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Healthy T2DM only CHD only T2DM and

volunteers (n =51) (n=46) (n=25) CHD (n =27)
Female (%) 65 30 16 19
Age (years) 40 (12) 59 (8.4) 67 (9.7) 67 (5.7)
BMI (kg/m?) 24 (5.1) 31(5.7) 26 (4.2) 31 (4.1)
Waist circumference (cm) 87 (14) 110 (15) 100 (10) 110 (8.3)
Smoker (%) 9.8 20 20 15
Daily alcohol consumption (%) 7.8 13 20 15
Hypertension (%) 2 67 80 85
BP diastolic (mmHg) 80 (11) 87 (11) 76 (6.2) 82 (11)
BP systolic (mmHg) 120 (15) 130 (20) 120 (11) 130 (20)
Heart rate (bpm) 68 (11) 77 (9.3) 73 (12) 75 (11)
Hb (g/L) 140 (11) 150 (13) 140 (14) 140 (18)
HK (L/L) 0.42 (0.028) 0.44 (0.032) 0.42(0.039) 0.42(0.052)
Erythrocytes (T/I) 4.7 (0.43) 4.9 (0.46) 4.8 (0.59) 4.6 (0.49)
Leukocytes (G/1) 5.7 (1.8) 7.6 (2) 8.5(1.8) 8.4 (2.8)
Thrombocytes (G/L) 250 (51) 240 (76) 230 (85) 230 (43)
CRP (mg/L) 1.2 (1.8) 2.4 (2) 5.2 (1) 5.8 (8.9)
ALT (U/L) 23 (13) 37 (30) 30 (20) 23 (8.5)
AST (U/L) 23 (6.7) 28 (14) 36 (22) 26 (8.6)
GGT (U/L) 19 (13) 51 (50) 39 (24) 41 (31
eGFR (ml/min) 98 (14) 85 (18) 82 (27) 67 (22)
Glucose (mmol/L) 4.8 (0.5) 8.4 2.7 6.7 (2.5) 9.3 (3.9
HbAlc IFCC (nmol/mol) 35 (3.6) 54 (11) 37 4.7) 59 (13)
Cholesterol (mmol/L) 4.9 (1) 4.2 (1.1) 42 (1) 3.8 (0.97)
Triglycerides (mmol/L) 0.96 (0.64) 2(1.5) 1.6 (0.68) 2.3(2.2)
HDL-C (mmol/L) 1.8 (0.5) 1.2 (0.3) 1.2 (0.21) 1.2 (0.35)
LDL-C (mmol/L) 2.7 (0.95) 2 (0.73) 2.4 (0.89) 1.6 (0.6)
non-HDL-C (mmol/L) 3.1(1.1) 3(1.1) 3(0.9) 2.6 (0.94)
ApoA-I (g/L) 1.6 (0.26) 1.4 (0.21) 1.3 (0.24) 1.4 (0.3)
ApoB (g/L) 0.83 (0.25) 0.82(0.23) 0.85(0.28)  0.78 (0.23)
Statins (%) 0 60.9 92 92.6
Insulin (%) 0 56.5 0 55.6
GLP1-related drugs (%) 0 56.5 0 25.9
Metformin (%) 0 76.1 0 66.7
Sulfonylureas (%) 0 8.7 0 18.5
Beta blockers (%) 0 17.4 84 70.4
Diuretics (%) 0 28.3 48 63
RAAS inhibitors (%) 1.96 63 76 88.9

Supplementary Table S1: Summary of clinical data for patients and healthy volunteers. Average
measurements are shown, with standard deviations in parenthesis. For dichotomous features, preval-
ences are shown as percentages. The bottom part of the table shows prevalence of drug use among

study subjects.



. . Calibrator/ Inter-assay

HDL function Assay principle Cells used reference CV (%)
Inhibition of ELISA of Human aortic rHDL 14.8
endothelial cell nucleosomes endothelial cells
apoptosis
Cholesterol efflux Fractional efflux of | J774 macro-phages | reference plasma | 9.7
by HDL radiolabeled

cholesterol
Cholesterol efflux 15.1
by apoB-free
plasma
Inhibition of beta ELISA of Insle cells rHDL 14.3
cell apoptosis nucleosomes
Rescue of JC-1 fluorescence C2C12 myotubes rHDL Max. 27.5
mitochondrial
membrane potential
Mitochondrial Seahorse, Brown adipocytes PBS, rHDL Max. 15.0
respiration Extracellular Flux differentiated from

Analyzer XFe96 human multipotent

adipose-derived
stem cells

Supplementary Table S2: Characteristics of the bioassays for the recording of HDL functionality.
Inter-assay CV’s were calculated from the data obtained from HDL isolated from pool plasma in eight

series.



rHDL components | low | medium | high
rHDL + SM 42:2 or tHDL + SM 42:3:

1:96.6:3.33 1:90:10 1:96.6:33.3
ApoA-I: DOPC : SM42:2 or SM42:3
rHDL + GPLD1:

1:100: 1073 1:100:3x107* | 1:100: 1074
ApoA-I: DOPC : GPLDI1
rHDL + apoF:

1:100:2%x 107 | 1:100:2x107* | 1:100:2x 1073
ApoA-I: DOPC : apoF

Supplementary Table S3: Relative molar composition of reconstituted HDL tested in the veri-
fication experiments. “low”, “medium”, and “high” refer to the lowest, mean and highest concen-
trations of SM42:3, GPLD1, and apoF, respectively, measured in the native HDL samples. apoA-I
and apoF = apolipoprotein A-l and F, respectively; DOPC = dioleyl phosphatidylcholine; GPLD1 =
glycosylphosphatidylinositol-phospholipase D1; SM42:2 and SM42:3 = sphingomyelin d18:1/24:1 and
sphingomyelin SM d18:2/24:1, respectively.
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Supplementary Figure S1: Volcano plot of associations between disease status and HDL features
analysed by NMR spectroscopy of plasma. Statistics based on linear regression models (n = 149)
adjusting for hospital and gender (see §S4.1.2); t-tests of disease effects (contrasted with healthy volun-
teers) yielded p-values which were adjusted by the Benjamini-Hochberg procedure for controlling the
false discovery rate. Only features with adjusted p-values smaller than 5% are labelled. Abbreviations
of letters before “HDL”: XL = very large, L = large, M = medium size, S = small. Abbreviations of letters
after “HDL": C = cholesterol, CE = cholesterylesters, D = diameter, FC = free cholesterol, L = lipid, P =
particle number, PL = phospholipids, TG = triglycerides.



The following lipoprotein particle features have FDR-adjusted p-values smaller than 5%, and are listed by increasing
log, fold change in parenthesis.

CHD

Negative log, fold change (0 features)

Positive log, fold change (0 features)

Diabetes

Negative log, fold change (19 features): L-HDL-TG (—1.7), XL-HDL-PL (—1.5), L-HDL-FC (—1.4), XL-HDL-FC
(—1.3), XL-HDL-TG (—1.2), XL-HDL-L (—1), XL-HDL-P (1), L-HDL-C (—0.98), XL-HDL-C (—0.96), L-HDL-
CE (—0.91), XL-HDL-CE (—0.87), L-HDL-L (—0.77), L-HDL-P (—0.75), L-HDL-PL (—0.69), HDL2-C (—0.41),
HDL-C (—0.33), M-HDL-FC (—0.19), ApoAl (—0.14), HDL-D (—0.046).

Positive log, fold change (2 features): S-HDL-FC (0.078), S-HDL-TG (0.24).
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Supplementary Figure S2: Volcano plot of associations between disease status and lipids of HDL.
Statistics based on linear regression models (n = 149) adjusting for hospital, gender, HDL isolation
date and rotor (see §S4.1.2); t-tests of disease effects (contrasted with healthy volunteers) yielded p-
values which were adjusted by the Benjamini—Hochberg procedure for controlling the false discovery
rate. Only lipid species with adjusted p-values smaller than 5% are labelled. For abbreviations see
https://www.lipidmaps.org/



The following lipids have FDR-adjusted p-values smaller than 5%, and are listed by increasing log, fold change in
parenthesis.

CHD

Negative log, fold change (5 features): PI 36:2 (—0.36), PI 34:2 (—0.3), PC 36:2 (—0.21), PC 34:2 (—0.19), CE
18:2 (—0.17).

Positive log, fold change (4 features): PC 36:0 (0.28), PE 40:7 (0.3), PE 38:6 (0.43), PE 38:5 (0.45).

Diabetes

Negative log, fold change (71 features): PC 0-44:4 (—0.68), PC 0-34:3 (—0.64), PC 40:1 (-0.57), PC O-38:1
(—0.53), LPC 18:2 (—0.48), PC 0-34:2 (—0.48), PC 0-32:2 (—0.48), PI 36:3 (—0.45), PI 36:1 (—0.45), PC O-32:1
(—0.45), PI 38:2 (—0.43), PC 42:0 (—0.42), PC 40:0 (—0.39), PI 36:2 (—0.39), PC 0-36:3 (—0.38), PC 0-42:4
(—0.37), PC 38:0 (—0.37), PC 0-44:5 (—0.36), SM 36:3 (—0.36), PC 0-42:6 (—0.35), HexCer d18:1/24:1 (—0.35),
PC 38:2 (—0.35), SM 42:3 (—0.35), LPC 18:1 (—0.34), PC 0-42:5 (—0.34), LPC 18:0 (—0.34), PI 38:6 (—0.33), PC
0-32:0 (—0.33), PE 34:0 (—0.32), PC 0-38:2 (—0.27), PC 0-44:6 (—0.27), PC 0-36:2 (—0.27), PC 40:7 (—0.26),
PI 40:6 (—0.26), PC 36:2 (—0.25), LPC 22:5 (—0.25), PI 34:1 (—0.25), LPC 20:3 (—0.24), CE 18:2 (—0.24), LPC
16:0 (—0.23), FC (—0.23), PI 38:5 (—0.23), PC 30:0 (—0.23), LPC 22:6 (—0.23), SM 41:2 (—0.22), PE P-18:1/18:0
(—0.22), PC 36:0 (—0.22), CE 20:1 (—0.22), PC 32:0 (—0.22), P1 34:2 (—0.22), PC 0-40:6 (—0.21), Cer d18:1/16:0
(—=0.21), PC 0-34:1 (—0.21), SM 34:1 (—0.21), CE 14:0 (—0.2), LPC 15:0 (—0.2), PC 34:2 (—0.2), LPC 18:3
(=0.19), PC 0-40:4 (—0.19), SM 34:0 (—0.18), SM 42:2 (—0.18), LPC 20:0 (—0.18), PC 0-36:4 (—0.18), HexCer
d18:1/16:0 (—0.18), PC 0O-38:5 (—0.17), PC 34:3 (—0.16), PC 0-36:5 (—0.15), PC 36:3 (—0.13), PE P-16:0/16:0
(—0.12), PE 42:7 (—0.1), CE 20:0 (—0.081).

Positive log, fold change (14 features): PE 40:7 (0.15), PC 38:4 (0.16), PC 36:4 (0.18), CE 20:4 (0.2), PE 40:4
(0.27), PE 36:1 (0.27), PE 38:6 (0.31), PE 36:4 (0.31), PE 38:5 (0.32), PE 34:1 (0.34), PE 40:5 (0.36), PE 38:4 (0.39),
SM 40:3 (0.43), PE 40:6 (0.44).
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Supplementary Figure S3: Volcano plot of associations between disease status and proteins of
HDL. Statistics based on linear regression models (n = 149) adjusting for hospital, gender, HDL isolation
date and rotor (see §S4.1.2); t-tests of disease effects (contrasted with healthy volunteers) yielded p-
values which were adjusted by the Benjamini—Hochberg procedure for controlling the false discovery
rate. Only proteins with adjusted p-values smaller than 5% are labelled. For protein abbreviations see
https://www.uniprot.org
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The following proteins have FDR-adjusted p-values smaller than 5%, and are listed by increasing log, fold change
in parenthesis.

CHD

Negative log, fold change (4 features): LDHA;LDHB;LDHC;LDH6A (—1), PLIN1 (—0.57), APOA4 (—0.44),
IMPA3 (—0.35).

Positive log, fold change (6 features): IL1AP (0.42), KNG1 (0.64), CATD (0.67), PSPB (1), SAA1 (1.1), SAA2
(1.1).

Diabetes

Negative log, fold change (44 features): FCGBP (—2), PODXL (—0.97), RUN3A (—0.87), PON3 (—0.8), AIAGI
(—=0.77), ITA2 (—0.76), PLTP (—0.75), PON1 (—0.74), CAH6 (—0.74), APOE (—0.71), HPTR (—0.7), PCYOX
(=0.7), B2MG (—0.63), GALA (—0.62), ITB1 (—0.61), EPCR (—0.6), AMPN (—0.6), ANTRI (—0.56), CBG
(—0.56), IGHM (—0.54), F177A (—0.53), PLDX1 (—0.52), CATD (—0.5), BPIB1 (—0.5), GPLD1 (—0.48), MADCA
(—0.47), CO3 (—0.46), APOD (—0.45), MENT (—0.45), CD248 (—0.44), MMRN?2 (—0.42), APOF (—0.42), FGFP2
(—0.42), ANTR2 (—0.41), CLUS (—0.41), APOM (—0.4), GP126 (—0.4), CD44 (—0.34), CAMP (—0.33), SEPP1
(—0.3), APOA4 (—0.27), ILIAP (—0.26), IMPA3 (—0.21), APOC1 (—0.2).

Positive log, fold change (17 features): SAA4 (0.26), APOC2 (0.35), FIBG (0.47), HEMO (0.5), FIBB (0.5),
ITA2B (0.52), TRFE (0.52), FIBA (0.54), PLIN1 (0.56), PSPB (0.6), SAA1 (0.61), STOM (0.63), LDHA/B/C/6A
(0.77), URP2 (0.81), SAA2 (0.87), APOC3 (0.92), 1433Z (1.3).
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Significant at 5% (not adjusted for multiple testing) FALSE —— TRUE
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Supplementary Figure S4: Standardised effect sizes of disease associations with HDL functions,
estimated using mixed-effects models (n = 149). The figure shows 95% bootstrap confidence
intervals for the standardised effects sizes of diseased HDL on the assayed cellular functions.
Numerical values are shown in Supplementary Table S4. If a confidence interval does not contain zero,
the effect is significant at the 5% level, not adjusted for multiple comparisons. The analysis is adjusted
for batch effects due to plate, HDL isolation date and centrifuge, as well as subject sex and sampling
site. Abbreviations: CHD = coronary heart disease; HAEC = human aortic endothelial cells; INS1e = rat
insulinoma cells; CEC apoB-free plasma = cholesterol efflux capacity of apoB-free plasma; CEC HDL
= cholesterol efflux capacity of apoB-free plasma; 10 min-, thr-, 2hr-, 10 min CCCP-MMP C2C12 =
mitochondrial membrane potential in C2C12 myotubes after 10 minutes, 1 hour, or 2 hours incubation
with HDL or 10 minutes of incubation with the uncoupler Carbonyl cyanide m-chlorophenyl hydrazine.
Basal, uncoupled, cAMP-stimulated and maximal mitochondrial respiration were recorded in human
adipose-derived stem cells differentiated into brown adipocytes.
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Supplementary Figure S5: Pairwise correlations (n = 149) between HDL functions. Printed above
the diagonal are coefficients of Spearman correlation and asterisks for the level of statistical significance:
*: P <0.05;**: P<0.01; **: P<0.001.
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Supplementary Figure S6: Gaussian graphical model estimating conditional dependencies
between HDL function, structure, and subclasses, adjusted for clinical covariates. For legibility,
we show only the bipartite subgraph connecting HDL functions to other features. This is an alternative
representation of the graph in Figure 4. The colour gradient indicates the sign and magnitude of the
printed partial correlation, shrunken by the graphical lasso.
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Supplementary Figure S7: Schemata summarising the synthesis of sphingomyelin SM42:3 and SM
42:2. For details and description of the molecules mentioned by numbers, see text in methods section.
Part A shows the main steps of the synthesis. Part B shows the preparation of the alkyne 2b depicted
in the upper line of figure A.



A) SM42:3 in HDL 184.07283 ‘
22066 Sphingoid base d18:2 (-2H,0,) fragment

200e6

18066 262.25302

150e3
100e3

B e
N B o
© S o
o D D
o o o

50e3

0

=
1S)
=]
@

o

260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450
m/z

Intensiy (arb units

86.09687
20e6 262.25302

T T T
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
m/z

B) SM42:3 (SM 18:2/24:1) synthesized standard

] 184.07413 ___— Sphingoid base d18:2 (-2H,0,) fragment
160e7 ] 262.25449

140e7 00

200e4
1 Tooea 338.84598 41451308
|

i

)

=3

@

~
h

100e7
80e7
60e7
40e7
20e7

260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450
m/z

Intensiy (arb units)

86,09749 262.25449

-t "
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
m/z

C) SM42:2 in HDL

90e6 184.07286 Sphingoid base d18:1 (-2H202) fragment

80e6 264.26794
70e6 15e4.
60e6 10e4
Sed 324.33063
50e6
40e6
30e6
20e6
10e67 86.09689
\ 264.26794

o Y—"—r———— R L A

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

T T T T T T T T T T T T T T T T T T T T
260 270 280 290 300 310 320 330 340 350 ; 360 370 380 390 400 410 420 430 440 450
miz

Intensiy (arb units)

D) SM42:2 (SM 18:1/24:1) synthesized standard
| 184.07414
140671 - Sphingoid base d18:1 (-2H202) fragment
] 264.26993
w 120e7z 4000000
g 1007 2000000 386.10831
] I
g 80e7 ZéO 2%0 ZéO ZéO 360 31‘0 32‘0 32‘10 350 35‘)0le 3é0 3%0 3é0 3§0 460 41‘0 AéO 41"}0 430 45‘0
2 60e7]
e ]
£ 40e7
20677 86.09748
or—A—r—»_2642%0
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850
m/z

15

Supplementary Figure S8: Comparison of LC-MS/MS spectra of SM42:3 (A) and SM42:2 (C) in HDL

with synthetic sphingomyelins SM d18:2/24:1 (B) and SM d18:1/24:1 (D).



16

% 2 : M A <
N xe@ xg@ x6®b9\:x6® X%V\b‘q,V%@ \/OQ\/ XOQ\’O XQQ\’O\’ QO\, QO
N2 M N N2
8\0 8\0 8\0 8‘0\/ \‘3‘0 8\0\« 8\0 ‘\>\0 {?‘0\’ \\?\0 &\0 ‘\(\0 8\0
1048kDa— 5+

720kDa | e

480kDa____,

246 kDa >

146kDa

-~
LTI TTTTT T b

66kDa ‘

Supplementary Figure S9: Polyacrylamide gradient gel electrophoresis of rHDL. 1 pug of rHDL
samples and native HDL were separated in 10% polyacrylamide gel in native conditions and stained
with Coomassie brilliant blue.



17

>
[vs]
@]

150 ,+| 150 200
IS e 1 7
g2 sk g2
53 L—y 53 g 150 °
23 100 (] 23 100 % %
ES ° ES El ] .
52 §s £
i ) g 22 £ 100 é
R R kS
5z %0 %%QQ%Q% gz >0 2.% % 2 5% ® & ‘%
HENE: ° % *L™
2 < oS
O r—T—T T T T T T T T O r——T—T T T T T T T T 0 T T T T T T T
S eSS S S N N S N Y S & & & & & o
A 5o oS 8 T S T T S o 8 8
& 8 WS P e & WS P e LA R R &
e PR ® R IR N
b S N & SN S
P EEEE &P & &P T
& & & S
D E
2.0 1.5

o
o

AU (Normalized to rHDL)
o
5
&8
]
Basal respiration
(Normalized to rHDL)
g
o
[e] t%‘bo
o%
090

0.0——F T T T T T T
S & &S & o
S 0 F e
L U AR ‘}&‘/
s RN o AR
& L& e L
& o &

2.0 209 e

Se o §§15 °

£z % 0 £

5% £% ®

Etio % i310 . 3
EHS ? ° Q 35

ES ° EE o o o
<o

°g

=
o

0.5 0.5
0.0 T T T T T T T 0.0 T T T T T T T 0.0 T T T T T T T
N & & N & v R Q& & S & & > R & & 8 & & v
S &\g 2 %\\& N 5 &0 & ebg 2 o eb\\' »° &0 w\\m e“\‘ 2 %\\Q zt’\\' »° &0
W < ‘}&L W N Qﬂ W < ‘}u"/ W & Qw LA Qﬂ & W
A A I N
8 P N 8 & o 8 N S & o &
& &S0 RSP & FE
& & & & & &

Supplementary Figure S10: Validation of SM 42:2 and SM 42:3 in the bioassays by the use of
reconstitution of rHDL plus/minus SM 42:2 and SM 42:3. SM 42:2 and SM 42:3 were reconstituted
into rHDL with three different concentrations and tested in the bioassays. (A) Apoptosis in HAECs.
(B) Apoptosis in INS1E cells. (C) Cholesterol efflux. (D) Mitochondrial potential of C2C12 myocytes.
(E) Basal, (F) uncoupled, (G) coupled, (H) cAMP stimulated uncoupled and (I) maximal mitochondrial
respiration in human brown hMADS cells. Data are represented as meantSD at three dose levels, which
were analyzed by one-way ANOVA coupled with Dunnett’s test for multiple comparisons against rHDL.
xx% 1 P <0.001, xx: P <0.01, = : P <0.05.
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Supplementary Figure S11: Validation of GPLD1 in the bioassays by the use of reconstitution
of rHDL plus/minus GPLD1. GPLD1 was reconstituted into rHDL with three different concentrations
and tested in the bioassays. (A) Apoptosis in HAECs. (B) Apoptosis in INS1E cells. (C) Cholesterol
efflux. (D) Mitochondrial potential of C2C12 myocytes. (E) Basal, (F) uncoupled, (G) coupled, (H) cAMP
stimulated uncoupled and (I) maximal mitochondrial respiration in human brown hMADS cells. Data are
represented as mean+SD at three dose levels, which were analyzed by one-way ANOVA coupled with
Dunnett’s test for multiple comparisons against rHDL. xx % : P < 0.001, *x : P < 0.01, * : P < 0.05.
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Supplementary Figure S12: Validation of APOF in the bioassays by the use of reconstitution of
rHDL plus/minus APOF. APOF was reconstituted into rHDL with three different concentrations and
tested in the bioassays. (A) Apoptosis in HAECs. (B) Apoptosis in INS1E cells. (C) Cholesterol ef-
flux. (D) Mitochondrial potential of C2C12 myocytes. (E) Basal, (F) uncoupled, (G) coupled, (H) cAMP
stimulated uncoupled and (I) maximal mitochondrial respiration in human brown hMADS cells. Data are
represented as meanxSD at three dose levels which were analyzed by one-way ANOVA coupled with
Dunnett’s test for multiple comparisons against rHDL. xx % : P < 0.001, *x : P < 0.01, * : P <0.05.
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S1 Synthesis of sphingomyelins SM42:3 and SM42:2

As shown in Supplementary Figure S7A, the synthesis of SM42:2 (SM d18:1/24:1) and SM42:3 (SM d18:2/24:1)
began with the diastereoselective addition of lithiated alkyne 2a/2b to (S)-Garner’s aldehyde (1) [1] to provide erythro
alcohol 3a/3b in high yields [2]. Reduction of the propargylic alcohol 3a/3b with Red-Al and protection of the hy-
droxy group as MOM ether afforded 5a/5b. 3-MOM ether of (25,3R)-N-Boc-sphingosine 6a and its unsaturated
derivative 6b were obtained by selective cleavage of the acetal with acetic acid in water at 80 °C. Next, phosphoryla-
tion was accomplished by addition of a solution of 6a/6b in dry CH,Cl; to a solution of 2-azidoethyl phosphorodi-
chloridate [3] in the presence of pyridine, affording the phosphate ester 8a/8b in good yield. Reduction of the azido
group with 1,3-propanedithiol in the presence of dry triethylamine provided amine 9a/9b in 95% and 81% yield, re-
spectively [4]. Treatment with a large excess of Mel (28 equiv) in the presence of NaHCOj yielded phosphocholine
10a/10b. Simultaneous deprotection of the N-Boc and O-MOM groups with 3.0 M aq. HCI followed by coupling
with nervonic acid produced the final products, SM42:2 (12a) and SM42:3 (12b), in high overall yields.

Although alkyne 2a is commercially available, the alkyne 2b was prepared as shown in Supplementary Figure S7B.
Accordingly, tetrahydropyranyl (THP) ether 14 of commercially available alcohol 13 was alkylated with propyl
bromide to give alcohol 15 after THP removal [5]. Partial reduction over Lindlar’s catalyst provided alkene 16, and
PCC oxidation of 16 led to aldehyde 17, which was transformed into the desired alkyne 2b using the Corey—Fuchs
procedure.
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S2 Proteomics

Peptides were separated by reversed-phase chromatography on a high-pressure liquid chromatography (HPLC) sys-
tem equipped with an EASY-Spray column (RSLC C18, 2 um, 50 cm x 75 pm) (Thermo Fisher Scientific), which
was connected to a nano-flow HPLC combined with an autosampler (EASY-nLC 1200, Thermo Fisher Scientific).
Peptides were eluted at 50 °C with a constant flow rate of 200 nl/min in a 30-min linear gradient from 5-32% bufter B
(80% ACN, 0.1% FA) and 5 min 32-56%B. For data-dependent acquisition (DDA), MS1 mass spectra were acquired
at 60,000 resolution (automatic gain control target value 3e6). Peptide ions in the mass range of 375-1,500 m/z
were monitored. HCD MS/MS scans were performed at 15,000 resolution (automatic gain control target value 1e5).
Normalized collision energy was set to 28%, dynamic exclusion was 15 s. For data-independent acquisition (DIA)
[6], one MS1 scan (400 to 1210 m/z) was recorded, followed by 19 consecutive DIA segments acquired at 30,000
resolution (AGC target 1e6 and auto for injection time) with variable scan windows. Normalized collision energy
was set to 28%. The spectra were recorded in profile mode.

DDA sample runs were used to generate a comprehensive spectral library of HDL particles from 72 pooled patient
samples. DDA spectra were analyzed using ProteomeDiscoverer Version 2.1 (Thermo Fisher Scientific) with Sequest
HT [7] and MS Amanda [8] as search engines. The identifications were filtered for 5% FDR on peptide and 1%
FDR on protein level. Data files were searched against the human UniProt fasta database (state 19.06.2014). The
spectral library was assembled in Spectronaut version 11 (Biognosys) [9] and contains 347 proteins groups and 3288
proteotypic peptides. DIA Data were analyzed using Spectronaut in default mode. For retention time calibration iRTs
(Biognosys) were added to each sample. For quantitation, standard settings were employed, which included dynamic
peak detection, automatic precision nonlinear iRT calibration, interference correction, local cross run normalization
and MS2 Top 3 summed peptide quantitation. All results were filtered with a g-value of 0.01 (equal to an FDR of
1%) on the peptide level. The data matrix was filtered with a g-value percentile of 0.2 (all observations that pass
g-value threshold of 0.01 in 20% of the cases were considered).
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S3 Lipidomics

A fragment ion of m/z 184 was used for phosphatidylcholine (PC), sphingomyelin (SM) [10] and lysophosphatidyl-
choline (LPC) [11] Neutral loss fragments were used for the following lipid classes: Phosphatidylethanolamine
(PE) and phosphatidylinositol (PI) with a loss of 141 and 277, respectively [12, 13]. PE-based plasmalogens (PE
P) were analyzed according to the principles described by Zemski-Berry [14]. Sphingosine based ceramides (Cer)
and hexosylceramides (HexCer) were analyzed using a fragment ion of m/z 264 [15]. Free cholesterol (FC) and
cholesteryl ester (CE) were quantified using a fragment ion of m/z 369 after selective derivatization of FC [16].
Quantification was achieved using two non-naturally occurring internal standards (IS) for each lipid class (except
for PI, SM was calculated using PC IS and PE-based plasmalogens were calculated using PE IS) and calibration
lines generated by standard addition of a number of naturally occurring species to plasma. Deisotoping and data
analysis for all lipid classes was performed by self programmed Excel Macros as described previously [10, 17].
Lipid species were annotated according to the recently published proposal for shorthand notation of lipid structures
that are derived from mass spectrometry [18]. Glycerophospholipid species annotation was based on the assumption
of even numbered carbon chains only. SM species annotation is based on the assumption that a sphingoid base with
two hydroxyl groups is present.
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S4 Statistical methods

S4.1 Data preprocessing

For clinical variables, when a measurement was below the lower limit of quantification (LLOQ), we set them to
LLOQ//2; see [19].

S4.1.1 Imputation of clinical covariates

In the clinical data set, approximately 1% of values are missing at random (to the best of our knowledge), and we
impute them using the R [20] package mice [21]. Supplementary Figure S13 summarises the missing data, where
the top row corresponds to a fully observed profile, meaning that 134 patients have no missing data.

Z N $
) 20 T S0 e N
& I % &% S OEE £86N NS (E O >
X A )
IO A IO SR NN,

)
2

SRR ISR

134

PRNWAO
RPWRERPOR RO
o

00000000000000000000O00O00O00O000111155555555566

Supplementary Figure S13: Patterns of missing data, indicated by the burgundy red colour. Each row
corresponds to a pattern of missing data (in terms of features), and the number of observations with
the given pattern is displayed on the left. The number of patients with a given missingness pattern are
displayed on the right. Below each column is the total number of patients with a missing value for the
given feature. In the bottom right corner, the total number of missing data points (61) is displayed.

Using mice, we replace continuous missing data by their predicted values when linearly regressing the feature of
interest on all other clinical covariates. Logistic regression is similarly used for binary variables. Ideally, we would
run the imputation in many iterations adding noise, and evaluate how the downstream model fit varies. However, since
our downstream analysis (see below) involves subsampling and cross-validation — making it non-deterministic and
computationally intensive — we use the fitted values from single imputations.

S4.1.2 Normalisation of mass spectrometry and NMR spectroscopy data

Using mass spectrometry, 182 proteins and 227 lipid species were consistently quantified across the HDL samples in
both isolation rounds. From plasma, abundances of HDL subclasses were measured using nuclear magnetic resonance
(NMR) spectroscopy. For both technical and statistical reasons, it is advisable to logarithmically transform mass
spectrometry data [22]. Indeed, in our datasets, log transforming and standardising yields bell-shaped distributions
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(Supplementary Figure S14). However, some measurements are zero, which is problematic since log(0) = —eoo (in the
lipidomics NMR spectroscopy proteomics
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Supplementary Figure S14: Histograms of log, transformed omics and NMR spectroscopy data, stand-
ardised per features to have sample mean 0 and variance 1. Original values of zero have been omitted.

limit). This is commonly addressed by adding an appropriate constant (pseudo-count) to all measurements before log
transforming. For all features (proteins, lipid species, and HDL subclasses) separately, we estimate the lower limit of
quantification (LLOQ) by the smallest non-zero measurement observed in the samples (provided that there exists a
zero-valued measure of the given feature). When then add the estimated LLOQ to all measurements before applying
the log transform. The magnitude of the pseudo-count affects the mean—variance relationship (scedasticity) of the
log transformed omics variables; particularly for variables with a small mean. By assessing a wide and dense range
of pseudo-counts, we found that adding an estimate of the LLOQ does not greatly compromise scedasticity.

Patients recruited and sampled at two different hospitals had their HDL isolated in two different rounds, on seven dif-
ferent dates, using two different centrifuge rotors. Principal component analyses (Supplementary Figure S15) clearly
show an effect of the isolation round on both lipidomics and proteomics. However, they give no clear indication of
effects from the specific isolation date, rotor or hospital. The NMR spectroscopy was performed on plasma, and is
therefore not affected by HDL isolation procedures.

We use linear regression models to adjust the data for effects of hospital, gender, as well as HDL isolation date and
rotor. (The isolation dates alias the rounds, so we need not adjust for the latter.) Naturally, we want to remove
the effects of nuisance variables, but not the effects of disease conditions. The hospital effect is to a large extent
confounded with the CHD signal, as most CHD patients were sampled in Berlin. Thus we include the disease
effects in the model, to allow for patients with both diseases to help disentangle the hospital and CHD effects. Since
the nuisance variables may influence each feature in a unique way, we fit separate linear models to all variables
individually. Let Y;; denote the log,-transformed value (after adding the estimated LLOQ) of the ith observation of
the jth variable. Using indicator variables 1[-], we fit the linear model

Y;; = Poj + Bij1[diabetes; = TRUE] + f3,;1[CHD; = TRUE]+ 1
+ B3 1 [rotor; = 2] + f4;1 [hospital; = Zurich]+ 2)
+ Bs1[gender; = female] + ngf)(i) +&; 3)

where €;; are independent and identically distributed, and 5(1) is a binary vector with a 1 corresponding to the HDL
isolation date of sample i. The first level of each indicator variable has been absorbed into the intercept By;. We
use

Boj + B1 /1 [diabetes; = TRUE] + B ;1[CHD; = TRUE] + &; )

as a normalised value of ¥;; since the residual &; contains all information from ¥;; after linearly regressing out disease
and nuisance variables [23]. We retain the disease effects for downstream analysis. After normalisation, the standard-
ised distributions have heavier tails (larger kurtosis) than a normal distribution (Supplementary Figure S16).
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Supplementary Figure S16: Normal Q-Q plots of the data adjusted for hospital, gender, and, when
applicable, HDL isolation date and rotor.

S4.1.3 Normalisation of functional bioassays

Bioassays were used to measure functional properties of HDL isolated from samples of patients and health volunteers.
Generally, samples were assayed using 96-well plates, in 2-5 technical replicates (different wells) per HDL sample.
However, the experimental designs varied between bioassays. In some, all technical replicates were put on the same
plate, whereas in others, replicates were distributed across plates.

We used the R package 1me4 [24] to fit mixed-effects models accounting for variation between plates, whilst utilising
all technical replicates for estimation. In addition to the fixed effects in Equations (1)—(3), we fitted fixed effects for
the plates, and a random effect o;; for sample i in bioassay j. In some cases the HDL isolation dates or rotor
aliased plates, and redundant levels were dropped. The normalised measurement of sample i in bioassay j was
computed as in Equation (4), though with &;; in lieu of &;, since the latter, in the mixed-effects models, captures
technical rather than biological variation. The normalised data is approximately normally distributed (Supplementary
Figure S16).

S4.2 Logistic regression of disease status

For a given disease status (diabetes, CHD, or both), we perform linear logistic regression of disease versus healthy,
with all features (clinical, structural, and functional) as explanatory variables. We do this for each disease status
separately, for the following reasons. The multivariate regression problem has the same least squares solution as the
solutions to separate regressions, even if the response variables are correlated [25] (section 3.2.4). One way to bridge
the two regressions is to regularise them jointly, using the group lasso on each covariate across response variables
[26] (section 4.3). The same approach is taken by other methods of multitask learning [27]. However, we expect
that diabetes and CHD may have different predictors, in which case it would be more appropriate to regularise them
separately.

Let Y be a binary random variable indicating disease. We use the logit link to model

P(Y=1|X=x)

PT=0[x=y ~ PP

g(x) = log

where X is a random vector of p features. Since in our case p > n, regularisation is required to make the model
identifiable. Given n observations (yi,x(’) )7, the negative log likelihood with elastic net regularisation is

1 & ; Tl 1
— Y [vilBo+BTx)) —log(1+ PP | 12 {5(1 —a)[|BI3 + B ®)
i=1

which we aim to minimise with respect to (B, 8) € RPT!. We use the elastic net rather than the lasso [28], because
when a group of variables are correlated, the lasso tends to randomly select one predictor from the group, whereas the
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elastic net shrinks correlated variables together and selects the entire group [29]. However, we use cross-validation
to tune the elastic net mixing parameter o in formula (5), which would yield the lasso if @ = 1.

We use glmnet [30] to perform elastic net regression, and glmnetUtils [31] to run cross-validation of both
parameters @ and A simultaneously. The values of the parameter & range from O to 1, in increments of 0.01. For
a given value of ¢, following the default settings of glmnet, the range of A4 is chosen by setting the lower bound
to Aupper - 1072, where the upper bound Aupper is determined (from the data) as the smallest value for which all
regression coefficients are zero. Then 100 parameter values of A are spaced evenly on a logarithmic scale between
the lower and upper bound of lambda. For each point, the mean cross-validation (CV) error (binomial deviance)
along with its standard error is computed. For a given ¢, let Ay, denote the largest value of A which attains the
minimal mean CV error cvm,;, with standard error sey,. Let Ajs denote the largest A whose mean CV error is
smaller than cvmy;, + Semin. The mean CV error at A is denoted cvmyge, and to emphasise that these quantities
depend on o, we write Aj4 () and cvmjg (). The optimal ¢ is acy := argmin, {cvmjg (o) }. The optimal elastic
net parameter pair (o, A)cy for formula (5) is therefore (acv,/llse(acv)). Supplementary Figure S17 shows the
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Supplementary Figure S17: Simultaneous cross-validation of the elastic net parameters o and A in the
logistic regression of diabetes and CHD status. Left: mean CV error curves for a sweep of o € [0,1].
Right: mean CV error at A1s(@) for a € [0, 1].

result of simultaneous cross-validation of @ and A in the logistic regression of patients with both diabetes and CHD
vs healthy volunteers. The optimal parameter pair (o, 4)cy = (0.85,1.16-1072).

We applied the above methodology in three separate logistic regression models contrasting a disease condition with
healthy volunteers. The disease conditions were defined as having (1) only diabetes, (2) only CHD, and (3) both
diabetes and CHD. The coefficients included in the models with elastic net parameters (¢, A)cy are shown in (main)
Figure 2. Although this methodology utilises cross-validation in order to tune the parameters A and o, the final model
is fit on the full data. Stability selection [32] is an alternative approach based on subsampling, which under certain
assumptions yields a bound on the expected number of falsely selected variables, E[V]. Based on an assumption of
exchangeability, we have
2
E[V] < # 6]7,\
2 — 1 p
where qlz\ is computed from the set A of considered regularisation parameters, and 7y, can be chosen to bound E[V]
at a desired number. In practice, this bound is not strict, but a variant method called complementary pairs stability
selection [33] relaxes some of the model assumptions whilst being less conservative. We therefore use the latter
approach, through the implementation in the R package stabs [34].
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S4.3 Projection to latent structures

‘We use projection to latent structures (PLS; also called partial least squares) to fit the multivariate multiple regression
model Y = BX + F, where Y is an n X ¢ matrix of ¢ response variables (disease status and HDL function), X is an
n X p matrix of p predictor variables (clinical data, lipidomics, proteomics, and NMR spectroscopy), and F is an X g
matrix of errors. This method is apt for modelling multicollinearity amongst multivariate responses and predictors.
The goal is to find a latent K-dimensional decomposition of X and Y through a matrix 7', namely

X=TP' +E
Y=TQ' +F

with matrix dimensions illustrated in the following figure.

Kxp
nx K

noise
Kxq
nx K

noise

nxp

nxgq

nxK nxp

pxK

Suppose that X and Y are centred. Then 7', P, and Q are not identifiable, so we are more interested in the column
space of T. We have T = X[wy,...,wk]. Once T is constructed, Q" = (T'T)"!T Y. Recall that ¥ = XB+F,
butalsoY =TQ" +F,so XB=TQ", meaning that B = X~ 'TQT =wQT. In the SIMPLS formulation [35], for
k=1,...,K, we optimise W’s kth column

wi = argmax{w' Cov(X,Y)Cov(X,¥) 'w} st wiw=1landw' Cov(X)w; =0 for j < k.
w

We use sparse PLS [36], which builds on ideas from sparse PCA [37, 38], to perform dimensionality reduction
and variable selection simultaneously. This yields an estimate of the K latent components 7 = XW, which in turn
allows us to estimate the loadings QO = ming ||Y — TQT||,. Finally, the PLS estimate of the multivariate regression
coefficients is

B=wQ'.

We need to select the number K of latent components, as well as the amount of regularisation. This is implemented
via cross-validation in the R package spls [39]. By performing 1000 bootstrap runs of the sparse PLS regres-
sion with parameters tuned using cross-validation, we exclude coefficients whose bootstrap 95% confidence interval
contains zero. Since we performed model selection before bootstrapping, the resulting confidence intervals will be
compromised, and we must interpret them with caution.
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S4.4 Gaussian graphical model

Let X = (Xy,...,X,) denote the random vector of variables described in the experimental design. Each X; is a
random variable corresponding to a clinical covariate, a functional bioassay, or the abundance of a certain protein or
lipid species. For our purposes of finding pairs of variables which may be causally linked, it is clear that we should
prioritise candidates by their partial correlation rather than their marginal correlation. The partial correlation is a
measure of the linear dependence between a pair of variables when controlling for all other variables in the data,
thereby adjusting for the influence of observed confounders. Granted, this procedure will be misleading in case of
conditioning on a collider, that is, a common effect X; of two variables X; and X;. In such a case, where the causal
graph is X; — X < Xj, conditioning on X; makes X; and X} dependent, even though they are not causally linked by a
directed path. Nevertheless, we consider conditional dependence relationships as candidates for causal links, keeping
in mind that they may indeed be spurious.

Let 4 = (V,E) be an undirected graph whose vertices V = {1,..., p} are associated with the random variables in X.
We want to find the edge set E such that a pair {j,k} € E is connected in ¢ if and only if X; and X} are dependent
conditioned on all other variables in X. In other words, we want to find the graph ¢ such that X forms a Markov
random field with respect to ¢ (through the pairwise Markov property).

Consider a multivariate normal random vector Z ~ .4 (i,%) with mean y € R” and regular covariance matrix X €
RP*P, meaning that the precision matrix ® := X! is well-defined. It can be shown [40] (proposition 5.2) that
Zj 1L Z | Zy\ j xy if and only if © j = 0. In other words, any pair (Z;,Z;) of random variables in Z is conditionally
independent given all other variables in Z if and only if ® ;; = 0. Specifically, the partial correlation between Z; and
Zy given Zy\ (1 i

-0

Pikv\{jky = NCTem

Thus, to find an edge set E such that Z is a Markov random field with respect to ¢, we need only invert ¥, and let
edges correspond to the nonzero entries of ®.

Given samples z(1),...,z(") € R? from Z, the log likelihood ¢(i,%) = const. — % logdetX — 4 tr {2718} — 4(z -
w)TZ 1 (z— ) where 7 := % o z\0) is the sample mean. Since ! is positive definite, the maximum likelihood
estimate (MLE) of u is Z. Given this, the MLE of X is found by solving

arg max { —logdetE —tr(SE1) }
Les?,

where S := %Z}’:I (x) —%)(x) —%)T is the sample covariance matrix, and SP, is the set of all positive definite
symmetric matrices in R?*?_ In the high-dimensional case where p > n, S has p — n vanishing eigenvalues, and is thus
rank-deficient, making the optimisation problem ill-conditioned [41] (section 12.3.2). If, however, the underlying
graph is sparse, regularisation can make the problem identifiable [42]. The graphical lasso [43] performs a regularised
estimation of the precision matrix ® := £~! by solving

~ ~ p ~
argmax{logdet@—tr(S@)—?LZ|®,'j}. ©6)
Bes?, i

The regularisation parameter A > 0 controls the sparsity of ® (the edges of ¢) and can be tuned using cross-validation.
Alternatively, stability selection [32] can be used to bound the expected number of falsely selected edges. In our
experience, the former tends to be too liberal, whereas the latter tends to be rather conservative, even in the less
stringent complementary-pairs formulation [33]. Furthermore, although stability selection yields a selection probab-
ility for each edge in the graph, the actual edge weight is lost in the subsampling. Building on the idea of stability
selection, StARS [44] uses subsampling to determine the least amount of regularisation which yields a model that is
both sparse and robust to random sampling. This suits our purposes, especially since the StARS-optimal model ®
allows us to estimate the partial correlation coefficients between variables in the model.

‘We normalised our data and adjusted for batch effects using linear mixed models; see §S4.1.2. However, the continu-
ous variables tend to have marginal distributions with heavier tails than those of a normal distribution. To handle this,
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we made use of the nonparanormal distribution NPN(u, Z, f). We say that X ~ NPN(u, X, f) if there exist monotone
and differentiable functions fi,..., f, such that ( fiXi),-- fp (Xp)) ~ A (W, X). In such a case, the nonparanormal
distribution is a Gaussian copula, and it can be shown that X; L X; [ Xy\y;xy if and only if (Z*I)jk =0 [45]. For
identifiability, we require that the f; preserve means and variances, thatis y; = EX; =EZ; and X;; = VarX; = VarZ;
for all j € V. For the marginal distribution function F; of X;, we have
: Jit) — i
Fj(x) = P(X; <x) = P(Z; < f;(x)) :q’( T
i

where @ is the cumulative distribution function of the standard normal distribution. Since we centre and scale our
data in advance, this means that f;(x) = ®~ ! (Fj(x)).

From our samples XD xW e RP, we estimate F 7 by the empirical distribution function of Xj, so that I3 () =
Hil PN [xy) < 1], where 1 has been added to the denominator as a continuity correction. We estimate each f; by
fj(x) = ®~!(Fj(x)). Under these transformations, the nonparanormal sample covariance matrix is

=

S(F) = Y FxD)fee)T.
1

S| -

l

By replacing S in the standard graphical lasso estimator (6) with S( f) we solve for a precision matrix ® whose
corresponding edge set £ = {(j,k) : ©  # 0} makes our variables X a Markov random field over G = (V,E) [45].
In other words, X; LL Xy | Xy (4 if and only if @ = 0.
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S5 Mixed-effects models

As described in §S4.1.3, we used mixed-effects models to analyse the data from functional bioassays. By including
fixed effects for indicator variables of CHD and T2DM, we assessed disease association with each HDL function
(considered separately). For a given HDL function, the estimated effect of T2DM, say, reflects the average change in
the respective bioassay read-out attributed to the presence of T2DM — other things (plate, CHD status, etc.) being
equal. In some assays, the HDL isolation dates were either partially or entirely aliased by the plates, in which case
the aliased levels were dropped to make the model identifiable. For the respiration assays (Supplementary Table
S13), disease effects were contrasted against those of rotenone/antimycine, in order to show only mitochondrial
respiration.

All estimated effects of the mixed models are recorded in Supplementary Tables S5 through S13, with effects on
the scale measured by the given bioassay. Through dividing an estimated effect by the residual standard deviation
of the corresponding model, we estimate standardised effect sizes. The following Supplementary Table S4 records
the standardised effect sizes of diabetes and CHD on HDL function. For each disease effect, the 2.5% and 97.5%
percentiles of the bootstrap confidence interval are listed. If a confidence interval does not contain zero, then the
effect is significant at the 5% level, indicated by an asterisk.

assay Effect Estimate 2.5 % 97.5 % Significant
apoptosis HAEC HDL T2DM 0.498 0.15 0.846 *
apoptosis HAEC HDL CHD —0.438  —0.953 0.0763
apoptosis INSle HDL T2DM —-0.149  —-0.438 0.14
apoptosis INSle HDL CHD 0.309 —0.129 0.748
CEC apoB-free plasma HDL T2DM 0.0521 —0.879 0.983
CEC apoB-free plasma HDL CHD —0.6 —1.83 0.634
CEC HDL HDL T2DM —-0.18  —0.629 0.268
CEC HDL HDL CHD -0.323 —-0.977 0.331
10min-MMP C2C12 HDL T2DM 0.134 —-0.121 0.389
10min-MMP C2C12 HDL CHD -0.101  —-0.479 0.277
1hr-MMP C2C12 HDL T2DM 0.172  —0.044 0.388
1hr-MMP C2C12 HDL CHD —0.0566  —0.385 0.271
2hr-MMP C2C12 HDL T2DM 0.189 —0.0231 0.402
2hr-MMP C2C12 HDL CHD —0.00747  —0.334 0.319
10min CCCP-MMP C2C12 HDL T2DM 0.283  0.00683 0.559 *
10min CCCP-MMP C2C12 HDL CHD —0.0419 —0.44 0.356
respiration basal HDL T2DM  —-0.0369  —0.399 0.325
respiration basal HDL CHD —0.057 —0.626 0.512
respiration cAMP HDL T2DM  —0.0656  —0.492 0.361
respiration cAMP HDL CHD 0.0527 —-0.516 0.622
respiration max HDL T2DM -0.394  -0.768 —-0.0192 *
respiration max HDL CHD 0.677 0.108 1.25
respiration uncoupled HDL T2DM  —0.0133 —0.38 0.354
respiration uncoupled HDL CHD —0.0357 —0.638 0.567

Supplementary Table S4: Standardised effects sizes of diseased HDL on the assayed cellular functions.
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Effect Estimate 25% 97.5% Significant
sd_(Intercept)|HDL No 6.9 5.56 8.24 %
sigma 8.76 8.04 949 *
(Intercept) 55.5 48.9 62.1 *
plateplate 2 —10.3 —155 =503 *
plateplate 3 12.3 7.08 174 %
plateplate 4 —2.24 —7.11 2.62
plateplate 5 —9.84 —152 —451 *
plateplate 6 —8.28 —134 316 *
plateplate 7 —22.7 —282 —172 *
Diabetes 4.37 1.32 742 %
CHD —3.84 —8.35 0.669
hospitalZurich —-1.8 —-7.31 3.71
Female —1.92 —4.93 1.08
rotor 2 2.67 —0.0851 542

Supplementary Table S5: Mixed-effects model estimates with apoptosis HAEC as response.

32



S5 MIXED-EFFECTS MODELS

Effect Estimate 2.5% 97.5 % Significant
sd_(Intercept)|HDL No 6.95 5.15 8.76 *
sigma 11.9 10.9 128 *
(Intercept) 79 71.5 86.5 *
plateplate 2 6.98 0919 13 *
plateplate 3 -7.66 —13.7 —1.64 *
plateplate 4 378 —1.88 9.44
plateplate 5 —13 —-19 —-695 *
plateplate 6 —224 284 —165 *
plateplate 7 —-204 —26.6 —142 *
Diabetes -1.77 -5.19 1.66
CHD 3.66 —1.54 8.86
hospitalZurich 0.664 —5.93 7.26
Female —-13 —4.69 2.08
rotor 2 —-341 —-6.58 -0.231 *

Supplementary Table S6: Mixed-effects model estimates with apoptosis INS1e as response.
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Effect Estimate 2.5% 97.5% Significant
sd_(Intercept)|HDL No 14.1 124 158 *
sigma 6.23 5.71 6.75 *
(Intercept) 91.3 80.3 102 *
plateplate 10 -219 -306 —13.1 *
plateplate 11 —946 —182 -0.76 *
plateplate 2 —-6.53 =272 14.2
plateplate 3 -3.72 -30 225
plateplate 4 125 —-17.8 42.7
plateplate 9 —243 —432 534 *
Diabetes 0.325 547 6.12
CHD -374 —114 3.95
hospitalZurich 1.53 =7.7 10.8
Female 272 =24 8.18
rotor 2 —-346 —8.68 1.76
‘Start isolation 20.9. 143 —-3.28 31.9
‘Start isolation23.4. —-195 -239 20
‘Start isolation26.4. =527 =325 22
‘Start isolation‘30.4. -21 -51.6 9.61

Supplementary Table S7: Mixed-effects model estimates with CEC apoB-free plasma as response.
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Effect Estimate 25% 97.5% Significant
sd_(Intercept)| HDL No 6.43 5.42 7.44
sigma 6.66 6.12 7.19
(Intercept) 49.5 36.7 62.3
plateplate 13 3.38 —7.56 14.3
plateplate 14 —0.188 —14 13.6
plateplate 5 233 10.2 364 *
plateplate 6 -3.15 —23.7 17.4
plateplate 7 —14.8 =377 7.98
plateplate 8 2277 —1.23 46.6
Diabetes -12 —-419 1.79
CHD —2.15 —6.5 2.2
hospitalZurich —1.68 —6.32 2.97
Female 34 0.588 6.21
rotor 2 —2.99 —5.49 —-0.496
‘Start isolation‘20.9. 46  —8.22 17.4
‘Start isolation‘23.4. 29.6 13.9 452 %
‘Start isolation ‘24.9. —3.88 —11 3.27
‘Start isolation 26.4. 36 17.2 548 %
‘Start isolation‘30.4. 19.7 —-0.391 39.9

Supplementary Table S8: Mixed-effects model estimates with CEC HDL as response.
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Effect Estimate 25% 97.5% Significant
sd_(Intercept)|HDL No 2.75 1.88 3.63 *
sigma 6.37 5.96 6.79 *
(Intercept) —19.6 —-23.1 —16.1 *
plateplate 10 —4.59 —7.85 —134 *
plateplate 11 —-11.5 —-151 =785 *
plateplate 12 339 —0.143 6.93
plateplate 13 —0.0156 —3.41 3.38
plateplate 14 —6.13 -9.8 247
plateplate 2 3.18 0.803 5.55
plateplate 3 4.07 1.06 7.07
plateplate 4 —2.54 —-5.6 0526
plateplate 5 8.17 5.04 11.3 *
plateplate 6 —2.08 —5.17 1.02
plateplate 7 2.06 —1.01 5.12
plateplate 8 3.26 0.304 6.22
plateplate 9 =599 -947 -251
Diabetes 0.854 —0.772 2.48
CHD —0.644  -3.05 1.76
hospitalZurich —0.134 —2.89 2.62
Female —-0.0934 -—-1.72 1.53
rotor 2 1.1 =0.777 2.97

Supplementary Table S9: Mixed-effects model estimates with 10min-MMP C2C12 as response.
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Effect Estimate 25% 97.5% Significant
sd_(Intercept)| HDL No 1.6 0.00221 3.2
sigma 7.68 7.18 8.17
(Intercept) —32.6 —36.5 —28.8
plateplate 10 —-3.25 —6.6 0.0963
plateplate 11 0.742 —-3.14 4.63
plateplate 12 7.82 4.09 11.5
plateplate 13 4.93 1.25 8.6
plateplate 14 0.436 —-33 4.17
plateplate 2 4.77 1.91 7.63 *
plateplate 3 0.538 —2.82 3.89
plateplate 4 0.552 —-2.72 3.82
plateplate 5 5.96 2.58 9.34 *
plateplate 6 —1.61 —5.16 1.95
plateplate 7 1.02 —2.31 4.34
plateplate 8 23 —0974 5.58
plateplate 9 —4.29 787 —-0.716 *
Diabetes 1.32 —-0.338 2.98
CHD —0.435 —2.95 2.08
hospitalZurich 0.501 —2.37 3.37
Female —0.55 —-2.22 1.12
rotor 2 1.27  —0.651 3.18

Supplementary Table S10: Mixed-effects model estimates with Thr-MMP C2C12 as response.
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Effect Estimate 25% 97.5% Significant
sd_(Intercept)| HDL No 1.63  2.01x1077 3.26
sigma 8.05 7.53 8.56
(Intercept) —36.3 —-403 323
plateplate 10 —1.23 —4.71 2.25
plateplate 11 —1.7 =5.71 2.31
plateplate 12 5.72 1.87 9.58
plateplate 13 6.04 2.22 9.87
plateplate 14 —0.0687 —3.93 3.79
plateplate 2 3.52 0.526 6.52 *
plateplate 3 2.1 —5.61 1.4
plateplate 4 227 —1.11 5.64
plateplate 5 1.96 —1.57 5.49
plateplate 6 —-1.72 —-542 1.97
plateplate 7 —1.3 —4.8 2.2
plateplate 8 —0.416 —3.83 3
plateplate 9 —3.41 —-7.1 0.276
Diabetes 1.52 —0.186 3.23
CHD —0.0601 —2.69 2.57
hospitalZurich 0.939 —-2.02 3.9
Female —0.889 —2.63 0.849
rotor 2 0.968 —1.02 2.96

Supplementary Table S11: Mixed-effects model estimates with 2hr-MMP C2C12 as response.
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Effect Estimate 2.5% 97.5% Significant
sd_(Intercept)| HDL No 2.54 1.9 3.19 *
sigma 4.85 4.53 5.16 *
(Intercept) —-69.9 —-72.8 —67 %
plateplate 10 15.7 13.1 184 *
plateplate 11 22 19.1 25 %
plateplate 12 31.2 28.4 34 *
plateplate 13 11.2 8.38 139 *
plateplate 14 9.61 6.66 126 *
plateplate 2 —0.193 -2 1.61
plateplate 3 9.59 7.15 12 *
plateplate 4 9.15 6.6 11.7 *
plateplate 5 9.2 6.57 11.8 *
plateplate 6 9.01 6.59 114 *
plateplate 7 7.23 4.77 9.68 *
plateplate 8 9.17 6.83 115 *
plateplate 9 14.2 11.3 172 *
Diabetes 1.37 0.0331 271 %
CHD —-0.203 -2.13 1.73
hospitalZurich —-0.0513 —-2.29 2.19
Female -0376 —1.71 0.96
rotor 2 —0.569 2.1 0.957
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Supplementary Table S12: Mixed-effects model estimates with 10min CCCP-MMP C2C12 as response.
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Effect Estimate 25% 97.5% Significant
sd_(Intercept)|key: ‘HDL No* 7.36 6.88 7.84 %
sigma 10.8 10.7 11 *
(Intercept) 45.5 38.7 523 *
basal 56.4 46 669 *
cAMP 76.1 66.5 857 %
max 155 145 164 *
uncoupled 15.3 491 25.7 %
Diabetes —0.359 —3.33 2.61
CHD 0.75 —3.84 5.34
measurementMeasurement 10 16.4 15.3 175 %
measurementMeasurement 11 8.43 73 9.56 *
measurementMeasurement 12 3.02 1.96 4.09 *
measurementMeasurement 14 —2.84 —3.99 -1.69 *
measurementMeasurement 15 0.847 —0.345 2.04
measurementMeasurement 2 —8.6 —9.69 -7.5 *
measurementMeasurement 3 —-11.2 —12.4 -10.1  *
measurementMeasurement 4 3.85 2.7 499 *
measurementMeasurement 5 1.91 0.757 305 *
basal:Diabetes —-0.4 —4.32 3.52
cAMP:Diabetes —0.711 —5.33 391
max:Diabetes —4.27 —833 —0.209 *
uncoupled:Diabetes —0.144 —4.12 3.83
basal:CHD —0.617 —6.78 5.55
cAMP:CHD 0.572 —5.6 6.74
max:CHD 7.33 1.17 135 %
uncoupled:CHD —0.387 —6.92 6.15
Rotenone/Antimycine:platePlate 10 182 —0.151 36.6
basal:platePlate 10 169  0.0462 338 *
cAMP:platePlate 10 6.28 —11.9 24.5
max:platePlate 10 34.7 15.9 536 *
uncoupled:platePlate 10 14.3 =2.75 31.3
Rotenone/Antimycine:platePlate 11 7.9 0.597 152 %
basal:platePlate 11 —0.195 —7.35 6.96
cAMP:platePlate 11 —3.13 -10.2 3.96
max:platePlate 11 —5.97 —125 0.544
uncoupled:platePlate 11 0.412 —6.51 7.33
Rotenone/Antimycine:platePlate 12 20.2 2.43 38 *
basal:platePlate 12 11.9 —5.62 29.4
cAMP:platePlate 12 2.76 —16.8 22.3
max:platePlate 12 342 16.8 51.7 %
uncoupled:platePlate 12 14.3 —3.33 31.9
Rotenone/Antimycine:platePlate 13 10.1 3.03 172 *
basal:platePlate 13 17.1 9.92 242 %
cAMP:platePlate 13 1.55 —5.52 8.61
max:platePlate 13 —4.81 —114 1.79
uncoupled:platePlate 13 12 5.42 185 *
Rotenone/Antimycine:platePlate 14 19.1 0.576 376 %
basal:platePlate 14 19.5 2.09 36.8 *
cAMP:platePlate 14 6.01 —13.3 253
max:platePlate 14 1.07 —17.6 19.7
uncoupled:platePlate 14 21.7 4.3 39.1  *
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Rotenone/Antimycine:platePlate 2
basal:platePlate 2
cAMP:platePlate 2
max:platePlate 2
uncoupled:platePlate 2
Rotenone/Antimycine:platePlate 3
basal:platePlate 3
cAMP:platePlate 3
max:platePlate 3
uncoupled:platePlate 3
Rotenone/Antimycine:platePlate 4
basal:platePlate 4
cAMP:platePlate 4
max:platePlate 4
uncoupled:platePlate 4
Rotenone/Antimycine:platePlate 5
basal:platePlate 5
cAMP:platePlate 5

max:platePlate 5
uncoupled:platePlate 5
Rotenone/Antimycine:platePlate 6
basal:platePlate 6
cAMP:platePlate 6
max:platePlate 6
uncoupled:platePlate 6
Rotenone/Antimycine:platePlate 7
basal:platePlate 7
cAMP:platePlate 7

max:platePlate 7
uncoupled:platePlate 7
Rotenone/Antimycine:platePlate 8
basal:platePlate 8
cAMP:platePlate 8

max:platePlate 8
uncoupled:platePlate 8
Rotenone/Antimycine:platePlate 9
basal:platePlate 9
cAMP:platePlate 9
max:platePlate 9
uncoupled:platePlate 9
Rotenone/Antimycine:hospitalZurich
basal:hospitalZurich
cAMP:hospitalZurich
max:hospitalZurich
uncoupled:hospitalZurich
Rotenone/Antimycine:Female
basal:Female

cAMP:Female

max:Female

uncoupled:Female
Rotenone/Antimycine:rotor 2
basal:rotor 2

cAMP:rotor 2

6.57
0.246
15.9
29.3
4.97
432
-3.6
14
4.48
0.134
5.05
-35
13.2
244
2.76
55
5.18
12.4
77.3
8.25
9.11
7.75
18.1
92.7
13.5
6.11
2.21
229
36
4.67
6.37
7.21
13.4
12.4
3.01
11.3
12
—9.66
284
6.84
0.0723
—1.48
—-1.22
3.72
—-0.274
0.7
1.43
1.52
3.33
0.853
—1.51
0.947
-2.14

—-10.4
—16.5
—2.57
11.7
—-11.3
—2.87
—-10.2
742
-23
—6.61
—13.5
-214
—5.98
—16
—14.8
—1.56
—1.72
5.47
70
1.54
—8.62
—-10.4
—1.37
74.1
—4.18
—1.02
—8.75
15.9
28.7
—2.04
—11.7
—24.5
—4.85
—5.14
—14.7
4.29
5.63
—16.5
21.7
0.195
—5.32
—6.52
—6.86
—1.39
—5.68
—2.23
—1.41
—1.32
0.465
-2
—18.6
—14.8
-19.5

23.6
17
343
46.9
21.2
11.5
2.96
20.6
11.3
6.88
23.6
14.4
324
20.9
20.3
12.6
12.1
19.4
84.6
15
26.8
259
37.5
111
31.2
13.2
4.34
29.8
433
11.4
244
10.1
31.7
30
20.8
18.2
18.5
—2.85
352
13.5
5.46
3.56
4.42
8.84
5.13
3.63
4.27
4.35
6.2
3.71
15.6
16.7
15.3

EE I
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max:rotor 2 —11.5 —27.7 4.73
uncoupled:rotor 2 —-2.09 —18.2 14

Supplementary Table S13: Mixed-effects model estimates with adipocyte respiration as response.
The effect of each type of respiration (basal, uncoupled, cAMP-stimulated, and maximal) is contrasted
against that of rotenone/antimycine (absorbed into the model intercept), in order to show only mitochon-

drial respiration.
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