Extracellular Ca2+ concentration 1.8 mM

[Na+]e Extracellular sodium concentration 140 mM

[Na+]i Intracellular sodium concentration 8 mM

[K+]e Extracellular potassium concentration 5.4 mM

[K+]i Intracellular potassium concentration 120 mM

[Cl−]e Extracellular chloride concentration 150 mM

[Cl−]i Intracellular chloride concentration 15 mM

Table S2: Physical constants and ionic concentrations of the base model.

Parameter Value Parameter Value

gNa 12.6 mS/µF gCaL 0.12 nL/(µF ms)

gNaL 0.025 mS/µF gbCa 0.00055 mS/µF

gto 0.27 mS/µF ĪNaCa 4.9 µA/µF

gKr 0.025 mS/µF ĪpCa 0.068 µA/µF

gKs 0.003 mS/µF J̄SERCA 0.00024 mM/ms

gK1 0.37 mS/µF αRyR 0.0075 ms−1

gf 0.0001 mS/µF αcd 0.0017 ms−1

gbCl 0.007 mS/µF αcsl 0.15 ms−1

ĪNaK 1.8 µA/µF αsn 0.012 ms−1

Table S3: Conductance values and similar parameters for each of the mem-
brane currents and intracellular Ca2+ fluxes of the base model.
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Parameter Flux Value

Kc Jnc 0.00025 mM

Kn Jnc 1.7 mM

βRyR Jsls 0.038 mM

γRyR Jsls 0.001

κRyR JRyR 0.015 mM

ηRyR Jsls 0.00001 ms−1

Table S4: Parameters for the intracellular Ca2+ fluxes of the base model.

Parameter Current Value

ksat INaCa 0.3

ν INaCa 0.3

Kact INaCa 0.00015 mM

KCa,i INaCa 0.0036 mM

KCa,e INaCa 1.3 mM

KNa,i INaCa 12.3 mM

KNa,e INaCa 87.5 mM

KNaK
Na,i INaK 11 mM

KK,e INaK 1.5 mM

KpCa IpCa 0.0005 mM

Table S5: Parameters for the membrane currents of the base model.
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Parameter Compartment Value

Bc
tot Bulk cytosol 0.07 mM

kcon Bulk cytosol 40 ms−1mM−1

kcoff Bulk cytosol 0.03 ms−1

Bd
tot Dyad 1.2 mM

kdon Dyad 100 ms−1mM−1

kdoff Dyad 1 ms−1

Bsl
tot Subsarcolemmal space 0.9 mM

kslon Subsarcolemmal space 100 ms−1mM−1

ksloff Subsarcolemmal space 0.15 ms−1

Bs
tot Junctional SR 27 mM

kson Junctional SR 100 ms−1mM−1

ksoff Junctional SR 65 ms−1

Table S6: Parameters for the Ca2+ buffers of the base model.
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Current Gate z∞ αz βz τz

INa

m 1

(1 + e(−57−v)/9)
2 0.13e−((v+46)/16)2

0.06e−((v−5)/51)2

αm + βm

j 1

(1 + e(v+72)/7)
2

0, if v ≥ −40(
−2.5 · 104e0.2v

−7 · 10−6e−0.04v

)
(v + 38)

1 + e0.3(v+79)
, otherwise

0.6e0.06v

1 + e−0.1(v+32)
, if v ≥ −40

0.02e−0.01v

1 + e−0.14(v+40)
, otherwise

1

αj + βj

INaL

mL
1

1 + e(−43−v)/5

1

6.8e(v+12)/35
8.6e−(v+77)/6 αm + βm

hL
1

1 + e(v+88)/7.5
200 ms

ICaL

d 1

1 + e−(v+5)/6

1− e− v+5
6

0.035(v + 5)
αd

f 1

1 + e(v+35)/9
+

0.6

1 + e(50−v)/20

1

0.02e−(0.034(v+14.5)2) + 0.02
αf

fCa
1.7cd

1.7cd + 0.012

1

1.7cd + 0.012
αCa

Ito

qto
1

1 + e(v+53)/13

39

0.57e−0.08(v+44) + 0.065e0.1(v+46)
6 αqto + βqto

rto
1

1 + e−(v−22.3)/18.75

14.4

e0.09(v+30.61) + 0.37e−0.12(v+24)
2.75 αrto + βrto

IKr

xKr1
1

1 + e−(v+20.7)/4.9

450

1 + e−(v+45)/10

6

1 + e(v+30)/11.5
αxKr1

· βxKr1

xKr2
1

1 + e(v+88)/50

3

1 + e−(v+60)/20

1.12

1 + e(v−60)/20
αxKr2

· βxKr2

IKs xKs
1

1 + e−(v+3.8)/14

990

1 + e−(v+2.4)/14
αxKs

If xf
1

1 + e(v+78)/5

1900

1 + e(v+15)/10
αxKs

Table S7: Specification of the parameters z∞ and τz, for z = m, j, mL, hL, d,
f, fCa, qto, rto, xKr1, xKr2, xKs and xf in the equations for the gating variables
(2).
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S2 Details of the Ca2+ dynamics model

In this section, we describe some details of the model of the intracellular
Ca2+ dynamics. First, in Section S2.1, we describe the Ca2+ fluxes of the base
model and how the parameters of these fluxes can be adjusted for different
maturity levels. Next, in Section S2.2 we discuss the concepts of high gain
and graded release.

S2.1 Description of the Ca2+ fluxes of the base model

As noted above, all Ca2+ fluxes, J , are defined in terms of the number of
ions flowing per time per total cell volume, in units of mM/ms. Accordingly,
the size of a flux in mmol/ms is given by J̄ = VcellJ , where Vcell is the cell
volume (in L).

Similarly, for a single compartment with volume V̄x (in L), volume fraction
(dimensionless) Vx = V̄x

Vcell
and Ca2+ concentration cx (in mM), the total

number of Ca2+ ions in the compartment (in mmol) is given by nx = cxV̄x.
The change in the number of Ca2+-ions in the compartment is given by

dnx
dt

= J̄x, (54)

where J̄x is the flux of ions into the compartment given in mmol/ms. It is also
useful to define an associated concentration flux per total cell volume, Jx =
J̄x/Vcell (in mM/ms). Dividing both sides of (54) by the compartment volume
V̄x, we obtain the following equation for the change in Ca2+ concentration:

dcx
dt

=
1

V̄x
J̄x =

1

V̄x
VcellJx =

1

Vx
Jx. (55)

Expanding this approach to all the compartments and fluxes of the model, we
obtain the following system of equations for the intracellular Ca2+ dynamics:

dcd
dt

=
1

Vd
(JCaL − J bd − J cd),

dbd
dt

=
1

Vd
J bd,

dcsl
dt

=
1

Vsl
(Jsle − J csl − J bsl + Jsls ),

dbsl
dt

=
1

Vsl
J bsl,

dcc
dt

=
1

Vc
(J csl + J cd − Jnc − J bc ),

dbc
dt

=
1

Vc
J bc ,

dcs
dt

=
1

Vs
(Jsn − Jsls − J bs),

dbs
dt

=
1

Vs
J bs ,

dcn
dt

=
1

Vn
(Jnc − Jsn).
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Flux Description

Jsls Flux through the RyRs from the jSR to the SL

Jnc Flux through the SERCA pumps from the bulk cytosol to the nSR

J cd Passive diffusion flux between the dyad and the bulk cytosol

J csl Passive diffusion flux between the SL and the bulk cytosol

Jsn Passive diffusion flux between the nSR and the jSR

J bd Free Ca2+ binding to a buffer in the dyad

J bsl Free Ca2+ binding to a buffer in the SL

J bc Free Ca2+ binding to a buffer in the bulk cytosol

J bs Free Ca2+ binding to a buffer in the jSR

JCaL

Ca2+-flux through the L-type Ca2+ channels from the extracellular

space to the dyad

JbCa Background Ca2+ flux from the extracellular space to the SL

JpCa

Ca2+ flux through the Ca2+ pump between

the extracellular space and the SL

JNaCa

Ca2+ flux through the Na+-Ca2+ exchanger between the extracellular

space and the SL

Jsle
Total Ca2+ flux from the extracellular space to the SL, defined as

Jsle = JbCa + JpCa + JNaCa.

Table S8: Ca2+ fluxes of the base model. The direction of all membrane
fluxes are defined such that a positive flux corresponds to Ca2+ ions flowing
into the cell.

15



Each of the fluxes of the base model are summarized in Table S8, and below
each of the fluxes are described in more detail (except for JRyR, which is
described in the paper)

S2.1.1 Flux through the SERCA pumps (Jnc )

The flux from the bulk cytosol to the nSR through SERCA is given on the
form

Jnc =
NSERCA

Vcell

jSERCA, (56)

where NSERCA is the number of SERCA pumps on the membrane of the nSR,
Vcell is the total cell volume (in L) and jSERCA is the flux through a single
SERCA pump (in mmol/ms). The flux through a single pump is given by
an expression based on the formulation in the Grandi et al. model [1]:

jSERCA = Jmax,0
SERCA

(
cc
Kc

)2

−
(
cn
Kn

)2

1 +
(
cc
Kc

)2

+
(
cn
Kn

)2 , (57)

where Jmax,0
SERCA has unit mmol/ms and Kc and Kn have unit mM. Defining

the parameter

J̄SERCA =
NSERCA

Vcell

Jmax,0
SERCA, (58)

with unit mM/ms, the SERCA flux may be written as

Jnc = J̄SERCA

(
cc
Kc

)2

−
(
cn
Kn

)2

1 +
(
cc
Kc

)2

+
(
cn
Kn

)2 . (59)

Scaling the SERCA flux Like for the maturation process with respect
to sarcolemmal ion channels, we also assume that cells of different levels of
maturity may have different geometries and different densities of SERCA
pumps, but that the function of each individual SERCA pump is the same.

This means that we assume that the expression for the flux through a
single SERCA pump, jSERCA, remains the same, but that the factor NSERCA

Vcell

may differ for different maturity levels. We again represent the change in the
SERCA pump density by introducing a scaling factor λSERCA between one
stage of maturity, S1, to another stage, S2, such that

NS1
SERCA

V S1
cell

= (1 + λSERCA)
NS2

SERCA

V S2
cell

, (60)
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where
NS1

SERCA

V S1
cell

is the SERCA pump density in the model for maturity stage S1 and

NS2
SERCA

V S2
cell

is the density in the model for maturity stage S2. In the model formulation,
this can be represented on the form

Jn,S1
c = (1 + λSERCA)Jn,S2

c , (61)

where Jn,S1
c is the expression for the SERCA pump flux in the S1 state and

Jn,S2
c is the expression in the S2 state.

S2.1.2 Passive diffusion fluxes between compartments (J cd, J
c
sl, and

Jsn)

Following the approach in e.g. [4], diffusion between compartments is con-
sidered to occur, on average, between the center of adjacent compartments.
Fick’s law of diffusion may then be approximated as

J ba =
Db
aA

b
a

Vcell

ca − cb
lba

, (62)

where Db
a is the diffusion coefficient (in dm2/ms) representing the ease with

which Ca2+ ions flow between the compartments, Aba is the area (in dm2) of
the interface between the compartments, ca and cb are the Ca2+ concentrations
of the compartments (in mM), and lba is the distance between the centers of
the two compartments (in dm). Again, Vcell is the total cell volume (in L),
and the flux J ba is defined as the number of ions flowing between the com-
partments per millisecond per total cell volume. Again, in order to reduce
the number of parameters, we define the lumped parameter

αba =
Db
aA

b
a

Vcelllba
, (63)

and write the flux as
J ba = αba(ca − cb). (64)

We consider passive diffusive fluxes of this form between the dyad and
the bulk cytosol, between the SL and the bulk cytosol, and between the nSR
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and jSR, and define these fluxes as:

J cd = αcd(cd − cc), (65)

J csl = αcsl(csl − cc), (66)

Jsn = αsn(cn − cs). (67)

Scaling the diffusive fluxes In the same manner as above, we define
adjustment factors λba for the diffusive fluxes on the form

Db,S1
a Ab,S1

a

V S1
celll

b,S1
a

= (1 + λba)
Db,S2
a Ab,S2

a

V S2
celll

b,S2
a

. (68)

Here, λba may represent a change in any of the geometrical properties Aba,
Vcell or lba, a change in the diffusion coefficient Db

a, or a combination of these
changes. This adjustment is represented in the model for each of the diffusive
fluxes by

J c,S1

d = (1 + λcd)J
c,S2

d , (69)

J c,S1

sl = (1 + λcsl)J
c,S2

sl , (70)

Js,S1
n = (1 + λsn)Js,S2

n , (71)

where J c,S1

d , J c,S1

sl , and Js,S1
n denote the S1 fluxes and J c,S2

d , J c,S2

sl , and Js,S2
n

denote the S2 fluxes.

S2.1.3 Buffer fluxes (J bd, J
b
sl, J

b
c , and J bs)

The chemical reaction between Ca2+ and a buffer may be written as

P + Ca2+
kon

�
koff

B, (72)

where P represents the buffering protein and B represents Ca2+ bound to
the buffer. Here, kon and koff are the rates of the reaction and are given
in units of ms−1mM−1 and ms−1, respectively. If we let Btot denote the
total buffer concentration in some compartment, c denote the concentration
of free Ca2+ and b denote the concentration of Ca2+ bound to the buffer,
the law of mass action (see e.g., [5]) gives that the rate of decrease in the
free Ca2+ concentration in the compartment and the rate of increase in the
concentration of Ca2+ bound to a buffer due to Ca2+ -buffer reactions is

R = konc(Btot − b)− koffb, (73)
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in units of mmol/ms per compartment volume, V̄x. The corresponding flux
in terms of mmol/ms per total cell volume, Vcell, may be defined as

J =
V̄x
Vcell

R = Vx(konc(Btot − b)− koffb). (74)

Consequently, the flux of free Ca2+ binding to a buffer in the dyad, the SL,
the bulk cytosol and the jSR are given by

J bd = Vd(k
d
oncd(B

d
tot − bd)− kdoffbd), (75)

J bsl = Vsl(k
sl
oncsl(B

sl
tot − bsl)− ksloffbsl), (76)

J bc = Vc(k
c
oncc(B

c
tot − bc)− kcoffbc), (77)

J bs = Vs(k
s
oncs(B

s
tot − bs)− ksoffbs), (78)

respectively.

Scaling the Ca2+ buffers Like for membrane and SR membrane chan-
nels, we assume that cells of different levels of maturity contain the same
types of Ca2+ buffers, with the same rates kon and koff , but that the con-
centration of the Ca2+ buffers, Btot, may differ for different types of cells.
Therefore, we define scaling parameters for the buffer concentrations on the
form

Bd,S1
tot = (1 + λdB)Bd,S2

tot , (79)

Bsl,S1
tot = (1 + λslB)Bsl,S2

tot , (80)

Bc,S1
tot = (1 + λcB)Bc,S2

tot , (81)

Bs,S1
tot = (1 + λsB)Bs,S2

tot , (82)

where Bd,S1
tot , Bsl,S1

tot , Bc,S1
tot , and Bs,S1

tot are the buffer concentrations in the S1

model, and Bd,S2
tot , Bsl,S2

tot , Bc,S2
tot , and Bs,S2

tot are the buffer concentrations in the
S2 model.

S2.1.4 Membrane fluxes (JCaL, JbCa, JpCa, and JNaCa)

The membrane fluxes JCaL, JbCa, JpCa, and JNaCa may be defined from the
expressions for the corresponding membrane currents, ICaL, IbCa, IpCa, and
INaCa. Recall from Section 2.2 in the paper that the membrane currents are
expressed on the form

Ix =
Nx

ACm
ix, for x = CaL, bCa, pCa, and NaCa, (83)
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where Nx is the total number of channels of type x on the cell membrane, A is
the total membrane area (in µm2), Cm is the specific membrane capacitance
(in pF/µm2) and ix is the average single-channel current through a channel
of type x (in pA). The corresponding membrane fluxes per total cell volume
may similarly be defined as

Jx =
Nx

Vcell

jx, for x = CaL, bCa, pCa, and NaCa, (84)

where Vcell is the total cell volume (in L), and jx is the average Ca2+ flux
through a single channel of type x (in mmol/ms). The average flux of
Ca2+ through a single Ca2+ channel may be written as

jx = −10−15

2F
ix, (85)

where F is Faraday’s constant (in C/mmol), representing the electric charge
per mmol of ions with elementary charge. Note that the reason for the
factor two in the denominator is that the valence of a Ca2+ ion is two, and
the factor 10−15 is included in the numerator to convert the flux from unit
amol/ms to unit mmol/ms. Moreover, the reason for the negative sign in
(85) is that the positive direction of the single channel current by convention
is from the inside to the outside of the cell, whereas the positive direction
of the Ca2+ flux is defined to be from the outside to the inside of the cell.
Note also that since the Na+-Ca2+ exchanger exchanges three Na+ ions for
one Ca2+ ion, the flux of one Ca2+ ion through the exchanger represents the
exchange of one charge instead of two, and a positive current out of the cell
is associated with a flux of Ca2+ into the cell. Therefore (85) is replaced by

jNaCa =
10−15

F
iNaCa (86)

in this case.
Combining (83)–(86), we see that the total membrane fluxes may be

written as

JCaL = −χCm
2F

ICaL, JpCa = −χCm
2F

IpCa, (87)

JbCa = −χCm
2F

IbCa, JNaCa =
χCm
F

INaCa, (88)

where

χ =
A

1015Vcell

(89)

is the surface-to-volume ratio of the cell (in µm−1).
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Scaling the surface-to-volume ratio As explained above, we assume
that the density of the membrane channels responsible for the Ca2+ fluxes
may be different for different levels of maturity. This change in channel
density is represented in the model by scaling the currents (see Section 2.2.1
of the paper), which will also affect the corresponding Ca2+ fluxes (87)–(88).

In addition, we assume that the geometry of the cells (i.e., the membrane
area, A, and the cell volume, Vcell) may be different for different levels of
maturity. From (87)–(90), we see that this change in geometry may be
represented by scaling the surface-to-volume ratio, χ, by

χS1 = (1 + λχ)χS2 , (90)

where χS1 is the surface-to-volume ratio for maturity stage S1, χS2 is the
value for maturity stage S2, and λχ is an adjustment factor for the surface-
to-volume ratio.

S2.2 Notes on modeling Ca2+ dynamics

The inversion algorithm requires thousands of simulations testing different
parameters representing geometrical properties and channel densities, either
in terms of membrane channels or in terms of channels or buffers involved in
the intracellular Ca2+ machinery. In order for the inversion to work properly,
it is essential that the AP model is stable with respect to variations in the
parameters. In particular, it is important that the simulation does not fail
because of instabilities in the model.

Modeling the intracellular Ca2+ dynamics of cardiac cells has been a long-
standing challenge and a very active field of research for at least 40 years;
for reviews see e.g., [6, 7, 8, 9, 10]. Ca2+ dynamics are a complex time-
dependent, 3D and highly non-linear problem. Mathematical models have
attempted to represent the dynamics using a system of ordinary differen-
tial equations. Essentially, the goal of these models has been to remove
the spatial variance and compute solutions that are spatially averaged and
therefore merely depend on time. The main motivation for this strategy is
to achieve models that are practical to work with in terms of computational
complexity. However, the strategy has run into serious modeling challenges
that have subsequently been addressed with ingenuity in numerous mod-
els (see e.g., [11, 12, 13, 14, 15, 16, 4, 17, 6]). Also spatial models (see e.g.,
[18, 19, 20, 21]) and homogenized spatial models (see e.g., [22, 23, 24, 25, 26])
have been applied, and while these models clearly capture the intricate dy-
namics more convincingly, this comes at a computational cost that renders
them impractical for the purpose of this study and many other applications,
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as tens of thousands of simulations with spatially resolved 3D models of the
Ca2+ dynamics of cardiac cells is not computationally tractable at present.
Below, we will discuss some important concepts involved in the intracellu-
lar Ca2+ dynamics of cardiac cells and some previously introduced modeling
approaches for these dynamics.

S2.2.1 Ca2+ -induced Ca2+ release (CICR)

In the early phase of the upstroke of the AP, the membrane potential increases
sufficiently for the voltage-sensitive dihydropyridine receptors (DHPR) to
open the L-type Ca2+ channels on the membrane. Because of the huge gra-
dient in the Ca2+ concentration between the intracellular and extracellular
spaces, Ca2+ ions cross the membrane and flow into the cell. Inside the cell,
the Ca2+ enters a tiny dyad (see Figure S1) located between the cell mem-
brane and the sarcoplasmic reticulum (SR). Since the dyad is very small,
the Ca2+ concentration increases rapidly and the increased concentration is
sensed by the ryanodine receptors (RyRs) which in turn open and allow large
amounts of Ca2+ to flow out of the SR. The increased Ca2+ concentration
spreads by diffusion and recruits other RyRs to open and thus even more
Ca2+ is poured into the bulk cytosolic space. This process is usually referred
to as Ca2+ -induced Ca2+ release (CICR), and it takes place in many thou-
sand local Ca2+ release units (CRUs) close to the cell membrane (see e.g.,
[27, 28, 29, 18]).

S2.2.2 High gain and graded release

The CICR is designed to provide both high gain and graded release (see e.g.,
[29, 6]). High gain means that, even when only a small amount of Ca2+ enters
the cell through the cell membrane, this small amount leads to release of a
much larger amount of Ca2+ from the SR. However, the release is also graded
(see e.g., [30, 31, 27, 29, 6]) in the sense that the release of Ca2+ from the
SR into the bulk cytosolic space depends continuously on the amount of
Ca2+ flowing into the cell through the channels on the cell membrane. In
other words, the amount of Ca2+ flowing into the cytosol during an AP is
believed to be controlled by the flow through the membrane Ca2+ channels,
even if most of the Ca2+ is released from the internal storage structures (the
SR).

S2.2.3 Restoring the Ca2+ concentration

The AP is periodic and at the end of one cycle, all variables are brought back
to the repolarized state of the cell. Ca2+ is pumped back to SR by the SERCA
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Figure S1: A prototypical sketch of a common pool model with Ca2+ flowing
into the dyad through L-type Ca2+ channels; the RyR-channels are activated
when the Ca2+ concentration increases, and Ca2+ is transported back to the
SR from the cytosol via the SERCA pump and back to the extracellular space
through the Na+-Ca2+ exchanger and the Ca2+ pump on the cell membrane.

(sarcoplasmic reticulum Ca2+ ATPase) pump, and back to the extracellular
space through the membrane Ca2+ pump and the Na+-Ca2+ exchanger.

S2.2.4 Common pool models

A standard approach to modeling CICR is illustrated in Figure S1. Here, the
dynamics of the many CRUs are modeled by one representative unit, hence
all CRUs are assumed to be in the same state. In the model, Ca2+ enters
the dyad through L-type Ca2+ channels, which leads to an increased dyadic
Ca2+ concentration, and thus the RyRs open and Ca2+ leaves the SR. Models
of the form illustrated in Figure S1 is referred to as common pool models and
are characterized by the fact that Ca2+ released through the RyRs (from
the SR) enters the same, small, dyadic space that Ca2+ enters through the
L-type Ca2+ channel. It has been known for a long time (see [11]) that it is
impossible to obtain graded release using stable common pool models. The
problem is that when the release of Ca2+ from the SR has started, the release
from the SR will itself cause an increased dyadic Ca2+ concentration, and
release will continue until some inactivation mechanism of the release (e.g.,
a sufficiently decreased SR Ca2+ concentration [32]) kicks in. Consequently,
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the release becomes an all or nothing process, depending only on whether the
amount of Ca2+ entering the dyad through L-type Ca2+ channels is enough to
trigger release. Therefore, graded release cannot be obtained using a model
of the form given in Figure S1.

S2.2.5 Local control models

The difficulties associated with the common pool models can be circum-
vented by allowing many CRUs in the model (see e.g., [18, 19, 29, 20]). By
introducing a large number of CRUs that are weakly coupled and where the
release mechanisms are governed by stochastic Markov models, it is possible
to achieve both high gain and graded release. Suppose there are ∼ 20.000
CRUs (as suggested in [20]) and every CRU has the elements illustrated in
Figure S1 where the release mechanism of the L-type Ca2+ channel and the
RyR are governed by Markov models. For simplicity we assume that the
open probability of the L-type Ca2+ channels and the RyRs increases with
increasing membrane potential and increasing dyadic Ca2+ concentration, re-
spectively. Then, when the membrane potential increases slightly, the open
probability of the L-type Ca2+ channels increases sufficiently for a few mem-
brane channels to open, and thus Ca2+ will flow into the dyad of the associ-
ated CRUs. Locally, in these CRUs, the increased dyadic Ca2+ concentration
will lead to increased open probability of the RyRs and when these channels
open, the local SR of that particular CRU will be emptied. When the mem-
brane potential increases more, the number of active CRUs will increase, and
thus, the release will be graded by the membrane potential. So even if every
single CRU is an all or nothing process, the integrated process is controlled
by the membrane potential. Unfortunately, since these models requires a
large number of CRUs, the computational cost of these models is prohibitive
for our purposes.

S2.2.6 CICR in the base model

In the base model introduced in the current paper, we introduce two main
modeling assumptions to obtain a model that exhibits both high gain and
graded release without the high computational cost of local control models.
First, the Ca2+ released from the SR is not released into the dyad, but is
instead directed into a separate subsarcolemmal (SL) space. By directing
the Ca2+ into this space, the Ca2+ entering the dyad though the membrane
Ca2+ channels are clearly distinguishable from that released from the SR,
and we avoid the graded-release problem associated with the common pool
models. In addition, instead of inactivating the release from the SR by
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a decreased SR Ca2+ concentration, we introduce an assumption that each
channel can only release a certain amount of Ca2+ during an AP cycle, intro-
duced because the SR Ca2+ concentration can potentially vary significantly
for the large parameter changes considered in the inversion procedure. In
Figure 4 of the paper, we observe that the model constructed from these as-
sumptions exhibits both high gain and graded release for the immature and
mature versions of the parameters.

S3 Details of the inversion procedure

S3.1 Definition of the cost function

In the inversion procedure, we consider a cost function of the form

H(λ, ε) =
∑
d

∑
j

wd,j(Hj(λ, ε,Dd))
2, (91)

where Hj represent various differences between the data and the model solu-
tion (see Section 2.4.5 of the paper). Below, each of the cost function terms
Hj are defined.

Note that the considered data from the hiPSC-CM microphysiological sys-
tems are traces measuring the membrane potential and the cytosolic Ca2+

concentration. As these measurements are optically obtained using voltage-
and Ca2+ -sensitive dyes, some characteristics of the AP and Ca2+ transient
cannot be sampled directly from the data, for instance the maximum and
minimum values of the membrane potential and Ca2+ concentration. How-
ever, other biomarkers, like the AP duration, are readily obtained. When nec-
essary for comparing simulation results (with units) and experimental data
(unitless), experimental data values are mapped so that the maximum and
minimum values of the membrane potential and the Ca2+ transient match
the maximum and minimum values of the model solution.

S3.1.1 Action potential and Ca2+ transient durations

The terms in the cost function include terms for the differences in the AP
and Ca2+ transient durations of the form

HAPDp(λ, ε,Dd) =
|APDp(λ, ε,Dd)− APDp∗(Dd)|

|APDp∗(Dd)|
, (92)

HCaDp(λ, ε,Dd) =
|CaDp(λ, ε,Dd)− CaDp∗(Dd)|

|CaDp∗(Dd)|
, (93)
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Figure S2: Illustration of some of the quantities used to define the terms of
the cost function from the AP and Ca2+ transient.

for p = 20, 25, ...75, 80. Here, as an example, APD30 is defined as the time
from the membrane potential is 30% below its maximum value during the
upstroke of the AP, t1, to the time at which the membrane potential again
reaches a value 30% below its maximum value during the repolarization
phase, t2. APD30(λ, ε,Dd) is the value obtained from the solution of the
model given by the parameter vectors λ and ε for the drug dose Dd, while
APD30∗(Dd) is the value obtained from data for the drug dose Dd. The
same notation, with a ’∗’ marking the measured data values, is used for all
the terms in the cost function. The Ca2+ transient durations, CaDp, are
defined in the same manner as the AP durations.

S3.1.2 Integral of the membrane potential

Because the APDp values for low values of p may be difficult to obtain from
the optical measurements due to noise, we also include a term that considers
the integral of the membrane potential from t1 to t2 (see Figure S2). This
term is defined as

HInt30(λ, ε,Dd) =
|Int30(λ, ε,Dd)− Int30∗(Dd)|

|Int30∗(Dd)|
, (94)

where Int30 is defined as

Int30 =

∫ t2

t1

[v − v(t1)] dt, (95)

and v is the membrane potential. Note that the values of t1 and t2 are here
the ones defined in the computation of APD30.
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S3.1.3 Norm of the Ca2+ transient difference

As there is typically less noise in the data obtained from optical measure-
ments of the Ca2+ transient as compared to optical measurements of the
membrane potential, we also include a term for the discrete l2-norm of the
difference between the Ca2+ transient of the data and the model,

HCa(λ, ε,Dd) =
‖c(λ, ε,Dd)− c∗(Dd)‖2

‖c∗(Dd)‖2

, (96)

where c is the cytosolic Ca2+ concentration. When the data c∗ is obtained
from optical measurements, the timing of the Ca2+ transient relative to the
stimulation time is not known. Therefore, the value of HCa is taken as the
smallest value obtained when the timing of c∗(Dd) may be adjusted to fit the
timing of c(λ, ε,Dd).

S3.1.4 Upstroke velocity

In order to capture information about the upstroke of the AP and Ca2+

transient, we also consider the terms

Hdvdt(λ, ε,Dd) =

∣∣∣∣(dv(λ,ε,Dd)
dt

)
−20mV

−
(
dv∗(Dd)

dt

)
−20mV

∣∣∣∣∣∣∣∣(dv∗(Dd)
dt

)
−20mV

∣∣∣∣ , (97)

Hdcdt(λ, ε,Dd) =

∣∣∣(dc(λ,ε,Dd)
dt

)
max
−
(
dc∗(Dd)

dt

)
max

∣∣∣∣∣∣(dc∗(Dd)
dt

)
max

∣∣∣ , (98)

where
(
dv
dt

)
−20mV

is the upstroke velocity of the AP obtained at v = −20

mV, and
(
dc
dt

)
max

is the maximal upstroke velocity of the Ca2+ transient. We
use the upstroke velocity obtained at v = −20 mV instead of the maximal
upstroke velocity to ensure that the value obtained in the model is not de-
termined by the stimulus current. Note, however, that because of the noise
in the optical measurements of the membrane potential, the Hdvdt-term is
currently only included in the inversions used to determine a mature base
model. In that case, the ”experimental” data used for parameterization are
generated by simulations and therefore dv/dt can accurately be computed.

S3.1.5 Ca2+ transient amplitude

Because the Ca2+ transient amplitude is one of the main characteristics per-
mitting distinction between block of ICaL as opposed to INaL, we also include
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the term

HCaA(λ, ε,Dd) =
|CaA(λ, ε,Dd)− CaA∗(Dd)|

|CaA∗(Dd)|
, (99)

where CaA denotes the Ca2+ transient amplitude (see Figure S2).
Note, however, that the actual values of the Ca2+ transient amplitude are

not known from the optical measurements, and only the relative differences
of the amplitude between the control case and the different drug doses are
known. Therefore, we do not include the HCaA-term for the control case.
For the non-zero drug doses, we define the data values CaA∗(Dd) so that the
relative difference between CaA∗(Dd) and the amplitude in the control model
is the same as the relative difference between the amplitude in the data for
drug dose Dd and the control data. In other words, CaA∗(Dd) is defined as

CaA∗(Dd) =
˜CaA(Dd)
˜CaA(D0)

CaA(λ, ε,D0), (100)

where ˜CaA(Dd) and ˜CaA(D0) are the unitless measured Ca2+ transient am-
plitudes for the drug dose Dd and the control case (D0 = 0), respectively.
Furthermore, CaA(λ, ε,D0) is the amplitude of the Ca2+ transient in the
current control model given by the adjustment parameters λ.

S3.1.6 Maximum and resting values of the membrane potential
and Ca2+ concentration

Where it is desirable to include information about the resting and maximum
values of the membrane potential and/or the cytosolic Ca2+ concentration,
we include terms of the form

Hv,rest(λ) =
|vrest(λ)− v∗rest|

|v∗rest|
, Hc,rest(λ) =

|crest(λ)− c∗rest|
|c∗rest|

, (101)

Hv+(λ) =
|v+(λ)− v∗+|
|v∗+|

, Hc+(λ) =
|c+(λ)− c∗+|
|c∗+|

, (102)

Ht+,v(λ) =
|t+,v(λ)− t∗+,v|

|t∗+,v|
, Ht+,c(λ) =

|t+,c(λ)− t∗+,c|
|t∗+,c|

, (103)

where vrest and crest are the resting membrane potential and Ca2+ concentra-
tion, respectively, defined as the values obtained 10 ms before stimulation in
the applied stimulation protocol. Similarly, v+ and c+ are the maximum val-
ues of the membrane potential and Ca2+ concentration, respectively, and t+,v
and t+,c are the points in time at which these values are reached. Note that
these terms are only included when the base model is fitted to the Grandi et
al. model to define a mature base model.
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S3.1.7 Information about individual currents

When the inversion procedure is used to define a default base model for
mature and immature cells, information about the individual currents and
fluxes is also included. These data are obtained from mathematical models
of adult cardiomyocytes [1] and hiPSC-CMs [3], and are represented by cost
function terms of the form

HIx(λ) =
‖Ix(λ)− I∗x‖2

‖I∗x‖2

, HImax
x

(λ) =
|Imax
x (λ)− I∗,max

x |
|I∗,max
x |

, (104)

for each of the considered currents or fluxes, x. Here, ‖ · ‖2 is the discrete
l2-norm, and Imax

x is defined as Imax
x = max(|Ix|).

S3.1.8 Ca2+ balance

We wish to select values of λ so that the resulting control model does not
exhibit large degrees of drift in the intracellular Ca2+ concentrations. There-
fore, we include a Ca2+ balance term of the form

HCa,b(λ) =
1

b

∣∣∣∣∫ T

0

(JCaL(λ) + Jsle (λ))dt

∣∣∣∣ , (105)

which is zero if the amount of Ca2+ entering the cell equals the amount of
Ca2+ leaving the cell. The main term is here the absolute value of the integral
of the sum of the JCaL and Jsle fluxes of the model over the simulated time
interval, and b is a scaling factor set equal to 0.1 mM in our simulations.

S3.1.9 Regularization of adjustment factors

In cases where several choices of parameters λ and ε fit the data equally well,
we wish to choose values of λ and ε close to zero. We therefore include the
regularization terms

Hε(ε) =
∑
i∈Sε

(εi
ε̄

)2

, Hλ(λ) =
∑
i∈Sλ?

λ2. (106)

Here, ε̄ = 1
D̄

, where D̄ is the median of the non-zero drug doses included
in the data set. Furthermore, Sε is the set of indices for all the individual
ε-factors, and Sλ? is the set of indices for the λ-values we want to remain
as close as feasible to the default base model during the inversion. In the
inversions reported in the paper, this set consists of the indices for λCaL and
λKr, as the size of these currents is based on measurements of hiPSC-CMs
(see Section 3.1.2 of the paper) and because we are especially interested
in obtaining reasonable, physiological values for these currents, as we are
investigating the drug effects on these currents.
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S3.2 Specification of the cost function weights

The choice of terms included in the cost function depends on the specific
application of the inversion procedure. In particular, for inversions of data
from optical measurements (and for inversions of simulated drugs), we include
the terms HAPD30, HAPD50, HAPD80, HCaD20 −HCaD80, Hint30, Hdcdt, HCa, Hε

and Hλ. We only include three APD values, but 13 CaD values as quality of
the Ca2+ data is generally better than that of the membrane potential data.
To make up for the large number of CaD-terms as compared to APD-terms,
the weight of the CaD-terms are set to 0.5, while the APD-terms are given
the weight 1 (the exception being that the weight of the APD80 and CaD80
terms are each set to 5). The upstroke velocity of the AP is not included
because of the high noise level in the membrane potential data.

Furthermore, for the control case, the term HCa,b with weight 1 is in-
cluded, and for the drug doses, HCaA is included with weight 10. The large
weight in this case is due to the fact that this is one of the most impor-
tant characteristics for distinguishing between block of ICaL and INaL. We
also include the regularization terms Hε and Hλ with weights, 0.01 and 10,
respectively. All the ε-parameters are included in the ε-regularization, but
only λCaL and λKr are included in the λ-regularization as explained above.

In addition, the weight of all the cost function terms (except HCa,b) are
for the control case multiplied by the number of non-zero doses included in
the data set. This is done because a good fit for the control model is essential
for being able to use the model to estimate drug effects.

In the inversions aiming to define default values for the adult and hiPSC-
CM base models, additional terms, e.g., terms for the individual currents,
are also included in the cost function. This is specified in more detail in
Sections 3.1.1 and 3.1.2 of the paper.
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S4 Supplementary tables

Parameter Final value Initial value Parameter Final value Initial value

gNa (mS/µF) 12.6 11.0 ĪNaCa (µA/µF) 4.9 4.8

gNaL (mS/µF) 0.025 0.02 ĪpCa (µA/µF ) 0.068 0.07

gto (mS/µF) 0.27 0.12 J̄SERCA (mM/ms) 0.00024 0.00025

gKr (mS/µF) 0.025 0.03 αRyR (ms−1) 0.0075 0.01

gKs (mS/µF) 0.003 0.002 αcd (ms−1) 0.0017 0.0025

gK1 (mS/µF) 0.37 0.43 αcsl (ms−1) 0.15 0.15

gf (mS/µF) 0.0001 0.0001 αsn (ms−1) 0.012 0.01

gbCl (mS/µF ) 0.007 0.008 Bc
tot (mM) 0.07 0.08

ĪNaK (µA/µF) 1.8 1.5 Bd
tot (mM) 1.2 1.3

gCaL (nL/(µF ms)) 0.12 0.1 Bsl
tot (mM) 0.9 1.0

gbCa (mS/µF) 0.00055 0.0005 Bs
tot (mM) 27 29

Table S9: Hand-tuned initial guesses and the values returned by the inversion
procedure defining the adult base model. The cost function includes all the
terms specified in Section S3.1, except for the regularization terms. For the
cost function terms involving information about currents and fluxes, we have
included INa, ICaL, Ito, IKr, IKs, IK1, INaCa, IpCa, and IbCa, as well as the fluxes
JRyR and JSERCA from the Grandi et al. model [1].
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S5 Supplementary figures

Figure S3: Example of how the optimal ε-values gradually move from zero
to the optimal values for the data as θ is increased from zero to one in the
continuation-based inversion procedure.
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Figure S4: Frequency dependence of APD90, CaD90 and peak cytosolic
Ca2+ concentration in the adult and hiPSC-CM versions of the base model,
as well as in the Grandi [1] and O’Hara [2] models for adult cardiomyocytes
and the Paci [3] and Kernik [33] models for hiPSC-CMs. For definitions of
APD90 and CaD90, see Section S3.1.1. For all the models, the simulations
are run for 200 AP cycles before recording the AP and Ca2+ transients whose
properties are displayed in the plots. Note that because APD90 ≈ 500 ms
for the default hiPSC-CM base model, pacing frequencies above 2 Hz (cor-
responding to cycle lengths below 500 ms) imply stimulation before the final
repolarization of the action potential. Therefore, we do not include data for
pacing frequencies above 2 Hz for the default hiPSC-CM base model.
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Severi. Computational models of ventricular-and atrial-like human in-
duced pluripotent stem cell derived cardiomyocytes. Annals of Biomed-
ical Engineering, 41(11):2334–2348, 2013.

[4] Thomas R Shannon, Fei Wang, José Puglisi, Christopher Weber, and
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[6] Geneviève Dupont, Martin Falcke, Vivien Kirk, and James Sneyd. Mod-
els of calcium signalling, volume 43. Springer, 2016.
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