Science Advances

advances.sciencemag.org/cgi/content/full/6/8/eaay6812/DC1

Supplementary Materials for

Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system

Yu Zhang, Hui Li, Yi-Li Min, Efrain Sanchez-Ortiz, Jian Huang, Alex A. Mireault, John M. Shelton, Jiwoong Kim, Pradeep P. A. Mammen, Rhonda Bassel-Duby, Eric N. Olson*

*Corresponding author. Email: eric.olson@utsouthwestern.edu

Published 19 February 2020, *Sci. Adv.* **6**, eaay6812 (2020) DOI: 10.1126/sciadv.aay6812

This PDF file includes:

Fig. S1. Alkaline denaturing gel electrophoresis confirms integrity of AAV vectors.

Fig. S2. Systemic delivery of CRISPR-Cas9 genome editing components by single-stranded AAV vector to Δ Ex44 mice rescues dystrophin expression.

Fig. S3. Whole muscle scanning of immunohistochemistry of TA, triceps, diaphragm, and heart of CRISPR-Cas9–corrected Δ Ex44 mice.

Fig. S4. Western blot analysis of skeletal muscles and heart of Δ Ex44 mice treated with ssAAV-packaged CRISPR-Cas9 genome editing components.

Fig. S5. Muscle histology of Δ Ex44 mice after systemic delivery of AAV expressing CRISPR-Cas9 genome editing components.

Fig. S6. Whole-muscle scanning of H&E staining of TA, triceps, diaphragm, and heart of CRISPR-Cas9–corrected Δ Ex44 mice.

Fig. S7. Serum CK analysis of CRISPR-Cas9–corrected ∆Ex44 mice.

Fig. S8. Δ Ex44 mice express more Cas9 and sgRNA transcripts after systemic delivery of scAAV-packaged sgRNA.

Table S1. Deep sequencing analysis of CRISPR-Cas9–corrected ∆Ex44 mice.

Table S2. Primers used in this study.

Supplementary Materials

Fig. S1. Alkaline denaturing gel electrophoresis confirms integrity of AAV vectors. The viral genomes of the Cas9 vector and sgRNA vectors were analyzed by gel electrophoresis under alkaline denaturing conditions. The size of ssAAV-sgRNA and ssAAV-Cas9 is 3.9 and 5.1 knt, respectively, and remains unchanged after alkaline gel electrophoresis. The size of scAAV-sgRNA is 1.4 kilo-base pair and is doubled to 2.8 knts under denaturing conditions, indicating its double-stranded viral genome. M, marker; knt, kilo-nucleotides.

Fig. S2. Systemic delivery of CRISPR-Cas9 genome editing components by single-stranded AAV vector to Δ Ex44 mice rescues dystrophin expression. Immunohistochemistry shows restoration of dystrophin in tibialis anterior (TA), triceps, diaphragm, and heart of Δ Ex44 mice 4 weeks after systemic delivery of ssAAV-packaged *Sp*Cas9 and ssAAV-packaged sgRNA. *Sp*Cas9 vector was kept at constant dose of 8 × 10¹³ vg/kg. The dose of sgRNA vector was shown in the figure. Dystrophin is shown in green. n = 5 for each muscle group. Scale bar, 100 µm.

Fig. S3. Whole muscle scanning of immunohistochemistry of TA, triceps, diaphragm, and heart of CRISPR-Cas9–corrected Δ Ex44 mice. (A and B) Whole muscle scanning of TA, triceps, diaphragm, and heart of Δ Ex44 mice 4 weeks after systemic delivery of ssAAVpackaged *Sp*Cas9 and scAAV-packaged sgRNA (A) or ssAAV-packaged sgRNA (B). *Sp*Cas9 vector was kept at constant dose of 8×10^{13} vg/kg. The dose of sgRNA vector was shown in the figure. Dystrophin is shown in green. n = 5 for each muscle group. Scale bar in TA, triceps, diaphragm is 500 µm, in heart is 1.5mm.

Fig. S4. Western blot analysis of skeletal muscles and heart of Δ Ex44 mice treated with ssAAV-packaged CRISPR-Cas9 genome editing components. (A) Western blot analysis shows restoration of dystrophin expression in the TA, triceps, diaphragm, and heart of Δ Ex44 mice 4 weeks after systemic delivery of ssAAV-packaged *Sp*Cas9 and ssAAV-packaged sgRNA. *Sp*Cas9 vector was kept at constant dose of 8×10^{13} vg/kg. The dose of sgRNA vector was shown in the figure. Vinculin was used as the loading control (n = 3). Red asterisks indicates non-specific band. (B) Quantification of dystrophin expression in TA, triceps, diaphragm, and heart. Relative dystrophin intensity was calibrated with vinculin internal control before normalizing to the WT control. Data are represented as mean ± SEM. One-way ANOVA was performed with post-hoc Tukey's multiple comparisons test. *P<0.05, **P<0.005, ***P<0.001, ****P<0.0001 (n=3).

kept at constant dose of 8×10^{13} vg/kg. The dose of sgRNA vector was shown in the figure. n = 5 for each muscle group. Scale bar, 100 μ m.

Fig. S6. Whole-muscle scanning of H&E staining of TA, triceps, diaphragm, and heart of CRISPR-Cas9–corrected Δ Ex44 mice. (A and B) Whole muscle scanning of H&E staining of TA, triceps, diaphragm, and heart of Δ Ex44 mice 4 weeks after systemic delivery of ssAAV-packaged *Sp*Cas9 and scAAV-packaged sgRNA (A) or ssAAV-packaged sgRNA (B). *Sp*Cas9 vector was kept at constant dose of 8×10^{13} vg/kg. The dose of sgRNA vector was shown in the figure. n = 5 for each muscle group. Scale bar in TA, triceps, diaphragm is 500 µm, in heart is 1.5mm.

Fig. S7. Serum CK analysis of CRISPR-Cas9–corrected Δ Ex44 mice. Serum CK was measured in WT, Δ Ex44 mice untreated, and Δ Ex44 mice 4 weeks after treatment with ssAAVpackaged *Sp*Cas9 and scAAV or ssAAV-packaged sgRNA. *Sp*Cas9 vector was kept at constant dose of 8 × 10¹³ vg/kg. The dose of sgRNA vector was shown in the figure. Serum CK was normalized to WT mice and shown as fold expression. Data are represented as mean ± SEM. One-way ANOVA was performed with post-hoc Tukey's multiple comparisons test. **P<0.005, ****P<0.0001 (n=5).

Fig. S8. Δ Ex44 mice express more Cas9 and sgRNA transcripts after systemic delivery of scAAV-packaged sgRNA. (A and B) sgRNA cDNA transcripts (A) and Cas9 cDNA transcripts (B) were detected by quantitative RT-PCR from skeletal muscles and heart of Δ Ex44 mice 4 weeks after systemic delivery of ssAAV-packaged *Sp*Cas9 and scAAV or ssAAV-packaged sgRNA. *Sp*Cas9 vector was kept at constant dose of 8 × 10¹³ vg/kg. The dose of sgRNA vector was shown in the figure. Both sgRNA (A) and Cas9 (B) cDNA transcripts were calibrated with 18s internal control before normalizing to the muscle group with lowest sgRNA (1.6 × 10¹³ vg/kg) had the lowest sgRNA and Cas9 cDNA transcripts compared to other muscle groups. Data are represented as mean ± SEM. One-way ANOVA was performed with post-hoc Tukey's multiple comparisons test. **P<0.005, ***P<0.001, ****P<0.0001 (n=3).

Dose	_	Analyzed			Total	Non-	Total	NHEJ	ITR
(vg/kg)	Treatment	Muscle	Samples	Barcode	Reads	edited %	NHEJ %	(+1 nt) %	Integration %
	ssAAV- sgRNA		BC2-ss58	TGGTCA	265,313	94.59	5.41	0.85	<0.2
		ТА	BC3-ss59	CACTGT	430,500	94.77	5.23	0.69	<0.2
			BC4-ss60	ATTGGC	343,805	95.69	4.31	0.34	<0.2
		Triceps	BC10-ss58	AGCTAG	336,778	94.97	5.03	0.25	<0.2
			BC11-ss59	GTCGTC	339,549	94.39	5.61	1.18	<0.2
			BC12-ss60	CGATTA	322,347	95.02	4.98	0.32	<0.2
		Diaphragm	BC18-ss58	ATCAGT	423,848	86.51	13.49	5.64	<0.2
			BC19-ss59	TATACT	508,066	89.32	10.68	3.65	<0.2
			BC20-ss60	CAACAA	297,096	90.79	9.21	2.77	<0.2
		Heart	BC26-ss58	AATGGT	414,968	81.29	18.71	7.84	<0.2
			BC27-ss59	GGCGGT	314,206	83.56	16.44	6.36	<0.2
4 605 42			BC28-ss60	ATCACG	444,263	82.25	17.75	7.99	<0.2
1.60E+13	scAAV-	ТА	BC2-sc65	TGGTCA	351,570	87.11	12.89	8.29	<0.2
			BC3-sc66	CACTGT	397,695	89.08	10.92	5.47	<0.2
			BC4-sc67	ATTGGC	347,505	87.22	12.78	6.71	0.28
			BC10-sc65	AGCTAG	445,116	73.92	26.08	18.96	0.47
		Triceps	BC11-sc66	GTCGTC	391,352	82.71	17.29	11.15	0.39
		-	BC12-sc67	CGATTA	413,467	69.96	30.04	18.21	<0.2
	sgRNA	Diaphragm	BC18-sc65	ATCAGT	445,539	86.61	13.39	6.32	<0.2
			BC19-sc66	TATACT	404,070	82.33	17.67	10.3	<0.2
			BC20-sc67	CAACAA	331,964	84.09	15.91	8.41	<0.2
		Heart	BC26-sc65	AATGGT	471,201	79.04	20.96	12.3	0.35
			BC27-sc66	GGCGGT	328,191	86.48	13.52	7.75	<0.2
			BC28-sc67	ATCACG	435,717	85.92	14.08	7.77	0.48
	ssAAV- sgRNA	ТА	BC5-ss83	GATCTG	418,020	91.34	8.66	2.67	0.24
			BC6-ss84	TACAAG	337,358	87.34	12.66	5.99	0.23
			BC7-ss85	CGTGAT	291,510	90.57	9.43	3.16	<0.2
		Triceps	BC13-ss83	GAATGA	348,423	90.21	9.79	3.53	<0.2
8.00E+13			BC14-ss84	CTTCGA	394,987	86.25	13.75	5.32	<0.2
			BC15-ss85	CTCTAC	245,385	89.91	10.09	2.55	<0.2
		Diaphragm	BC21-ss83	GTTGTT	339,005	84.47	15.53	6.11	<0.2
			BC22-ss84	TCGGTT	335,216	80.78	19.22	8.98	<0.2
			BC23-ss85	AGTATT	405,971	81.09	18.91	8.51	<0.2
		Heart	BC29-ss83	CGATGT	349,844	81.33	18.67	8.33	<0.2
			BC30-ss84	TTAGGC	329,313	80.97	19.03	8.32	0.23
			BC31-ss85	TGACCA	472,649	74.32	25.68	13.36	<0.2
	scAAV- sgRNA	ТА	BC5-sc14	GATCTG	294,064	70.91	29.09	19.76	<0.2
			BC6-sc15	TACAAG	356,949	74.01	25.99	16.8	0.24
			BC7-sc16	CGTGAT	368,727	70.49	29.51	18.87	<0.2
		Triceps	BC13-sc14	GAATGA	380,792	71.12	28.88	16.95	0.24
			BC14-sc15	CTTCGA	339,794	70.4	29.6	17.8	0.7
			BC15-sc16	CTCTAC	365,034	67.38	32.62	20.08	<0.2
		Diaphragm	BC21-sc14	GTTGTT	407,519	77.15	22.85	13.67	<0.2
			BC22-sc15	TCGGTT	393,010	78.78	21.22	11.34	<0.2
			BC23-sc16	AGTATT	443,769	81.34	18.66	9.12	<0.2
		Heart	BC29-sc14	CGATGT	420,871	85.18	14.82	7.7	<0.2
			BC30-sc15	TTAGGC	415,579	84.14	15.86	7.04	0.64
			BC31-sc16	TGACCA	411,603	86.73	13.27	7.93	0.97

Table S1. Deep sequencing analysis of CRISPR-Cas9–corrected $\Delta Ex44$ mice.

Table S2. Primers used in this study.

Primer function	Primer name	Primer sequence					
ssAAV- sgRNA	IF-Spel-Pacl- U6-F	ATGTATACCTTCGTCACTAGTTTAATTAAATCAGCGTTTGAGTAAGAGCCCG					
cloning primers	IF-Xbal-Kpnl- GFP-R	GCTGGCGCGCCTTTTTCTAGAGGTACCCATGGACGAGCTGTACAAGTAAAGGC					
scAAV- saRNA	IF-Spel-Kpnl- U6-F	ATGTATACCTTCGTCACTAGTGGTACCATCAGCGTTTGAGTAAGAGCCCG					
cloning primers	IF-Xbal-Mlul- GFP-R	GCTGGCGCGCCTTTTTCTAGAACGCGTCATGGACGAGCTGTACAAGTAAAGG					
	AAV-Cas9- ddPCR-F	GGACTCCCGGATGAACACTAAG					
	AAV-Cas9- ddPCR-R	GTTGTTGATCTCGCGCACTTT					
AAV titer	AAV-Cas9- ddPCR-probe	TGGTGTCCGATTTCCGGA					
ddPCR primers	AAV-sgRNA- ddPCR-F	AGGGCCTATTTCCCATGATT					
	AAV-sgRNA- ddPCR-R	AAACTGCAAACTACCCAAGAAA					
	AAV-sgRNA- ddPCR-probe	TGCATATACGATACAAGGCTGTTAGAGAGA					
Genomic PCR for TIDE analysis	T7E1-mE45- g4-F	CCCTGAGCTGAAGTGAGAGG					
	T7E1-mE45- g4-R	ACCTCTTTCTCCTTTCTGCCAG					
	AAV-Cas9- copy-F	TGAAAGAGGACTACTTCAAGAAAATC					
AAV vector genome	AAV-Cas9- copy-R	TTGTCCTTGATAATTTTCAGCAGATC					
copy number quantification	AAV-sgRNA- copy-F	CCGGAAATCAAGTCCGTTTATC					
	AAV-sgRNA- copy-R	GAGCTTCAGCAGGAAATTTAACTA					
	mE43-qPCR-F	AGGTGAAAGTACAGGAAGCCGT					
	mE46-qPCR-R	CTGCTGCTCATCTCCAAGTGGA					
	Cas9-qPCR-F	TGAAAGAGGACTACTTCAAGAAAATC					
cDNA RT-	Cas9-qPCR-R	TTGTCCTTGATAATTTTCAGCAGATC					
PCR quantification	sgRNA-qPCR- F	GGCTTACAGGAACTCCAGGA					
	sgRNA-qPCR- R	CGACTCGGTGCCACTTTTC					
	18s-qPCR-F	GTAACCCGTTGAACCCCATT					
	18s-qPCR-R	CCATCCAATCGGTAGTAGCG					
On-target deep sequencing primers	On-target-F- Nextera	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTATTGGATGTGTACATGTCAGGTTCA					
	On-target-R- Nextera	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTCTGCTAAAAAGTCTCTGTCACC					
	miSeq-Univ-F	AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTC					
	miSeq- Barcode-R	CAAGCAGAAGACGGCATACGAGATXXXXXGTCTCGTGGGCTCGG					

Green: Nextera adaptor sequence

Red: Transposon end sequence

Blue: On-target primers to Dmd exon 45

xxxxxx: barcode sequence see table S2