### Liang et al.: Supplemental Information

#### Supplemental Figures.

| $\begin{split} S_{T}RNase: &RicaAcattaCitititititiCititititiCiticGetTiticTiticGetTiticCiticGetGetAcaAacaattetettititicCiticGetGetAcaAacaattetettititititicGetGetTiticGetTiticGetAcattetettititititititicGetGetAcattaCititititicGetAcattettitititicGetAcattettititititicGetAcattettititititititititititititititititit$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C2<br>S,-RNase: CACAGORGECC GCCTETIATECCAACAAATCAATECCAGAAGAAGGCCATCAGATTTCTTCTTCACAGECCIGTGGCCAGTAAACTCACCGCCACAGATTGGAAL 207<br>S,-RNase: CACGTGGCCCCCTTGGCTATTGCTGGAGTCAATGCGCCGTAATGGCCGTAACAGGGTCGCCGGGCAAAAACATTGGAL 200<br>S,-RNase: CACAGCTGGCCCCTTGGCTATTGCTGGAGTCAATGCGCCGTAAGGAAAGAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{c} S_{1}\text{-}RNase: \text{AATTCAG}CAAGGACATCCC}TEA TTCTCTCTCTCTCTCTCTAGGAATCATCTTTGGATAGAAATGATCGACGACTGGCAAGTCTGGGACATCC} : 303 \\ S_{2}\text{-}RNase: \text{GCTGACAAATAAATAAAAACAACCCACAATAAGTTCTAAAATCGCTCAAGGACATAATCTTTGGATAGAAATGGATCGCAAGTCTCAGGACGATCC} : 318 \\ S_{3}\text{-}RNase: GCTGACAAATAAATAAAACAACCA-CCTCCGGGGATTCTTGGATCGTCGAACATGATGAACCCTTTGGGATCATTTGATGAAATGGATCAGAACATCTTCCACATGGATCACAACCAAC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| S, RNase: AT ACACTG GGALA GTGTGAR CHACTGAGGAT TE GGALATCAL A THATC LA TCALGGAL TA GGALTA TC GALACTG GGALA ATTC TGC A CACTG CAL 513<br>S, RNase: GLGAACTAGCALA A TTACGACGALTAGGAACA TE GTGGAGAGG TGTATTC TA TCALGCALTA CCT A TT A TTALATGAGGCA TE TGC 522<br>S, RNase: GLGGAACTA CALGTTCACGALTTACTALATAC TE AACAGAGCT TE TAATGGALA ATTC TA ACCT A TT A TTALATGAGGCA TE TGC 522<br>S, RNase: AT AAACTA GGALA GTTCACGALTTACTALATAC TE AACAGAGCT TE TAATGGALA ATTC TA ACCT A TT A TTALATGAGGCA TE ACC<br>S, RNase: AT AAACTA GGALA GTTCACGALTTACTALATAC TE AACAGAGCT TE TAATGGALA ATTC TA ACCT ACT ACTALAGT GGALA ATTC TA CC 533<br>S, RNase: AT AAACTA GGALA ATTGTCACGALTTACTALATAC TE AAACGGAL GTTALTTC C TA ACGALTA TC A ACCT AGTTC ACT A GGALA ATTGTCA CC 533<br>S, RNase: AT AAACTA GGALA ATTGTCACGALTAC TGAAGGCGALTTA A TAGTCC GGT A CCALTATCC TA CTALAGT AGC CC 7 A GC 7 1 466<br>S, RNase: AT AAACTA GGALA ATTGTCACGALTAC TGAAGAATATA A TAGTCC GGT A CCALTATCC TACCATA ATT A AGC CC 7 A GC 7 1 466<br>S, RNase: AT AAACTA GGALA ATGTCACGALTAA ATTGCCACTAAATA A TAGTCC AGT A CCALTATCC TACCATAGGA CTTGC A TTALAGACGC TTGC 7 A GC 7 1 466<br>S, RNase: AT AAACTA GGALA ATGTCACGALTAA AT TGCCACTAAATA A TAGTCC AGT ACCALTATCC TACCATAGGA TA AGC CC 7 A GC 7 1 466<br>S, RNase: AT AAACTA GGALA ATGTCCACTACTACTACGATAAA TE GCACTAAATA A TAGTCC AGT ACCALTACCATAGATTA AGC CC 7 A GC 7 1 474<br>S, RNase: AT AAACTA CGALA GTGTCACTACTACAGGAATAAA TE GCACTAAAAT TAGTCC A TTALCCATAGGATTA CC 7 A GC 7 TTATATAGAGCGC TTGC 7 1 504<br>S, RNase: AT AAACTA CGALA GTGTCACTATAAAGGAATATA A TAGTCC A TTALACGA CTACCAL GTT GATTAGAACGC TTGC 7 1 486<br>S, RNase: AT AAACTA CAACTA CGALA ATTACCACTATAAA TE CAACTAACTACAATA A TATTCC A TTALACGA CTACCAL GTT GATTAGAACGC TTGC 7 1 504<br>S, RNase: AT AAACTA CAACTA CGALA ATTACCACTATAAAA TE AAAGGAAA A TATTCC A TTALACGA CTACCAL GTT GAACGCC TTACCCACTACCACCACTACCACCACTATACACCACTAAACGC 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{l} S_r, RNase: \mbox{Gamma} {\rm Gamma} {\rm $ |
| S, $RNase:$ TGCAATCACGAAGAACGAACTAATTGCCTAAGAACATCATCATGACGACGACCTAA<br>S, $RNase:$ TGCAATTACCGACGGGATCACCGCGCTTAAGGCAGCCAATAACACTCCCCGACCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

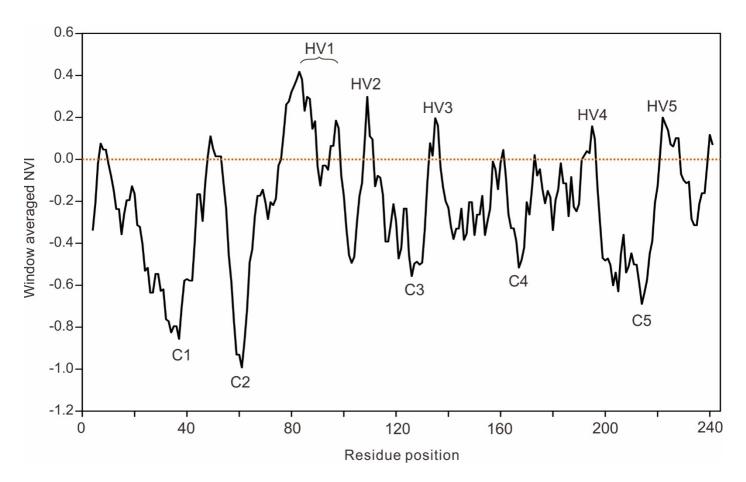
#### Supplementary Figure 1. Nucleotide sequence alignments for the pummelo *S*<sub>1</sub>-RNase – *S*<sub>9</sub>-RNases.

The nucleotide sequence identities above 80% among *S-RNases* are indicated by shaded boxes: *black indicates* 100% conservation; *grey* indicates  $\geq$  80% conservation; *dashes* represent gaps. The citrus *S-RNases* contain five conserved domains (C1-C5) and five hypervariable regions (HV1-HV5).

|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                         | C1                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                       | C2                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S-PNaco                                                                                                                                                                                                                                         | MNITFFLYMVLFISCIS                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               | KNSSKDI 76                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                 | MKATNLFRFALLAINVI                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                 | MKTKATYFLFFALLVSNIT                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
| SRNase:                                                                                                                                                                                                                                         | MSATLFIFIVMFVSCIS                                                                                                                                                                                                                                                                                                                                                                       | SGAAQNSSG-FDHFWLVQSW                                                                                                                                                                                                                                                                                                       | PPVYCQQINCKRK                                                                                                                                                                                                                           | ASDFVLHGLWPV <mark>NSTGHS-</mark> L                                                                                                                                                                                                                                                                           | KNSSKAT 76                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                 | MKVASINICILLVYCIV                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                 | MGTNFLIIFVQFVSCIA                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                 | MKAAYLLSFVLLVLYII                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
| S-RNase:                                                                                                                                                                                                                                        | MGIGFLIFFVLFVSSIA<br>MKTRATYLFFYALLVSSIT                                                                                                                                                                                                                                                                                                                                                | SVVTQNTSG-FHHFWLVQSW                                                                                                                                                                                                                                                                                                       | IPPVFCQKYPCKNP                                                                                                                                                                                                                          | PLDFVLHGLWPVNSSGHT-I<br>VCDFVIHCIWDVMFKEDM-I                                                                                                                                                                                                                                                                  | KNSSRGK 76<br>PGTNRSO 78                                                                                                                                                                                                                          |
| $S_{g}$ Mase.                                                                                                                                                                                                                                   | MAIRAIILFFIALLV3511                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                            | C1                                                                                                                                                                                                                                      | C2                                                                                                                                                                                                                                                                                                            | PGINKSQ /8                                                                                                                                                                                                                                        |
| An_S,-RNase:                                                                                                                                                                                                                                    | MANARKRDFFSLILLIVLL                                                                                                                                                                                                                                                                                                                                                                     | SDSYTTTAVEFELLKLVLQW                                                                                                                                                                                                                                                                                                       | VPNSYCSLSKRPCRRKPL                                                                                                                                                                                                                      | PSDFTIHGLWPDNRSWPI                                                                                                                                                                                                                                                                                            | LYNC-QFD 81                                                                                                                                                                                                                                       |
| An $S_5$ -RNase:                                                                                                                                                                                                                                | MVAKKSHDHGQFSFLVLFVILLS                                                                                                                                                                                                                                                                                                                                                                 | SYCFTANAKYFEILKLVLQW                                                                                                                                                                                                                                                                                                       | VPNSYCSLKTSTCRRNPL                                                                                                                                                                                                                      | PLKFTIHGLWPDNYSWPI                                                                                                                                                                                                                                                                                            | LSDC-GYD 85                                                                                                                                                                                                                                       |
| $An_{S_2}-RNase:$                                                                                                                                                                                                                               | MATVQKSQHSHFFLLVGCIVHLS                                                                                                                                                                                                                                                                                                                                                                 | NFCSTTTAQ-FDYFKLVLQN<br>C1                                                                                                                                                                                                                                                                                                 | VPNSYCSLKTTHCPRTRL                                                                                                                                                                                                                      | PSQFTIHGLWPDNKSWPI<br>C2                                                                                                                                                                                                                                                                                      | LSNCRDTS 85                                                                                                                                                                                                                                       |
| Ni S-RNase:                                                                                                                                                                                                                                     | MFRSQLVSIFFIL                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                            | PPTYCHEKSCARI                                                                                                                                                                                                                           | PTNFRIHGLWPDNQHELI                                                                                                                                                                                                                                                                                            | LNNCKKSF 72                                                                                                                                                                                                                                       |
| Pe SRNase:                                                                                                                                                                                                                                      | MFRSQLMSAFFIL                                                                                                                                                                                                                                                                                                                                                                           | FLAQAPVYGVFDQIQLVLTW                                                                                                                                                                                                                                                                                                       | PPSFCHTKPCKRT                                                                                                                                                                                                                           | PRNFTIHGLWPDDQHVLI                                                                                                                                                                                                                                                                                            | LNDCDKTY 72                                                                                                                                                                                                                                       |
| $Pe S_2 - RNase:$                                                                                                                                                                                                                               | MFRLQLLSALFIL                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                            | VPASFCYP-KNFCKRK                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                               | LEFCTGDK 73                                                                                                                                                                                                                                       |
| Ma C-BNaca                                                                                                                                                                                                                                      | MGITGMIYIVTMVFSLI                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               | PANCTNAT 80                                                                                                                                                                                                                                       |
| Ma_SRNase:<br>Pv S-RNase:                                                                                                                                                                                                                       | MGITGMIIIVTMVFSLI                                                                                                                                                                                                                                                                                                                                                                       | VLILSSSTVGIDIEQETQQI                                                                                                                                                                                                                                                                                                       | OLAVCISNETPCKDPT-                                                                                                                                                                                                                       | DKLETVHGLWPSNENGPH-                                                                                                                                                                                                                                                                                           | PANCPIRN 80                                                                                                                                                                                                                                       |
| Pr S-RNase:                                                                                                                                                                                                                                     | MAMLKSSLSFLVLGFAFFL                                                                                                                                                                                                                                                                                                                                                                     | CFIISAGDGSYVYFOFVOOW                                                                                                                                                                                                                                                                                                       | PPTTCRV-OKKCSKPRP                                                                                                                                                                                                                       | LONFTINGLWPSNYSNPTM                                                                                                                                                                                                                                                                                           | PSNCNGSR 83                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                 | HV1                                                                                                                                                                                                                                                                                                                                                                                     | HV2 C                                                                                                                                                                                                                                                                                                                      | C3 HV3                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                               | C4                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            | <b>A</b>                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                 | PNFYSLL-RNHSFGMEMDEHWPSLG                                                                                                                                                                                                                                                                                                                                                               | TTDGHDPFKHIGFWTHEWEE                                                                                                                                                                                                                                                                                                       | ▲<br>LHGSGQPYADTYYLQ                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               | QGIYPNGRSYW 162                                                                                                                                                                                                                                   |
| $S_2 - RNase:$                                                                                                                                                                                                                                  | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS                                                                                                                                                                                                                                                                                                                                  | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK                                                                                                                                                                                                                                                                                  | A<br>HGSGQPYADTYYLQ<br>HGSSRKGMDPLDYFQ                                                                                                                                                                                                  | RAVELAKTTDLRNTLAEF                                                                                                                                                                                                                                                                                            | QGIYPNGRSYW 162<br>KGVLPNGASYP 165                                                                                                                                                                                                                |
| $S_2^{-}$ -RNase:<br>$S_3^{-}$ -RNase:                                                                                                                                                                                                          | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS                                                                                                                                                                                                                                                                                                     | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLKYFWPYQWRV                                                                                                                                                                                                                                                             | HGSGQPYADTYYLQ<br>HGSSRKGMDPLDYFQ<br>HGSAQRRVKPPDYFR                                                                                                                                                                                    | RAVELAKTTDLRNTLAEF<br>RAVELTKFTDLLNTLNRF                                                                                                                                                                                                                                                                      | QGIYPNGRSYW 162<br>KGVLPNGASYP 165<br>AGIMENGNIYR 163                                                                                                                                                                                             |
| $S_2^{\dagger}$ -RNase:<br>$S_3^{-}$ RNase:<br>$S_4^{-}$ RNase:                                                                                                                                                                                 | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS                                                                                                                                                                                                                                                                                                                                  | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLKYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ                                                                                                                                                                                                                                     | HGSGQPYADTYYLQ<br>HGSSRKGMDPLDYFQ<br>HGSAQRRVKPPDYFR<br>2HGSGQPYEGLYYVQ                                                                                                                                                                 | RAVELAKTTDLRNTLAEF<br>RAVELTKFTDLLNTLNRF<br>AAIRLRKSVNLLRILGNQ                                                                                                                                                                                                                                                | QGIYPNGRSYW 162<br>XGVLPNGASYP 165<br>AGIMENGNIYR 163<br>QGIFPDGRNYW 162                                                                                                                                                                          |
| $S_2^-$ -RNase:<br>$S_3^-$ RNase:<br>$S_4^-$ RNase:<br>$S_5^-$ RNase:<br>$S_5^-$ RNase:                                                                                                                                                         | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKYWPSLA                                                                                                                                                                                                              | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLKYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ<br>RRNTELFWVHEWKK<br>SSDPTNFWKHEWDE                                                                                                                                                                                                 | HGSGQPYADTYYLQ<br>HGSSRKGMDPLDYFQ<br>HGSAQRRVKPPDYFR<br>HGSGQPYEGLYYVQ<br>HGSAFPHEPLDYFR<br>HGSGQPSEPPDYFL                                                                                                                              | RAVEL AKTTDLRNTLAEF<br>RAVEL TKFTDLLNTLNRF<br>AAIRL RKSVNLLRILGNÇ<br>RTVKL MKRMNLLSTLKAC<br>AAITL RKNVDLLSTLRRY                                                                                                                                                                                               | QGIYPNGRSYW 162<br>KGVLPNGASYP 165<br>AGIMENGNIYR 163<br>QGIFPDGRNYW 162<br>GGVEPRTTSYP 153<br>KRIVPGGTSYP 156                                                                                                                                    |
| $S_2^2$ -RNase:<br>$S_3^2$ -RNase:<br>$S_4^2$ -RNase:<br>$S_5^2$ -RNase:<br>$S_6^2$ -RNase:<br>$S_7^2$ -RNase:                                                                                                                                  | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKYWPSLA<br>IRMIDILNRDTSLKSDMGKYWPSLA                                                                                                                                                                                 | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLKYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ<br>RRNTELFWVHEWKK<br>SSDPTNFWKHEWDE<br>SKISHKFWSRQWQK                                                                                                                                                                               | HGSQPYADTYYLQ<br>HGSSRKGMDPLDYFQ<br>YHGSAQRRVKPPDYFR<br>2HGSQCPYEGLYYVQ<br>HGSAFPHEPLDYFR<br>HGSAQLLTSPPDYFL                                                                                                                            | RAVEL – AKTTDLRNTLAEF<br>RAVEL – TKFTDLLNTLNRF<br>AAIRL – RKSVNLLRILGNÇ<br>RTVKL – MKRMNLLSTLKAC<br>AAITL – RKNVDLLSTLRRY<br>TAIRL – MKITNLQNKLAAF                                                                                                                                                            | 2GIYPNGRSYW 162<br>CGVLPNGASYP 165<br>AGIMENGNIYR 163<br>2GIFPDGRNYW 162<br>3GVEPRTTSYP 153<br>CRIVPGGTSYP 156<br>CGIVPNGTSYP 159                                                                                                                 |
| $S_2^{-}$ -RNase:<br>$S_3^{-}$ -RNase:<br>$S_4^{-}$ -RNase:<br>$S_5^{-}$ -RNase:<br>$S_7^{-}$ -RNase:<br>$S_7^{-}$ -RNase:                                                                                                                      | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKYWPSLA<br>IFMIDILNRDTSLKSDMGKYWPSLV                                                                                                                                                                                 | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLKYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ<br>RRNTELFWVHEWKK<br>SSDPTNFWVHEWDE<br>SKISHKFWSRQWQK<br>YSDSANFWEHEWEE                                                                                                                                                             | HGSQ2PYADTYYLQ<br>(HGSSRKGMDPLDYFQ<br>HGSAQRRVKPPDYFR<br>2HGSQCPYEGLYYVQ<br>(HGSAGPHEPLDYFR<br>HGSQ2PSEPPDYFL<br>(HGSAQ-KLITSPEDYFR<br>HGSQ2-PLMEPTEYFQ                                                                                 | RAVEL AKTTDLRNTLAEF<br>RAVEL TKFTDLLNTLNRF<br>AAIRL RKSVNLLRILGNÇ<br>RTVKL MKRMNLLSTLKAG<br>AAITL RKNVDLLSTLRRY<br>TAIRL MKITNLQNKLAAF<br>AAIRL RKSVDLMSTLKRF                                                                                                                                                 | 2GIYPNGRSYW 162<br>CGVLPNGASYP 165<br>AGIMENGNIYR 163<br>2GIFPDGRNYW 162<br>GGVEPRTTSYP 153<br>CRIVPGGTSYP 156<br>CGIVPNGTSYP 159<br>2GILPNGTSYP 157                                                                                              |
| $S_2^{-}$ -RNase:<br>$S_3^{-}$ -RNase:<br>$S_4^{-}$ -RNase:<br>$S_5^{-}$ -RNase:<br>$S_7^{-}$ -RNase:<br>$S_7^{-}$ -RNase:                                                                                                                      | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKWPSLA<br>IRMIDILNRDTSLKSDMGKYWPSLI<br>FDFVGTI-GNSSLRGELEKNWPSLV<br>PEILESLKKDKSLWNNLMYYWLSLS                                                                                                                        | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLKYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ<br>RRNTELFWVHEWKK<br>SSDPTNFWKHEWDE<br>SKISHKFWSRQWQK<br>YSDSANFWEHEWEE<br>TWDKDKLQNFWIYQWKI                                                                                                                                        | HGSQ2PYADTYYLQ<br>HGSSQKGMDPLDYFQ<br>HGSAQRVKPPDYFR<br>2HGSQCPYEGLYYVQ<br>HGSAFPHEPLDYFR<br>HGSQ2PSEPPDYFL<br>HGSAQ-KLITSPEDYFR<br>HGSQ2PLMEPTEYFQ<br>HGSAQQQVVPPHYFR                                                                   | RAVEL AKTTDLRNTLAEF<br>RAVEL TKFTDLLNTLNRF<br>AAIRL RKSVNLLRILGNÇ<br>RTVKL MKRMNLLSTLKAG<br>AAITL RKNVDLLSTLRRY<br>TAIRL MKITNLQNKLAAF<br>AAIRL RKSVDLMSTLKRF                                                                                                                                                 | 2GIYPNGRSYW 162<br>CGVLPNGASYP 165<br>AGIMENGNIYR 163<br>2GIFPDGRNYW 162<br>GGVEPRTTSYP 153<br>CRIVPGGTSYP 156<br>CGIVPNGTSYP 159<br>2GILPNGTSYP 157                                                                                              |
| $S_2^{-}$ -RNase:<br>$S_3^{-}$ -RNase:<br>$S_4^{-}$ -RNase:<br>$S_5^{-}$ -RNase:<br>$S_6^{-}$ -RNase:<br>$S_8^{-}$ -RNase:<br>$S_8^{-}$ -RNase:                                                                                                 | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKYWPSLA<br>IRMIDILNRDTSLKSDMGKYWPSLI<br>FDFVGTI-GNSSLRGELEKNWPSLV<br>PEILESLKKDKSLWNNLMYYWLSLS<br>HVa                                                                                                                | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLKYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ<br>RRNTELFWVHEWKK<br>SSDPTNFWVHEWDE<br>SKISHKFWSRQWQK<br>YSDSANFWEHEWEE<br>TWDKDKLQNFWIYQWKI<br>HVb                                                                                                                                 | HGSGQPYADTYYLQ<br>HGSSRKGMDPLDYFQ<br>HGSAQRRVKPPDYFR<br>HGSGQPYEGLYYVQ<br>HGSAFPHEPLDYFR<br>HGSGQPSEPPDYFL<br>HGSAQ-KLITSPEDYFR<br>HGSAQPLMEPTEYFQ<br>HGSAQQQVVPPHYFR<br>C3                                                             | RAVEL AKTTDLRNTLAEF<br>RAVEL TKFTDLLNTLNRF<br>AAIRLRKSVNLLRILGNQ<br>RTVKLMKRMNLLSTLRAQ<br>AAITLRKNVDLLSTLRRY<br>TAIRLMKITNLQNKLAAF<br>AAIRLRKSVDLMSTLKRF<br>RAVQLTRYTDLLNTLNGF                                                                                                                                | QGIYPNGRSYW 162<br>XGVLPNGASYP 165<br>AGIMENGNIYR 163<br>QGIFPDGRNYW 162<br>GGVEPRTTSYP 153<br>XRIVPGGTSYP 156<br>XGIVPNGTSYP 159<br>EGILPNGTSYP 157<br>ADIHANGSSYP 163                                                                           |
| $S_2^2$ -RNase:<br>$S_3$ -RNase:<br>$S_4$ -RNase:<br>$S_5$ -RNase:<br>$S_7$ -RNase:<br>$S_7$ -RNase:<br>$S_8$ -RNase:<br>$S_9$ -RNase:<br>An $S_7$ -RNase:                                                                                      | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKYWPSLA<br>IRMIDILNRDTSLKSDMGKYWPSLA<br>FDFVGTI-GNSSLRGELEKNWPSLV<br>PEILESLKKDKSLWNNLMYYWLSLS<br>HVa<br>FDIPEVGDQKFRQKLDVIWPDLR                                                                                     | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLKYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEC<br>RRNTELFWVHEWKK<br>SSDPTNFWKHEWDE<br>SKISHKFWSRQWQK<br>YSDSANFWEHEWEE<br>TWDKDKLQNFWIYQWKI<br>HVD                                                                                                                                 | HGSGQPYADTYYLQ<br>HGSSRKGMDPLDYFQ<br>HGSSQRRVKPPDYFR<br>HGSGQPYEGLYYVQ<br>HGSAFPHEPLDYFR<br>HGSGQPSEPPDYFL<br>HGSAQ-KLITSPEDYFR<br>HGSGQPLMEPTEYFQ<br>G3<br>HGSCA-LPDISFIDYFT                                                           | RAVEL AKTTDLRNTLAEF<br>RAVEL TKFTDLLNTLNRF<br>AAIRL RKSVNLLRILGNQ<br>RTVKL MKRMNLLSTLKAG<br>AAITL RKNVDLLSTLRAF<br>TAIRL MKITNLQNKLAAF<br>AAIRL RKSVDLMSTLKRF<br>RAVQL TRYTDLLNTLNGF<br>TATRL NKKFNIRDILGRG                                                                                                   | 2GIYPNGRSYW 162<br>GVLPNGASYP 165<br>AGIMENGNIYR 163<br>2GIFPDGRNYW 162<br>3GVEPRTTSYP 153<br>GRIVPNGTSYP 156<br>GGIVPNGTSYP 159<br>3GILPNGTSYP 157<br>ADIHANGSSYP 163<br>3KLYP-GDSYD 165                                                         |
| $S_2^2$ -RNase:<br>$S_3$ -RNase:<br>$S_4$ -RNase:<br>$S_5$ -RNase:<br>$S_7$ -RNase:<br>$S_7$ -RNase:<br>$S_8$ -RNase:<br>$S_9$ -RNase:<br>An_ $S_1$ -RNase:<br>An_ $S_5$ -RNase:                                                                | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKYWPSLA<br>IRMIDILNRDTSLKSDMGKYWPSLI<br>FDFVGTI-GNSSLRGELEKNWPSLV<br>PEILESLKKDKSLWNNLMYYWLSLS<br>HVa                                                                                                                | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLKYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ<br>RRNTELFWVHEWKK<br>SSDPTNFWVHEWDE<br>SKISHKFWSRQWQK<br>YSDSANFWEHEWEE<br>TWDKDKLQNFWIYQWKI<br>HVD<br>LKRKRDPEQGFWITEWKF<br>KRKNIR-KPDKTFWLTQWEK                                                                                   | A<br>HGSGQPYADTYYLQ<br>HGSSRKGMDPLDYFQ<br>HGSAQRRVKPPDYFR<br>HGSGQPYEGLYYVQ<br>(HGSAFPHEPLDYFR<br>HGSGQPSEPPDYFL<br>HGSAQ-KLITSPEDYFR<br>HGSQQPLMEPTEYFQ<br>G3<br>HGSCA-LPDISFIDYFT<br>HGTCA-LSVYTEDDYFR                                | RAVEL AKTTDLRNTLAEF<br>RAVEL TKFTDLLNTLNRF<br>AAIRL RKSVNLLRILGNQ<br>RTVKL MKRMNLLSTLKAG<br>AAITL RKNVDLLSTLRAF<br>TAIRL MKITNLQNKLAAF<br>AAIRL RKSVDLMSTLKRF<br>RAVQL TRYTDLLNTLNGF<br>TATRL NKKFNIRDILGRG<br>ETLNM KRRFNILDMLQRF                                                                            | 2GIYPNGRSYW 162<br>XGVLPNGASYP 165<br>AGIMENGNIYR 163<br>2GIFPDGRNYW 162<br>3GVEPRTTSYP 153<br>XRIVPGGTSYP 156<br>XGIVPNGTSYP 159<br>2GILPNGTSYP 157<br>ADIHANGSSYP 163<br>3GKLYP-GDSYD 165<br>XSMRPGDRVDP 171                                    |
| $S_2^{-}$ -RNase:<br>$S_3^{-}$ -RNase:<br>$S_4^{-}$ -RNase:<br>$S_6^{-}$ -RNase:<br>$S_7^{-}$ -RNase:<br>$S_8^{-}$ -RNase:<br>$S_9^{-}$ -RNase:<br>An_ $S_1^{-}$ -RNase:<br>An_ $S_2^{-}$ -RNase:                                               | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKYWPSLI<br>FDFVGTI-GNSSLRGELEKNWPSLV<br>PEILESLKKDKSLWNNLMYYWLSLS<br>HVa<br>FDIPEVGDQKFRQKLDVIWPDLR<br>FTLPDITDKSLLKRLDRNWPDLT<br>ADVLKITDKGLIQDLAVHWPDLT<br>HVa                                                     | TTDGHDPFKHIGFWTHEWEE<br>TVNKNY IAGFWIHEWEK<br>TRDGDRLXYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ<br>RRNTEL FWVHEWKK<br>SSDPTN FWVHEWKK<br>SSDPTN FWEHEWEE<br>SKISHKFWEHEWEE<br>TWDKDKLQNFWIYQWKI<br>HVb<br>LKRKRDPEQGFWITEWKF<br>KRKNIR-KPDKTFWLTQWEK<br>RRQRKVPGQKFWVTQWKK                                                         | HGSQQ PYADTYYLQ HGSSR - KGMD PLDYFQ HGSSQ RVKPPDYFR 2HGSQQ PYEGLYYQQ HGSAF PHEPLDYFR HGSQQ PSEPPDYFL HGSAQ - KLITSPEDYFR HGSQQ - PLMEPTEYFQ HGSAQ - QQVVPPHYFR C3 HGSCA - LPDISFIDYFT HGCA - LPMYSFNDYFV C3                             | RAVEL AKTTDLRNTLAEF<br>RAVEL TKFTDLLNTLNRF<br>AAIRL RKSVNLLRILGNQ<br>RTVKL MKRMNLLSTLKAG<br>AAITL RKNVDLLSTLRRY<br>TAIRL MKITNLQNKLAAF<br>AAIRL RKSVDLMSTLKRF<br>RAVQL TRYTDLLNTLNGF<br>TATRL NKKFNIRD ILGRG<br>ETLNM KRRFNILDMLQRF<br>KALEL KKRNNLDMLSRF<br>                                                 | 2GIYPNGRSYW 162<br>CGVLPNGASYP 165<br>AGIMENGNIYR 163<br>2GIFPDGRNYW 162<br>3GGVEPRTTSYP 153<br>CRIVPGGTSYP 155<br>CGIVPNGTSYP 155<br>2GILPNGTSYP 157<br>ADIHANGSSYP 163<br>3GKLYP-GDSYD 165<br>CSMRPGDRVDP 171<br>CSLTPGDQRVD 170                |
| $S_2^{-}$ -RNase:<br>$S_3^{-}$ -RNase:<br>$S_4^{-}$ -RNase:<br>$S_6^{-}$ -RNase:<br>$S_7^{-}$ -RNase:<br>$S_9^{-}$ -RNase:<br>$S_9^{-}$ -RNase:<br>An_ $S_1^{-}$ -RNase:<br>An_ $S_2^{-}$ -RNase:<br>Ni S-RNase:                                | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKYWPSLI<br>FDFVGTI-GNSSLRGELEKNWPSLV<br>PEILESLKKDKSLWNNLMYYWLSLS<br>HVa<br>FDIPEV-GDQKFRQKLDVIWPDLR<br>FTLPDI-TDKSLLKRLDRNWPDLT<br>ADVLKI-TDKGLIQDLAVHWPDLT<br>HVa                                                  | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLXYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ<br>RRNTELFWVHEWKK<br>SSDPTNFWVHEWKK<br>SSDPTNFWEHEWEE<br>TWDKDKLQNFWIYQWKI<br>HVb<br>LKRKRDPEQGFWITEWKF<br>KRKNIR-KPDKTFWLTQWEK<br>RRQRKVFGQKFWVTQWKF<br>HVb                                                                        | HGSQPYADTYYLQ<br>HGSSRKGMDFLDYFQ<br>HGSSQPYEGLYYQ<br>HGSAQPYEGLYYQ<br>HGSAQPYEGLYYQ<br>HGSAQPFEPLDYFR<br>HGSQQPSEPPDYFL<br>HGSAQ-KLITSPEDYFR<br>HGSQQQQVVPPHYFR<br>C3<br>HGSCA-LPDISFIDYFT<br>HGCA-LSYJFDDYFR<br>C3<br>HGCC-TELYSQEAYFD | RAVEL AKTTDLRNTLAEF<br>RAVEL TKFTDLLNTLNRF<br>AAIRL RKSVNLLRILGNQ<br>RTVKL MKRMNLLSTLKAG<br>AAITL RKNVDLLSTLRRY<br>TAIRL MKITNLQNKLAAF<br>AAIRL RKSVDLMSTLKRF<br>RAVQL TRYTDLLNTLNGF<br>TATRL NKKFNIRD ILGRG<br>ETLNM KRRFNILDMLQRF<br>KALEL KKRNNUDMLSRF<br>                                                 | 2GIYPNGRSYW 162<br>(GVLPNGASYP 165<br>AGIMENGNIYR 163<br>2GIFPDGRNYW 162<br>3GVEPRTTSYP 153<br>(RIVPGGTSYP 155<br>GGILPNGTSYP 156<br>4DIHANGSSYP 163<br>3KLYP-GDSYD 165<br>KSMRPGDRVDP 171<br>KSLTFGDQRVD 170<br>2GVIP-GKTYT 154                  |
| $S_2^-$ -RNase:<br>$S_3^-$ -RNase:<br>$S_4^-$ -RNase:<br>$S_5^-$ -RNase:<br>$S_7^-$ -RNase:<br>$S_7^-$ -RNase:<br>$S_9^-$ -RNase:<br>An_ $S_1^-$ -RNase:<br>An_ $S_2^-$ -RNase:<br>$n_S_2^-$ -RNase:<br>Ni_ $S^-$ -RNase:<br>Pe $S_7^-$ -RNase: | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKYWPSLA<br>IRMIDILNRDTSLKSDMGKYWPSLA<br>FDFVGTI-GNSSLRGELEKNWPSLV<br>PEILESLKKDKSLWNNLMYYWLSLS<br>HVa<br>FDIPEV-GDQKFRQKLDVIWPDLR<br>FTLPDI-TDKSLLKRLDRNWPDLT<br>HVa<br>TTITNSSKSNALDDRWPDLK<br>TTISDAREKKELDARWPDLK | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLXYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ<br>RRNTELFWVHEWKK<br>SSDPTNFWXHEWEE<br>SKISHKFWSHQWE<br>YSDSANFWSHQWQKI<br>HVb<br>LKRKRDPEQGFWITEWKF<br>KRKNIR-KPDKTFWLTQWEK<br>RRQRKVPGQKFWVTQWKK<br>HVb<br>SKMKT-IQTQDFWKYQVNK<br>YTEKDA-IQLQSFWRYEYNK                            | A<br>HGSQ2PYADTYYLQ<br>HGSSQRWKPPDYFR<br>2HGSQ2PYEGLYYVQ<br>HGSAQPYEFPDYFR<br>HGSQ2PSEPPDYFL<br>HGSQ2PLMEPTEYFQ<br>HGSAQ-KLITSPEDYFR<br>C3<br>HGSCA-LPDISFIDYFT<br>HGTCA-LSVTFDDYFR<br>C3<br>HGCCC-TELYSQEAYFD<br>HGTCC-SERXDQEAYFN     | RAVEL AKTTDLRNTLAEF<br>RAVEL TKFTDLLNTLNRF<br>AAIRL RKSVNLLRILGNC<br>RTVKL MKRMNLLSTLRAC<br>AAITL RKNVDLLSTLRRY<br>TAIRL NKITNLQNKLAAF<br>AAIRL RKSVDLMSTLRRF<br>RAVQL TRYTDLLNTLNGF<br>TATRL NKKFNIRDILGRC<br>ETLNM KRRFNILDMLQRF<br>C4<br>LAMKL KDKFDLLQMLKSC<br>LAKNL KDKFDLLQMLKSC                        | 2GIYPNGRSYW 162<br>CGUPNGASYP 165<br>AGIMENGNIYR 163<br>2GIFPDGRNYW 162<br>2GVEPRTSYP 153<br>(RIVPGGTSYP 155<br>CGUPNGTSYP 157<br>ADIHANGSSYP 163<br>3GKLYP-GDSYD 165<br>SSMRPGDRVDP 171<br>KSLTPGDQRVD 170<br>2GVIP-GKTYT 154<br>2GIIP-GKTYP 154 |
| $S_2^-$ -RNase:<br>$S_3^-$ -RNase:<br>$S_4^-$ -RNase:<br>$S_5^-$ -RNase:<br>$S_7^-$ -RNase:<br>$S_7^-$ -RNase:<br>$S_9^-$ -RNase:<br>An_ $S_1^-$ -RNase:<br>An_ $S_2^-$ -RNase:<br>$n_S_2^-$ -RNase:<br>Ni_ $S^-$ -RNase:<br>Pe $S_7^-$ -RNase: | PNFYSLL-RNHSFGMEMDEHWPSLG<br>NKILKSLKRDKSLEADLMKYWLSLS<br>PGILASLEHDESLWDDLKKYWLSLS<br>PNFYAMI-RNHSFAIEMDEYWPSLG<br>DDIIDKINNDSSLVADMNRYWKSLL<br>KNFQKKI-EHLPFRGELKKYWPSLI<br>FDFVGTI-GNSSLRGELEKNWPSLV<br>PEILESLKKDKSLWNNLMYYWLSLS<br>HVa<br>FDIPEV-GDQKFRQKLDVIWPDLR<br>FTLPDI-TDKSLLKRLDRNWPDLT<br>ADVLKI-TDKGLIQDLAVHWPDLT<br>HVa                                                  | TTDGHDPFKHIGFWTHEWEE<br>TVNKNYIAGFWIHEWEK<br>TRDGDRLXYFWPYQWRV<br>STEGHDPLKHIGFWEHEWEQ<br>RRNTELFWVHEWKE<br>SSDPTNFWVHEWKE<br>SSDPTNFWEHEWEE<br>TYDKDKLQNFWIYQWKI<br>HVb<br>LKRKRDPEQGFWITEWKF<br>KRKNIR-KPDKTFWLTQWEK<br>RRQRKVPGQKFWVTQWK<br>HVb<br>YSKMKT-IQTQDFWKYQYNK<br>YTERDA-IQLQSFWRYEYNK<br>FDEKYA-STKQPLWEHEYNF | A<br>HGSQ2PYADTYYLQ<br>HGSSQRWKPPDYFR<br>2HGSQ2PYEGLYYVQ<br>HGSAQPYEFPDYFR<br>HGSQ2PSEPPDYFL<br>HGSQ2PLMEPTEYFQ<br>HGSAQ-KLITSPEDYFR<br>C3<br>HGSCA-LPDISFIDYFT<br>HGTCA-LSVTFDDYFR<br>C3<br>HGCCC-TELYSQEAYFD<br>HGTCC-SERXDQEAYFN     | RAVEL AKTTDLRNTLAEF<br>RAVEL TKFTDLLNTLNRF<br>AAIRL RKSVNLLRILGNQ<br>RTVKL MKRNNLLSTLRAQ<br>AAITL RKNVDLLSTLRRY<br>TAIRL NKITNLQNKLAAF<br>AAIRL RKSVDLMSTLRRF<br>RAVQL TRYTDLLNTLNGF<br>TATRL NKKFNIRDILGRQ<br>ETLNM KRRFNILDMLQRF<br>C4<br>LAMKL KDKFDLLQMLKSQ<br>LAKNL KDKFDLLQMLKSQ<br>LAIRL KDKFDLLQILRIQ | 2GIYPNGRSYW 162<br>CGUPNGASYP 165<br>AGIMENGNIYR 163<br>2GIFPDGRNYW 162<br>2GVEPRTSYP 153<br>(RIVPGGTSYP 155<br>CGUPNGTSYP 157<br>ADIHANGSSYP 163<br>3GKLYP-GDSYD 165<br>SSMRPGDRVDP 171<br>KSLTPGDQRVD 170<br>2GVIP-GKTYT 154<br>2GIIP-GKTYP 154 |

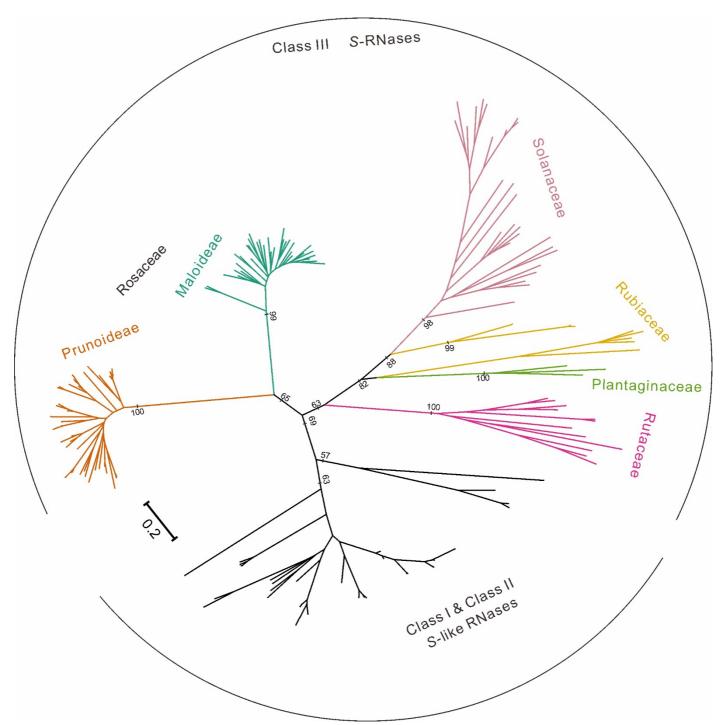
| $Ma\_S_2$ -RNase: vnshrikniqaqlkiiwpnvldrtnhlGfwnkqwikhgsCgnppimndthyfqtvinmyitqkqnvseilsrakieplgiqrp 163 |  |
|-----------------------------------------------------------------------------------------------------------|--|
| $Py_{S_5}$ -RNase: irkrekllepolatiwpnvfdrtknklfwdkewmkhgtcgyptidnenhyfetvikmyiskkonvsrilskakiepdgkkra 162 |  |
| $\Pr_{S_3}$ -RNase: fkkellsprmqsklkiswpnvvssndtkfwesewnkhgtqs-eqtlnqvqyfeishemwnsfnitdilknasivphptqtw 163 |  |

| HV4 C5 HV5                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------|--|
| S <sub>1</sub> -RNase: E-TGYIDATKHVYGYPILKCYKGYL-LKEVTICVD-GQARNLISCNHEERRSTNCRNIITFPPP*224                  |  |
| $S_2^-$ RNase: K-fnymkaimaktchl-pmlrcvk-KDgynhlkeviicvg-vqannfrscnygvgsprckgdnikfpeptde*234                  |  |
| $S_{3}$ -RNase: K-vefrkaikaktgyd-pilscvfsdgryq-lkevticvd-adatnfipcnpnkisrescrnnikfpapsptk*233                |  |
| $S_4$ -RNase: K-TAYVDAIKAIYGYPILKCYNGHL-LKELIICVD-GQARNFISCSKKEQGSSNCHKNIINFPPPK*226                         |  |
| $S_5^{*}$ -RNase: K-SKYKDAIKAVTGSDSVILKCAYNETGYL-LQEVMLCTD-YEAETFIECNSYEMFEENCGPDIIFPPRW*221                 |  |
| $S_{g}$ -RNase: I-TDYVKATKDIYGYPRITCYNRYL-LKEVNLCVD-RQARNFISCNHRERGSTTCGKNIKLPRYVKI*221                      |  |
| $S_{\gamma}^{'}$ -RNase: K-DYYKSALEVIHGGESVMLACFSVNGIQL-LRDVYICLD-GQLRYFISCNKN-EFNKTENCGDDIMFPSKVQISSS*233   |  |
| $S_g$ -RNase: I-TDFVDATKDIYCHPRITCSYGYL-LNEVNLCVD-SQARNFISCNHRERKSTTCRKRITFPRHVKIENGYIWHEE* 231              |  |
| S <sub>g</sub> -RNase: K-VEFRKAIKTKTGHD-PSLSCVF-EGGHFQLKEVIICVD-AEATNFIPCQRNKINGESCRDTIMFPTRTK*231           |  |
| <u></u>                                                                                                      |  |
| An_S <sub>1</sub> -RNase: L-QQVESTLTKFIKKV-TVVKCPNGFLTEVIVCFD-PSGTSIIDCPGPYPCTYVTVNFPKAVKR* 227              |  |
| nse: revaraiskytnhe-pevkcregflteiticfdtgrdasytdcpgplctdpmydfprsyvrtir* 235                                   |  |
| $\operatorname{An}_{S_2}$ -RNase: V-SDVNGAITKVTGGI-AILKCPEGYLTEVIICFD-PSGFPVIDCPGPFPCKDDPLEFQVLSRRKFQDL* 237 |  |
| <u>C5</u>                                                                                                    |  |
| Ni_S-RNase: v-nkieeairevtqvy-pnlnCignplktmelkeigiCfn-reatevvaChrrktCnplnkneisfpl* 220                        |  |
| $Pe_S_7$ -RNase: v-dkieeavkavthey-pniecvgdpyktlelkeigicln-peatkvtpchrrktckplnkkeisfpq* 220                   |  |
| $Pe S_2 = RNase: F-GEIQKAIKTVTNNKDPDLKCVENIKGVKELNEIGICFN-PAADSFHDCRHSKTCDETDSTQTLFRR* 223$                  |  |
|                                                                                                              |  |
| Ma_S <sub>2</sub> -RNase: L-VDIEKAIRNSINKKKPRFKCQN-NGGVTELVEISLCSD-RSLTQFRDCPHPFPPGSPYLCPADIQY*- 229         |  |
| $Py_{S_s}$ -RNase: L-LDIENAIRNGADNKKPKLKCQK-KGTTTELVEITLCSD-KSGEHFIDCPHPFEPISPHYCPTNNIKY*- 229               |  |
| $\Pr_{S_3}$ -RNase: kysdivsaiqsktqrt-pllrcktdpahpnantqllhevvfcyg-ynaikqidcnrtagcknqvnilfp* 231               |  |


# Supplementary Figure 2. Amino acid sequence alignments of *S*-RNases from pummelo and Plantaginaceae (prefix An for *Antirrhinum*) and Solanaceae (prefixes Ni and Pe for *Nicotiana* and *Petunia*) and Rosaceae (prefixes Ma, Py and Pr for *Malus*, *Pyrus* and *Prunus*).

The pummelo *S*-RNase sequences used are *S*<sub>1</sub>-RNase to *S*<sub>9</sub>-RNase; Plantaginaceae *S*-RNase sequences (An\_S1-RNase: HE805271, An\_S5-RNase: X96464, An\_S2-RNase: X96465), Solanaceae *S*-RNase

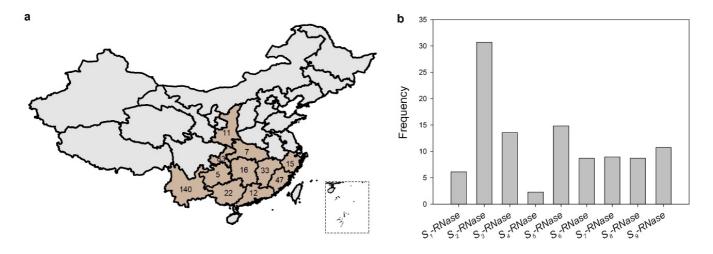
sequences (Ni\_S-RNase: CAA05306, Pe\_S7-RNase: BAJ24847 and Pe\_S2-RNase: AAG21384) and Rosaceae *S*-RNase sequences (Ma\_S2-RNase: ADB85476, Py\_S5-RNase: BAA13577 and Pr\_S3-RNase: CAC27786) were downloaded from the NCBI protein database.


The conserved amino acids of *S*-RNases from pummelo, Plantaginaceae, Solanaseae and Rosaceae, respectively, are indicated by shaded boxes (grey indicates 100% identity; light grey  $\geq$  70% identity). The *S*-RNases from pummelo contain five conserved domains (C1-C5) and five hypervariable regions (HV1- HV5, indicated in red). HV1 and HV2 have the highest diversity and correspond to HVa and HVb of the *S*-RNases from Plantaginaceae and Solanaceae.

The three conserved histidine residues (triangles), six conserved cysteine residues (solid circles), and an amino-terminal signal peptide (underlined) present in the pummelo sequences are indicated. The asparagine amino acid residues (N), predicted to be potentially N-glycosylated, are indicated in blue font. The  $S_2$ -RNase has 1 such potentially N-glycosylated amino acids;  $S_3$ -,  $S_4$ -,  $S_5$ - and  $S_6$ -RNase have 3;  $S_1$ -,  $S_7$ -,  $S_8$ - and  $S_9$ -RNase have 4 potentially N-glycosylated asparagine amino acids.



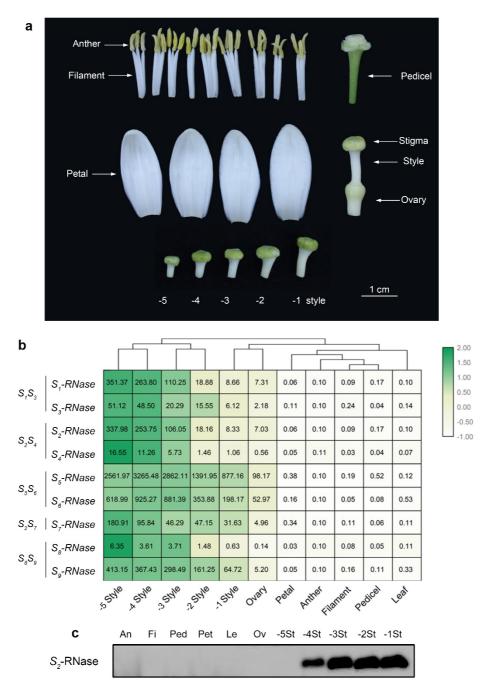
### Supplementary Figure 3. Normed Variability Index (NVI) figure calculating the conserved and hypervariable sequences present in the nine pummelo *S*-RNases.


The averaged NVI value of each residue is calculated using a window of seven residues as described by Kheyr-Pour et al<sup>1</sup>. Analysis of the nine pummelo putative *S*-RNase sequences revealed five conserved regions (the valleys, C1- C5) and five hypervariable regions (the peaks, HV1- HV5). HV1 and HV2 have the highest sequence diversity so are the most polymorphic between the citrus sequences.



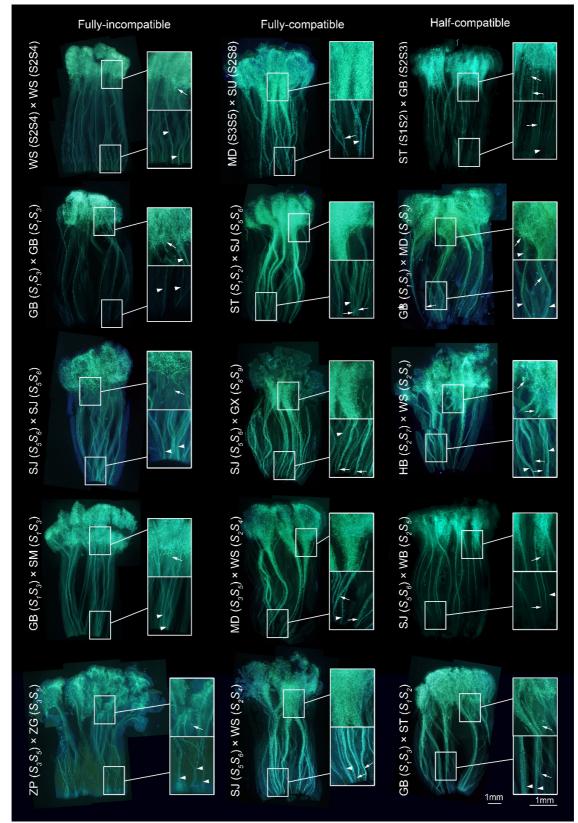
Supplementary Figure 4. Phylogeny of the S-RNases identified in pummelo (Rutaceae) and known S-RNases from Rosaceae, Solanaceae, Plantaginaceae and Rubiaceae.

The phylogenetic tree was constructed with deduced amino acid sequences using the maximum likelihood method with 1000 rapid bootstraps. The *S*-like RNase sequence from *Bryopsis maxima* (AB164318) was used as an outgroup. Genome-wide identification of T2/*S*-type ribonucleases in 'Wanbai' pummelo was carried out with HMMER<sup>2</sup> based on Liang's method<sup>3</sup> and the identified *S*-RNases were also submitted to the phylogenetic analysis. The putative Rubiaceae (*Coffea*) sequences<sup>4,5</sup> are also indicated here for completeness and for comparison.


The T2/S-type ribonucleases grouped into Class I, II and III, as reported by Ramanauskas and Igić<sup>6</sup>. All functional S-RNases fall into the Class III clade). The class III T2/S-type RNases from the Roseaceae (Prunoideae and Maloideae) are well separated from the other class III T2/S-type RNases from the Solanaceae, Plantaginaceae and putative S-type RNases from the Rubiaceae. The S-type RNases from pummelo (Rutaceae) clustered together on an independent branch.

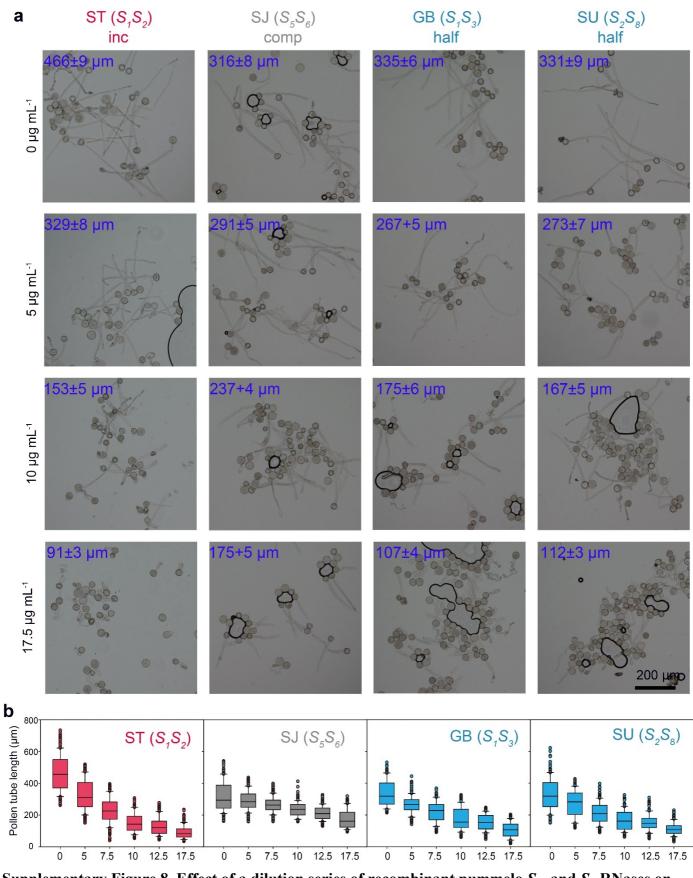


Supplementary Figure 5. Analysis of the S-haplotype of 391 Chinese pummelo accessions.


- (a) The distribution of 391 Chinese pummelo accessions. 391 pummelo accessions were collected from 11 provinces (brown) in China. The number of accessions from each province is indicated on the map.
- (b) The frequency of S<sub>1</sub>-RNase to S<sub>9</sub>-RNase in 391 pummelo accessions. The nine S-RNases identified, S<sub>1</sub>-RNase to S<sub>9</sub>-RNase were found in 76.2% of these accessions. Most occur at a low frequency, as expected for negative frequency dependent selection. The S<sub>2</sub>-RNase is present at the highest frequency with 30.2%. S<sub>4</sub>-RNase is present at the lowest frequency with 2.3%.

The S-haplotype of these pummelo accessions were assigned using PCR of leaf DNA with S-RNase ( $S_1$ -RNase to  $S_9$ -RNase) specific primers.




### Supplementary Figure 6. Morphology of pummelo floral organs and pistils at different developmental stages and expression of the *S*-RNases.

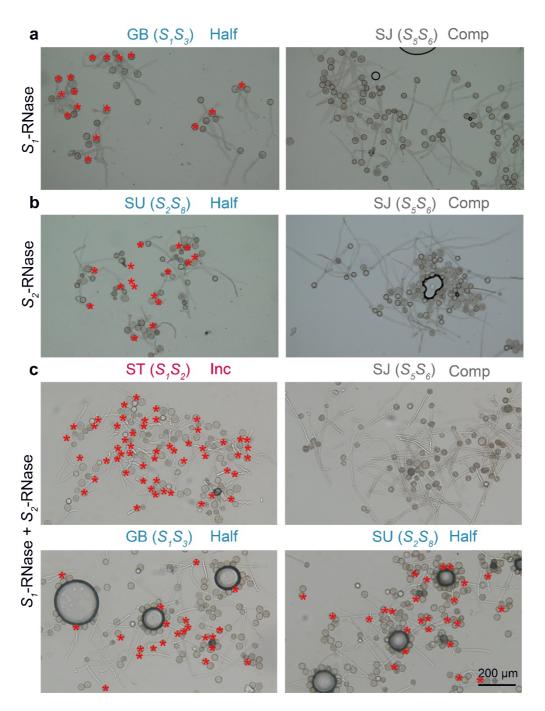
- (a) Images of pummelo floral organs. Top row: anthers, filaments and pedicel (stage 0 = open flower); middle row: petal and pistil (stage 0 = open flower); bottom row: pistils (stigma and style) at five stages during development: -5, -4, -3, -2, and -1 indicate days relative to anthesis; the mature style is ~1 cm in length.
- (b) qPCR showing temporal and tissue-specific expression of *S*<sub>1</sub>- to *S*<sub>9</sub>-*RNase* transcripts. The heat map shows the relative expression of nine *S*-*RNase* genes quantified using qRT-PCR in styles at different developmental stages: -5, -4, -3, -2, and -1 days before anthesis. An: anther; Fi: filament; Ped: pedicel; Pet: petal; Le: leaf; Ov: ovary; St: style. The scale bar (right) indicates expression levels (log<sub>2</sub>-transformed values). The mean transcript level (based on three biological replicates), is shown in each box.
- (c) Western blot showing expression of the  $S_2$ -RNase protein in various tissues and in pistils at different developmental stages ( $S_1S_2$  genotype). There was no expression in tissues except in style (St). In contrast to the transcript (see b), which peaked at -5 days and subsequently declined, protein levels were not detected at this early stage, and increased over time as the pistil matured. Experiments were repeated independently twice three times with similar results obtained for each.



**Supplementary Figure 7. Representative pollinated pummelo pistils stained with aniline blue**. Representative images (5 of each type of pollination, 15 in total) of aniline blue staining of pollinated pummelo pistils (5 days after pollination) classified in Supplementary Table 3. The accession names and their respective *S*-genotypes are indicated to the left of each block.

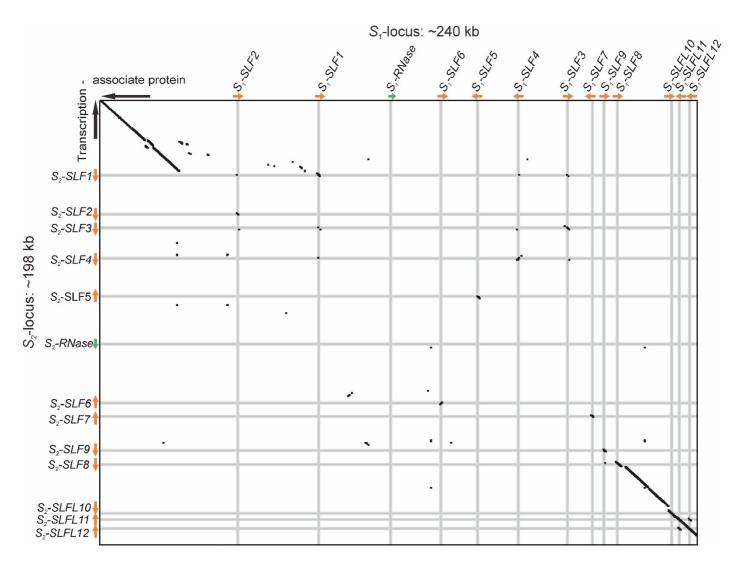
In fully-incompatible crosses, pollen tubes were inhibited near the top of the style (upper inset panel) and no significant long pollen tubes were observed in the style (lower inset panel); In fully-compatible crosses, bunches of pollen tubes extended through the pistil. In the half-compatible crosses; some pollen tubes extended to the base of the pistil, while others were inhibited near the top of the style. Pollen tubes (pt) are indicated with arrows. Vascular bundles (vb) are indicated with arrowheads. At least two pistils of each pollination combinations were observed (see **Supplementary Table 5**).




Supplementary Figure 8. Effect of a dilution series of recombinant pummelo  $S_1$ - and  $S_2$ -RNases on pollen tubes growing *in vitro*, showing increasing inhibitory activity (and some non-specific inhibitory activity).

(a) Representative images of the effect of a dilution series of *S*-RNase treatments on pummelo pollen tube growth using the *in vitro* bioassay. The concentrations of combined *S*<sub>1</sub>-RNase and *S*<sub>2</sub>-RNase are indicated at the left hand side of the panel (e.g. 5 μg mL<sup>-1</sup> indicates 5 μg mL<sup>-1</sup> *S*<sub>1</sub>-RNase + 5 μg mL<sup>-1</sup> *S*<sub>2</sub>-

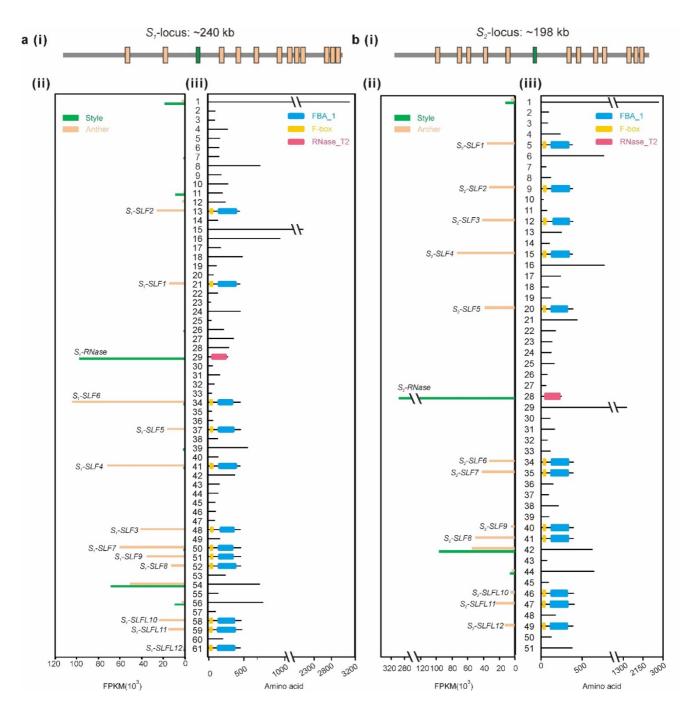
RNase as a combined treatment). The mean pollen tube length  $\pm$  SEM for each treatment is shown in the upper left hand side of the corresponding representative image; > fifty pollen tubes were measured in three independent experiments (> 150 in total).


#### (b) Box plot showing quantitation of pollen tube length measured for the ST $(S_1S_2)$ , SJ $(S_5S_6)$ , GB

( $S_1S_3$ ) and SU ( $S_2S_8$ ) pummelo accessions. When treated with 10 µg mL<sup>-1</sup>  $S_1$ -RNase and 10 µg mL<sup>-1</sup>  $S_2$ -RNase combined, pollen from plants with genotype  $S_1S_2$  (an incompatible combination, red) showed a ~67% decrease in length compared to the untreated controls.  $S_5S_6$  pollen (a compatible combination, grey) showed some non-specific activity at higher concentrations. Pollen from plants of genotype  $S_1S_3$  or  $S_2S_8$  pollen (a half-compatible combination, blue) showed an overall ~50% decrease in pollen tube length. These dilution series were used to ascertain the optimal concentrations of  $S_1$ - and  $S_2$ -RNases for the in vitro SI bioassay. On the basis of these tests, a concentration of 10 µg mL<sup>-1</sup> was chosen for all the key test assays in this study, to obtain maximal inhibition with minimal non-specific activity. The length of >50 pollen tubes was measured for each replicate (n = 3 biologically independent replicates, >150 in total). Box and whisker plots show the distribution of individual pollen tube lengths in *in vitro* bioassays of recombinant  $S_1$ - and  $S_2$ -RNases with pollen from plants of different genotypes (box indicates the upper & lower quartile, with median; lines above and below indicate the range; dots indicate the outliers).



Supplementary Figure 9. Representative images of pummelo pollen tubes treated with recombinant *S*<sub>1</sub>-RNase and *S*<sub>2</sub>-RNase showing *S*-specific inhibitory activity.


a - c, Representative images of the effect of recombinant  $S_I$ -RNase (a),  $S_2$ -RNase (b) and  $S_I$ - +  $S_2$ -RNase (c) treatments (10 µg mL<sup>-1</sup> per treatment) on pummelo pollen tube growth. For treatment of pollen with the  $S_I$ - or  $S_2$ -RNase separately, the outcomes are expected to be either half-compatible (half) where one S-allele is shared (e.g. for  $S_IS_2$ ) or fully compatible (comp); where no S-alleles are shared (e.g. for pollen from plants carrying  $S_5S_6$ ). Pollen tubes that were much shorter were judged to be inhibited (indicated by red asterisks). The accession name and S-genotype are indicated above each panel (e.g. accession ST has S-genotype  $S_IS_2$ ). Each treatments was repeated independently three times with similar results.



#### Supplementary Figure 10. Harr plot analysis between the pummelo S<sub>1</sub>-locus and the S<sub>2</sub>-locus.

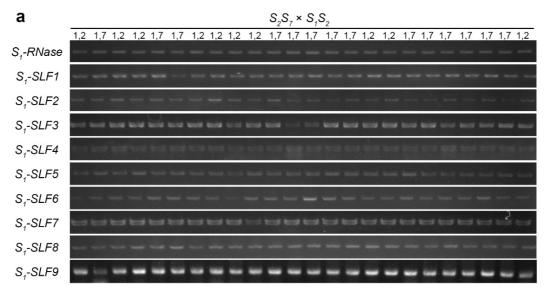
Pattern matching analysis of homologies between DNA sequences (Harr plot analysis) between two pummelo *S*-loci ( $S_1$  and  $S_2$ ). Each citrus *S*-locus contains a *S*-*RNase* and 12 candidate *SLFs/SLFLs*. The arrows indicate the direction of transcription for each gene.

The Harr plot was carried out by GENETYX Ver. 14 (GENETYX Corp., Tokyo, Japan) using the following settings: Unit size to compare: 8 bases; Cut off number: 22 bases; Minimum length: 25 bases.

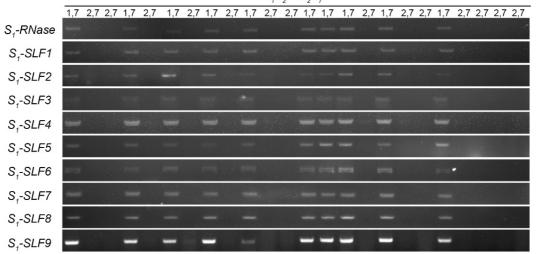


### Supplementary Figure 11. The FPKM and conserved domains of *SLF/SLFL* genes located at the pummelo $S_{1-}$ (a) and $S_{2-}$ locus (b).

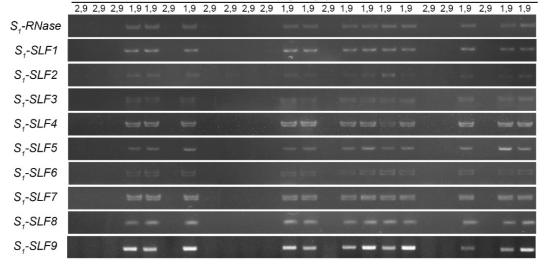
(i) Cartoon showing the overall structure of the *S*-loci. The relative positions of the *S*-*RNase* (green box) and the *F*-box (cream boxes) genes on the pummelo *S*-locus are shown, with the length of the *S*-locus indicated above.

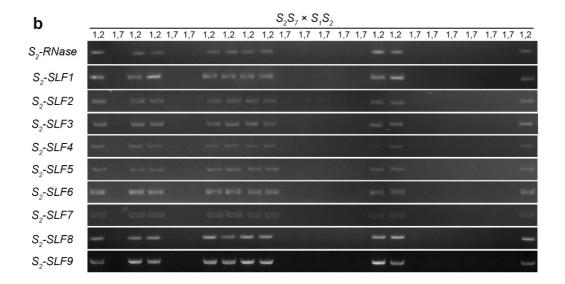

(ii) FPKM values for the 61 genes on the pummelo  $S_1$ -locus (a) and 51 genes on the  $S_2$ -locus (b). FPKM was calculated with pair-end reads from anthers and styles 5 days before anthesis from  $S_1S_3$  and  $S_2S_5$  pummelo respectively. The pummelo *S*-*RNase* gene was specifically expressed in the style (green bar) and *SLF/SLFL* genes were specifically expressed in anthers (cream bars).

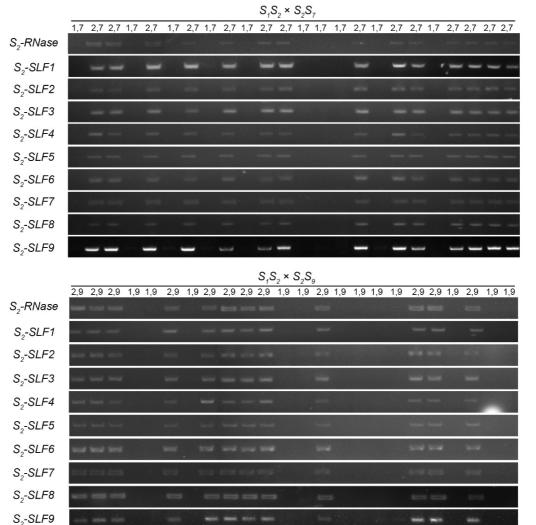
(iii) Schematic diagram of the relative positions of the conserved F-box, FBA\_1 and RNase\_T2 domains in predicted proteins present at the pummelo  $S_I$ -locus (a) and  $S_2$ -locus (b). These domains were predicted by the conserved domains database (CDD) at NCBI. Each S-locus has one S-RNase (with RNase \_T2 domain, red block) and 12 SLFs/SLFLs, with F-box (yellow block) and FBA\_1 domain (blue block).


|       |        |         |             |         |             |        |         | <u> </u> |                      | 4.00         |
|-------|--------|---------|-------------|---------|-------------|--------|---------|----------|----------------------|--------------|
|       |        |         |             |         |             |        |         |          | 1                    | 2.83         |
| 1.00  | 1.72   | 1.39    | 0.97        | 0.80    | 0.59        | 21.60  | 14.75   | 10.21    | S₁-SLF1              | 2.00<br>1.41 |
| 1.01  | 2.27   | 1.53    | 2.13        | 0.97    | 1.08        | 175.90 | 369.85  | 347.99   | S₁-SLF2              | 1.00         |
| 1.00  | 0.17   | 0.93    | 0.58        | 0.02    | 0.09        | 166.52 | 443.93  | 483.01   | S₁-SLF3              | 0.71<br>0.50 |
| 0.94  | 0.12   | 0.58    | 0.43        | 0.15    | 0.34        | 79.47  | 372.63  | 173.21   | S₁-SLF4              |              |
| 1.00  | 0.04   | 0.44    | 0.37        | 0.03    | 0.03        | 147.66 | 337.18  | 252.45   | S₁-SLF5              |              |
| 1.05  | 1.09   | 0.18    | 0.66        | 0.12    | 0.21        | 6.90   | 11.26   | 14.02    | S₁-SLF6              |              |
| 1.05  | 0.10   | 0.11    | 0.15        | 0.03    | 0.01        | 54.59  | 103.25  | 112.27   | S₁-SLF7              |              |
| 1.07  | 0.18   | 0.04    | 0.12        | 0.03    | 0.02        | 10.33  | 37.06   | 31.87    | S₁-SLF8              |              |
| 1.00  | 2.99   | 18.64   | 12.24       | 16.19   | 6.50        | 142.37 | 1690.87 | 1240.51  | S₁-SLF9              |              |
| 1.06  | 0.12   | 1.03    | 0.39        | 0.10    | 0.11        | 283.77 | 669.74  | 524.77   | S <sub>2</sub> -SLF1 |              |
| 1.00  | 0.00   | 0.17    | 0.26        | 0.00    | 0.00        | 110.50 | 137.52  | 701.37   | S₂-SLF2              |              |
| 1.01  | 4.23   | 1.03    | 1.16        | 0.22    | 0.14        | 41.78  | 73.06   | 71.08    | S₂-SLF3              |              |
| 1.04  | 0.59   | 1.34    | 0.58        | 0.40    | 0.67        | 70.73  | 456.49  | 388.17   | S₂-SLF4              |              |
| 1.00  | 0.13   | 0.12    | 0.14        | 0.00    | 0.05        | 48.39  | 143.79  | 166.56   | S₂-SLF5              |              |
| 1.00  | 1.42   | 0.47    | 1.00        | 1.77    | 2.01        | 111.30 | 113.09  | 201.04   | S₂-SLF6              |              |
| 1.01  | 0.05   | 0.13    | 0.16        | 0.02    | 0.03        | 68.77  | 96.81   | 104.07   | S₂-SLF7              |              |
| 1.07  | 0.59   | 0.25    | 0.35        | 0.18    | 0.46        | 6.43   | 86.59   | 65.48    | S₂-SLF8              |              |
| 1.00  | 2.39   | 18.64   | 2.00        | 2.55    | 1.22        | 42.91  | 696.33  | 212.81   | S₂-SLF9              |              |
| style | veat < | Petal P | adicel Filf | iment C | wary Poller | tube p | ither F | ollen    |                      |              |

Supplementary Figure 12. Tissue-specific expression of pummelo SLF genes at the S<sub>1</sub>- and S<sub>2</sub>-loci.


Heat map showing the relative expression of SLF genes in different tissues from pummelo. All the tissues were obtained from a plant with a  $S_1S_2$  genotype. The expression of each gene was quantified using qRT-PCR. The mean transcript levels (based on three biological replicates), is presented in each box. The scale bar on the right indicates the range of expression levels in log<sub>2</sub>-transformed values.





 $S_1S_2 \times S_2S_7$ 



 $S_1S_2 \times S_2S_9$ 

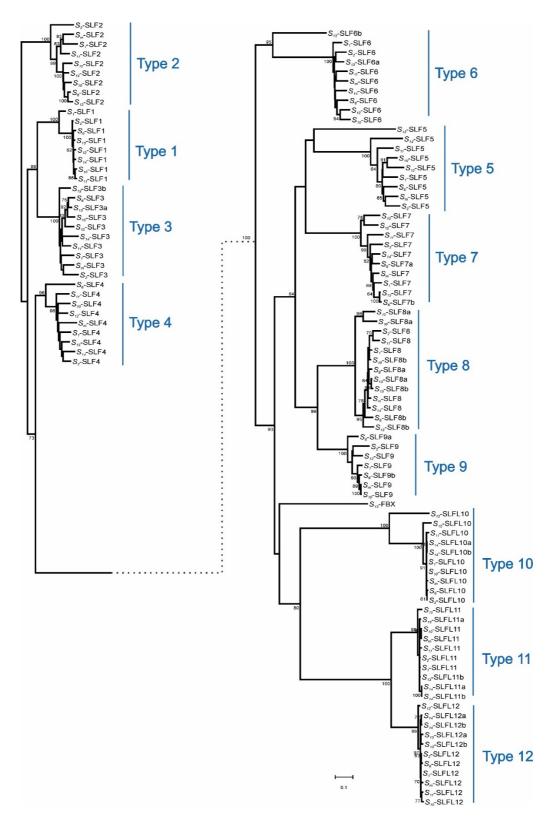






### Supplementary Figure 13. Genetic linkage between pummelo *S-RNase* and *SLF*s in the $S_{1-}$ (a) and $S_{2-}$ loci (b).

Tissue from full-sibling pummelo families segregating for haplotypes (1)  $S_2S_7 \times S_1S_2$ , (2)  $S_1S_2 \times S_2S_7$  and (3)  $S_1S_2 \times S_2S_3$  was used for PCR, with each family containing 24 individuals.


(a)  $SLF_{1-1}$  to  $SLF_{1-9}$  were only amplified from plants carrying the  $S_1$ -allele and not those carrying  $S_2$ ,  $S_7$ ,  $S_9$  alleles. (b)  $SLF_{2-1}$  to  $SLF_{2-9}$  were only amplified from plants carrying the  $S_2$ -allele and not those carrying  $S_1$ ,  $S_7$ ,  $S_9$  alleles. These data show that all the pummelo  $SLF_3$  are genetically linked to their cognate *S*-*RNase*. All of the genotypes were repeated independently two times with the same results.

| S <sub>1</sub> (12)  | T2 318 T1 279 R 181 T6 139 T5 150 T4 190 T3 85 T7 39 T9 38 T8 214 T10 1.5 T11 30 T12                       | BAC      | C. maxima                                                                                     |                                                                                             |
|----------------------|------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| S <sub>2</sub> (12)  | T1 16 1 T2 53 T3 124 T4 159 T5 20.8 R 24.8 T6 44 T7 144 T9 42 T8 21.8 T10 1.3 T11 3.0 T12                  | BAC      | C. maxima                                                                                     |                                                                                             |
| S <sub>6</sub> (14)  | T1 1.9 T2 5.2 T3 61.7 T4 11.3 R 186 T5 4.1 T6 41.2 T7 9.4 T9 2.9 T8 1.3 T7 4.6 T9 2.8 T8 26.2 T10          | 5.5 T12  | chr1:1048218-1302327 C                                                                        | C. maxima                                                                                   |
| S <sub>10</sub> (13) | T1 33 T2 59 T3 45 T4 23 R 338 T5 127 T8 243 T7 56 T8 263 T9 29 T8 204 T10 13 T1 26 T1                      | 2        | scaffold85925_cov91:1946194-                                                                  | -2147329 C. reticulata                                                                      |
| S <sub>11</sub> (11) | T1 20 T2 170 T3 244 T4 11.6 R 27.4 T5 17.0 T6 13.5 T7 36.5 T8 19.3 T10 1.3 T11 3.0 T12 scaffol             | d_7: 977 | 7168-1204057 C. clementina                                                                    |                                                                                             |
| S <sub>12</sub> (13) | T1 2.0 T2 14.9 T3 5.6 T4 0.7 R 36.7 T5 49.6 T7 56.4 T6 50.9 T8 6.0 T9 29.4 T8 24.8 T10 4.6 111 2.9 T1      | 2 sca    | iffold_20559: 1812108-2222788                                                                 |                                                                                             |
| S <sub>13</sub> (17) | 71 20 72 74 73 160 73 4.1 74 34.9 76 36.5 7.4 R 7.6 710 R -67.7 76 39.1 77 6.6 78 14.9 78                  | 18.9 T11 | 3.0 T12 11.2 T5 27.8 T11 3.0 T12                                                              | scaffold_470: 183317-210783<br>scaffold_539 <i>C. ichangensis</i><br>scaffold_315: 1-219005 |
| S <sub>14</sub> (14) | 11 21 12 113 13 219 14 294 (R 40.9 15) 2 - 37.6 16 35.0 17 53.5 18 2 - 21.6 110 1.3 111 3.1 112 2.2 110 1. | 3 11 3.0 | scaffold_12: 1-161191<br><u>5 112</u> scaffold_698 <i>C. medic</i><br>scaffold_764: 99650-120 |                                                                                             |
| S <sub>m</sub> (11)  | 12 29.9 13 28.0 14 49.0 R 18.8 15 51.0 16 8.5 17 21.7 19 2.9 18 20.6 110 1.3 111 3.0 112 chr1: 27,44       | 40,275-2 | 27,791,238 C. sinensis                                                                        |                                                                                             |

### Supplementary Figure 14. Schematic diagram of the *S-RNase* and *SLF/SLFL* genes at the citrus *S*-loci.

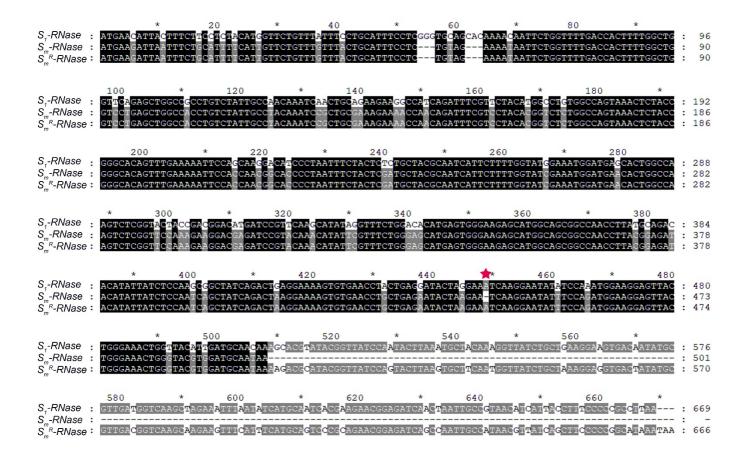
Each citrus *S*-locus contains one *S*-*RNase* and multiple *SLF/SLFL* genes; the number of *SLF/SLFL* genes is indicated at the left of each *S*-locus in brackets. Genes are indicated with block arrows. The point of each block arrow indicates the direction of transcription. *S*-*RNase* genes are indicated with black arrows labeled with "R". *SLF/SLFL* genes are indicated with arrows labeled with "Tx". The "x" indicates the type of *SLF/SLFL* genes. The 12 types of *SLF/SLFL* genes are indicated with different colors. *SLF/SLFL* gene that belonged to none of the 12 types is indicated with white arrows without any labeling. The *S*-haplotype identified from the *C. maxima* genome was named  $S_6$ , because the *S*-*RNase* on the *S*-locus is identical to  $S_6$ -*RNase*. The *S*-haplotype identified from the *C. sinensis* genome was named  $S_m$ , because the *S*-*RNase* (red star) on the *S*-locus is mutated and encodes a truncated protein (see **Supplementary Fig. 11**). Note that the *S*-locus of *C. clementina* (*S*<sub>11</sub>-locus) is located on scaffold 7, rather than scaffold 5 as previously reported<sup>7</sup>.

 $S_{1}$ - and  $S_{2}$ -loci were screened from a BAC library. The other S-loci were obtained from available genome databases and their locations are indicated at the right of each S-locus. Because the assembly of the genome sequences of these species is incomplete and still at the scaffold stage, for the  $S_{13}$ - and  $S_{14}$ -loci. we obtained two and three fragments respectively, based on BLAST results (each conserved end has a homologous fragment, but the fragments have not been assembled together).



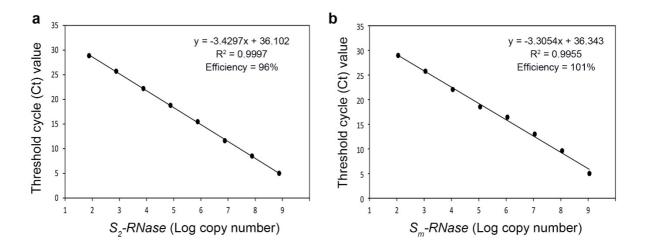
#### Supplementary Figure 15. Phylogeny of 117 *F-box* genes from nine *S*-loci from citrus.

Sequences of F-box proteins from different citrus species (*C. maxima*, *C. reticulata*, *C. clementina*, *C. sinensis*, *C. medica*, *C. ichangensis* and *A. buxifolia*) were analysed and grouped into 12 types based on their deduced amino acid sequences. They were named  $S_n$ -SLFx/ $S_n$ -SLFLx, according to the nomenclature used by Kubo et al.<sup>8,9</sup>, with n and x indicating the S-haplotype and the type respectively. If two copies were present in one SLF type, they are indicated by a and b; e.g.  $S_{13}$ -SLF3a and  $S_{13}$ -SLF3b. The F-box that could not be grouped to the 12 types was named  $S_n$ -FBX, e.g.  $S_{13}$ -FBX. The allelic *SLFL*s within the type 10, 11 and 12 cluster grouped together on a very short branch.


| SRNase : MKINFC | IFIVLFVYCIS                | 20<br>SGAAQNNSGFD<br>SVENNSGFD<br>SVENNSGFD                     | HFWLVLSWPP | VYCLQIRCER | <b>KPTDFVLHGL</b> | WPVNSTGHSL | KNSTNGT : | 75<br>73<br>73          |
|-----------------|----------------------------|-----------------------------------------------------------------|------------|------------|-------------------|------------|-----------|-------------------------|
| SRNase : PNFYSM | LRNHSFGIEMD                | 100<br>EHWPSLG <mark>TTD</mark> G<br>EHWPSLGSKEG<br>EHWPSLGSKEG | RDPYKHIRFW | EHEWEEHGSG | QPYGDTYYLQ        | SAIRLRKSVN | LLRILRI : | : 150<br>: 148<br>: 148 |
| SRNase : KEYFQM | EGVTGKL <mark>G</mark> TWM | A <mark>t</mark> khvygyp <b>i</b> l                             |            | VTICVDGQAR |                   | RSTNCRNIIT | : 1       | 166                     |

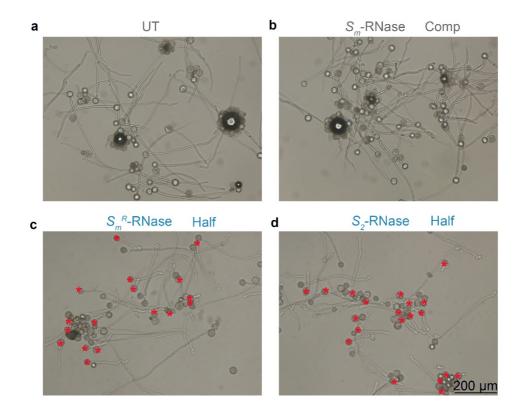
### Supplementary Figure 16. Deduced amino acid sequence alignments for the pummelo $S_1$ -, $S_m$ - and $S_m^R$ -RNases.

The sequence of the pummelo  $S_I$ -RNase, (which has the highest homology to the  $S_m$ -RNase, 77% deduced amino acid identity, encodes 222 amino acid residues.


The natural mutant  $S_m$ -RNase gene has a stop codon at nucleotide position 498, resulting in a truncated coding sequence. The deduced amino acid sequence (166 residues) of  $S_m$ -RNase was, as expected, shorter than the unmutated  $S_l$ -RNases.

We engineered a "recovered" version ( $S_m^R$ -RNase) by inserting an adenine nucleotide at position 443 (red star, see **Supplementary Fig. 17**) in the truncated  $S_m$ -RNase. This resulted in the "recovered"  $S_m^R$ -RNase being extended to full length, equivalent to the normal S-RNase size, with a predicted transcript of 221 amino acids. The  $S_m$ -RNase has lost the hypervariable domains HV4 and HV5 and the conserved C4 and C5 domains.



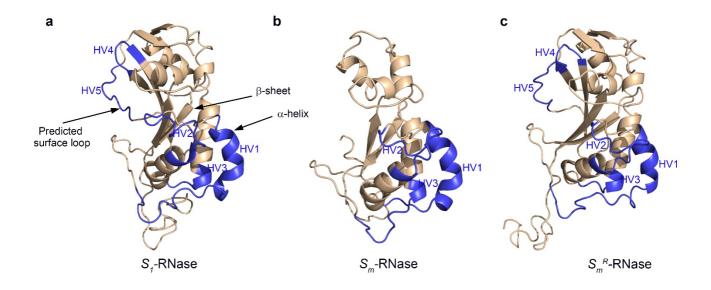

#### Supplementary Figure 17. Nucleotide sequence alignments of pummelo $S_1$ -, $S_m$ - and $S_m^R$ -RNase.

To recover the function of the pummelo  $S_m$ -RNase, an adenine ("A", red star) nucleotide was introduced in  $S_m^R$ -RNase using the sequence of the  $S_I$ -RNase, which has the nearest sequence identity (~85% nucleotide identity) to the  $S_m/S_m^R$ -RNase, as a template.



Supplementary Figure 18. Standard curves of the pummelo  $S_{2-}$  (a) and  $S_m$ -RNases (b) generated by real-time PCR.

Because we used different primers to amplify the pummelo  $S_2$ - and  $S_m$ -RNases, in order to be able to compare how their levels of expression compared, we needed to check that they had similar efficiencies. The Ct value over log copy number was plotted for the serial dilutions of input DNA templates. The efficiencies of the  $S_2$ - and  $S_m$ -RNase primers were calculated as described by Workenhe et al<sup>10</sup>, showing that the  $S_m$ - and  $S_2$ -RNase primers have comparable amplification efficiencies. The equation of each regression line is shown; this was used to calculate the absolute copy number of  $S_2$ - and  $S_m$ -RNase in Figure 4c.

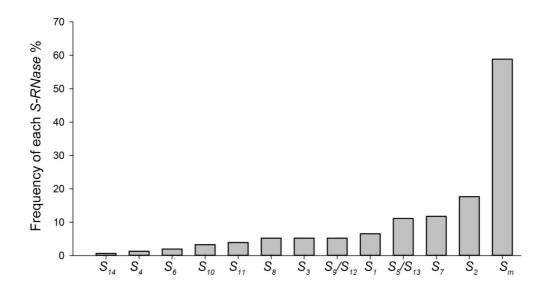



# Supplementary Figure 19. Representative images of pummelo pollen tubes from a plant with the $S_2S_m$ genotype growing in vitro after treatment with recombinant pummelo $S_m$ -RNase, $S_m^R$ -RNase or $S_2$ -RNase.

- (a) Untreated pollen (UT) had long pollen tubes.
- (b) Pollen from a plant with the  $S_2S_m$  genotype was not inhibited by the mutant  $S_m$ -RNase protein.
- (c) Pollen from a plant with the  $S_2S_m$  genotype had ~50% pollen tubes inhibited by the recombinant "recovered"  $S_m^R$ -RNase. This shows this recovered form has biological activity.
- (d) Pollen from a plant with the  $S_2S_m$  genotype had ~50% pollen tubes inhibited by the recombinant  $S_2$ -RNase. This shows that the  $S_2$  pollen is capable of being inhibited by cognate  $S_2$ -RNase.

This demonstrates the lack of pollen tube inhibitory activity of the mutant  $S_m$ -RNase protein and the S-specific inhibitory activity of the recovered  $S_m^R$ -RNase. Quantitation of these data are shown in Figure 4h.

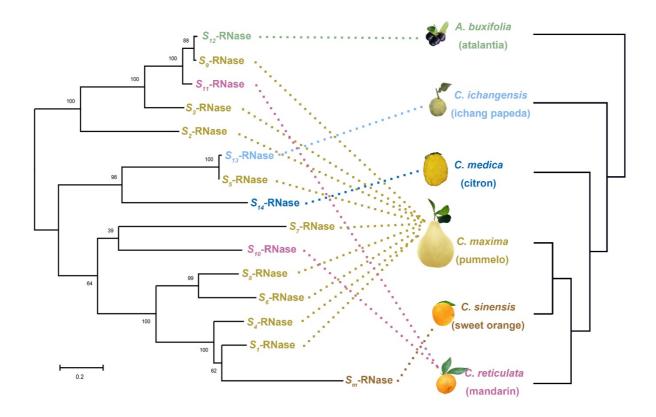
Variant recombinant pummelo S-RNases (10  $\mu$ g mL<sup>-1</sup> per treatment) were added to pollen in the *in vitro* SI bioassay for 7 hours. All pollen was from a pummelo plant with the  $S_2S_m$  genotype (containing 50%  $S_m$  pollen and 50%  $S_2$  pollen). For the sake of clarity, inhibited pollen tubes are indicated with red asterisks. Each treatments was repeated independently three times with similar results.




### Supplementary Figure 20. Three-dimensional structural predictions of $S_{1-}$ (a), $S_{m-}$ (b) and $S_{m}^{R}$ -RNase (c).

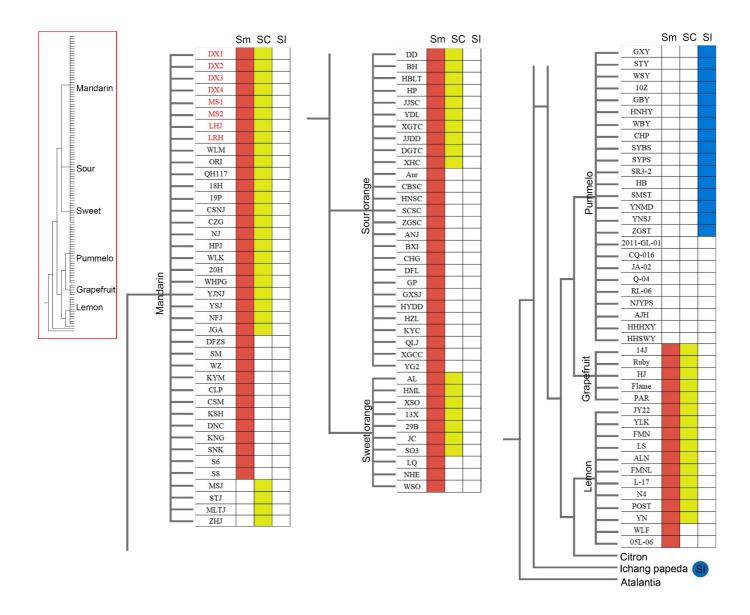
- (a) The predicted 3D structure of the S-RNase ( $S_1$ -RNase) proteins has five hypervariable regions (in blue) and all of them are predicted to reside at the surface of the protein.
- (b) The predicted 3D structure of the mutant  $S_m$ -RNase. The HV4 and HV5 domains are missing.
- (c) The predicted 3D structure of the "recovered"  $S_m^R$ -RNase is (as expected) similar to that of  $S_l$ -RNase with five hypervariable regions.

The predicted 3D structure of the *S*-RNases ( $S_1$ -RNase and  $S_m^R$ -RNase) comprises six  $\alpha$ -helices and six  $\beta$ -sheets. The hypervariable regions (HV1-HV5) are labelled in blue. Comparisons of these structural predictions (and with published *S*-RNase structural predictions from *Nicotiana*, which implicate HVa and HVb in recognition as they are within surface loops)<sup>11</sup>, suggest that the pummelo hypervariable domains HV4 and HV5, which are also predicted to reside at the surface of the protein may be involved in *S*-specific recognition, as the mutant  $S_m$ -RNase is defective: retaining RNase activity, but lacking pollen inhibitory activity).


The structural predictions were carried out using I-TASSER server; see Methods for details.



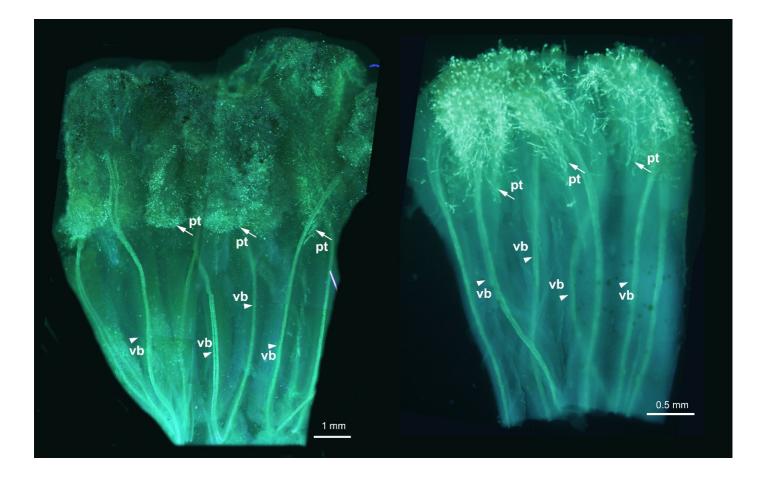
#### Supplementary Figure 21. Frequency of S-RNase genes in 153 citrus accessions.


All of the *S-RNases* showed evidence of negative frequency dependent selection, with a low occurrence in the 153 citrus accessions examined. This pattern of distribution was also observed in 391 pummelo accessions (see **Supplementary Fig. 5b**). In contrast, the mutant  $S_m$ -RNase has a high occurrence (58.8% frequency) in the citrus accessions, which conflicts with it being controlled by negative frequency dependence.

Short read mapping failed to distinguish the  $S_9$ -RNase and  $S_{12}$ -RNase pairs of genes and those of the  $S_5$ -RNase and  $S_{13}$ -RNase because their sequences were similar. Thus, the bars of  $S_9/S_{12}$  and  $S_5/S_{13}$  represent the frequencies of both  $S_9$ -RNase and  $S_{12}$ -RNase and both  $S_5$ -RNase and  $S_{13}$ -RNase, respectively.



Supplementary Figure 22. Phylogeny of 15 S-RNases from citrus varieties.


We put the phylogenetic tree for the citrus *S-RNases* together with the phylogenic tree of the citrus species, as described by Wang et al<sup>12</sup>. The different coloured text indicates the *S*-RNase from different citrus species. The phylogeny of the *S-RNases* was inconsistent with the phylogeny of citrus species. This suggests that the *S*-RNases are either older than the formation of these accessions or that the divergence of these *S*-RNases is earlier than citrus divergence.



#### Supplementary Figure 23. A tree illustration of the conservation of the *S*<sub>m</sub>-*RNase* in citrus accessions.

The phylogenic tree was drawn as described by Wang et al<sup>12</sup>. The main figure shows an expansion of the tree shown on the far left.

Ninety out of the 153 citrus accessions possess the  $S_m$ -RNase (red block), of which the self-compatibility of 56 accessions (>60%, yellow block) was demonstrated using aniline blue staining. Several accessions (MSJ, STJ, MLTJ and ZHJ) were self-compatible, but they did not have the  $S_m$ -RNase, suggesting that the disruptive  $S_m$ -RNase is the primary mutation responsible for the SC phenotype in citrus, but that it is not the only mutation. The  $S_m$ -RNase was not present in the self-incompatible accessions (blue blocks). *Ichang papeda*, which is self-incompatible (blue circle; see **Supplementary Fig. 23**), is an ancestral species, as shown in the tree. The wild mandarin accessions are indicated in red font.



#### Supplementary Figure 24. Evidence that *Ichang papeda* is self-incompatible.

Representative aniline blue staining of self-pollinated styles from two *Ichang papeda* accessions collected from different provinces. Five pollinations from each accession were examined. The pollen tubes of both of them were inhibited near the top of the style, which is a SI phenotype. Pollen tubes (pt) are indicated with arrows; vascular bundles (vb) are indicated with arrowheads. At least five self-pollinated pistils of the two accessions were observed.

#### Liang et. al., Supplemental Tables

| No. | Accession<br>name | Common name              | Species | Scientific<br>name <sup>a</sup> | Harvest place of the samples |
|-----|-------------------|--------------------------|---------|---------------------------------|------------------------------|
| 1   | ST                | Shatian pummelo          | Pummelo | C. maxima                       | Guilin City, Guangxi, China  |
| 2   | SU                | Sour pummelo             | Pummelo | C. maxima                       | Guilin City, Guangxi, China  |
| 3   | SJ                | Shuijing pummelo         | Pummelo | C. maxima                       | Dehong City, Yunnan, China   |
| 4   | GX                | Guanximiyou pummelo      | Pummelo | C. maxima                       | Dehong City, Yunnan, China   |
| 5   | MD                | Burma pummelo            | Pummelo | C. maxima                       | Dehong City, Yunnan, China   |
| 6   | WS                | Acidless pummelo         | Pummelo | C. maxima                       | Dehong City, Yunnan, China   |
| 7   | WB                | Wanbai pummelo           | Pummelo | C. maxima                       | Wuhan City, Hubei, China     |
| 8   | GB                | Gaoban pummelo           | Pummelo | C. maxima                       | Wuhan City, Hubei, China     |
| 9   | НВ                | HB pummelo               | Pummelo | C. maxima                       | Wuhan City, Hubei, China     |
| 10  | HN                | Huanong red pummelo      | Pummelo | C. maxima                       | Wuhan City, Hubei, China     |
| 11  | ZP                | Purple pummelo           | Pummelo | C. maxima                       | Wuhan City, Hubei, China     |
| 12  | TG                | Thailand acidless ummelo | Pummelo | C. maxima                       | Wuhan City, Hubei, China     |
| 13  | SM                | Shimengshatian pummelo   | Pummelo | C. maxima                       | Changde City, Hubei, China   |
| 14  | ZG                | Ziguishatian pummelo     | Pummelo | C. maxima                       | Yichang City, Hubei, China   |
| 15  | CL                | Cilitian pummelo         | Pummelo | C. maxima                       | Changsha City, Hunan, China  |

## Supplementary Table 1. Overview of the pummelo accessions used in the pollinations in this study

<sup>a</sup>: The names *C. maxima* and *C. grandis* are both currently used for pummelo. As *C. maxima* is adopted under the International Code of Botanical Nomenclature, we use *C. maxima* throughout.

|                                             | \$/ð                            | <b>GB</b><br><i>S</i> <sub>1</sub> <i>S</i> <sub>3</sub> | HB<br>S <sub>2</sub> S <sub>7</sub> | WB<br><i>S</i> <sub>2</sub> <i>S</i> <sub>5</sub> | SJ<br>S5S6 | GX<br><i>S</i> 8 <i>S</i> 9 | MD<br><i>S</i> 3 <i>S</i> 5 | <b>ST</b><br><i>S</i> 1 <i>S</i> 2 | SU<br>S2S8 | WS<br><i>S</i> 2 <i>S</i> 4 | Unpollin<br>ated |
|---------------------------------------------|---------------------------------|----------------------------------------------------------|-------------------------------------|---------------------------------------------------|------------|-----------------------------|-----------------------------|------------------------------------|------------|-----------------------------|------------------|
| GB                                          | Fruit set<br>ratio (%)ª         | 0.00                                                     | 22.45                               | 23.26                                             | 39.39      | 21.88                       | 30.95                       | 21.62                              | 27.27      | 33.33                       | 0.00             |
| <b>S</b> <sub>1</sub> <b>S</b> <sub>3</sub> | Seeds per<br>fruit <sup>b</sup> | 0                                                        | 183±12                              | 165±12                                            | 152±17     | 132±14                      | 172±8                       | 145±25                             | 149±11     | 158±10                      | 0                |
| HB                                          | Fruit set<br>ratio (%)          |                                                          | 3.03                                | 23.33                                             | 34.00      | 47.06                       | 40.35                       | 77.36                              | 60.53      | 43.18                       | 5.26°            |
| <b>S</b> <sub>2</sub> <b>S</b> <sub>7</sub> | Seeds per<br>fruit              |                                                          | 0                                   | 87±12                                             | 94±5       | 97±15                       | 101±5                       | 93±11                              | 88±9       | 66±7                        | 0                |
| WB                                          | Fruit set<br>ratio (%)          |                                                          |                                     | 12.12                                             | 54.55      | 8.70                        | 41.18                       | 42.86                              | 18.60      | 17.95                       | 6.06°            |
| S <sub>2</sub> S <sub>5</sub>               | Seeds per<br>fruit              |                                                          |                                     | 0                                                 | 77±4       | 68±15                       | 92±6                        | 61±3                               | 83±8       | 90±5                        | 0                |
| SJ                                          | Fruit set<br>ratio (%)          |                                                          |                                     |                                                   | 30.77      | 67.92                       | 81.36                       | 36.07                              | 57.35      | 43.06                       | 12.90°           |
| S <sub>5</sub> S <sub>6</sub>               | Seeds per<br>fruit              |                                                          |                                     |                                                   | 0          | 179±11                      | 197±3                       | 142±32                             | 183±22     | 221±21                      | 0                |
| GX                                          | Fruit set<br>ratio (%)          |                                                          |                                     |                                                   |            | 60.00                       | 53.85                       | 82.35                              | 75.00      | 33.33                       | 21.21°           |
| S8S9                                        | Seeds per<br>fruit              |                                                          |                                     |                                                   |            | 0                           | 120±11                      | 110±9                              | 108±9      | 111±6                       | 0                |
| MD                                          | Fruit set<br>ratio (%)          |                                                          |                                     |                                                   |            |                             | 0.00                        | 20.97                              | 25.40      | 5.66                        | 0.00             |
| S <sub>3</sub> S <sub>5</sub>               | Seeds per<br>fruit              |                                                          |                                     |                                                   |            |                             | 0                           | 127±14                             | 128±10     | 101±29                      | 0                |
| ST                                          | Fruit set<br>ratio (%)          |                                                          |                                     |                                                   |            |                             |                             | 0.00                               | 9.26       | 6.00                        | 0.00             |
| <i>S</i> <sub>1</sub> <i>S</i> <sub>2</sub> | Seeds per<br>fruit              |                                                          |                                     |                                                   |            |                             |                             | 0                                  | 67±10      | 104±17                      | 0                |
| SU                                          | Fruit set<br>ratio (%)          |                                                          |                                     |                                                   |            |                             |                             |                                    | 0.00       | 16.67                       | 0.00             |
| S <sub>2</sub> S <sub>8</sub>               | Seeds per<br>fruit              |                                                          |                                     |                                                   |            |                             |                             |                                    | 0          | 96±6                        | 0                |
| WS                                          | Fruit set<br>ratio (%)          |                                                          |                                     |                                                   |            |                             |                             |                                    |            | 0.00                        | 0.00             |
| S <sub>2</sub> S <sub>4</sub>               | Seeds per<br>fruit              |                                                          |                                     |                                                   |            |                             |                             |                                    |            | 0                           | 0                |

### Supplementary Table 2. Fruit set and seed number of self- and cross-pollinations between different pummelos (*C. maxima*)

Self- and cross-pollinations between different pummelos (*C. maxima*) were performed. Fruit set and seed number established that these accessions were self-incompatible. Unpollinated flowers were also assessed and established several parthenocarpic accessions.

Fruit set ratios varied due to different climate and cultivation techniques in sampled provinces.

<sup>a</sup>: Fruit set ratio = Number of fruit/pollinated flowers\*100.

<sup>b</sup>: The seeds per fruit value is shown in mean  $\pm$  SEM (n > 5).

<sup>c</sup>: The non-zero fruit set ratio for non-pollination indicates that this accession is characterized by parthenocarpy.

| Species (S-<br>genotype) | Sample<br>name <sup>a</sup> | Tissue <sup>b</sup> | Number of read pairs | Clean<br>bases<br>(G) | Read<br>length<br>(bp) | GC<br>(%) | SRR id in<br>GenBank |
|--------------------------|-----------------------------|---------------------|----------------------|-----------------------|------------------------|-----------|----------------------|
|                          | SU_A1_1                     | Anther from -1      | 34986795             | 10.50                 | 150                    | 44.63     | SRR8862738           |
|                          | SU_A1_2                     | DBA                 | 47440832             | 14.23                 | 150                    | 44.73     | SRR8862737           |
|                          | SU_S1_1                     | Style from -1       | 49400601             | 14.82                 | 150                    | 43.29     | SRR8862740           |
| Sour                     | SU_S1_2                     | DBA                 | 46643336             | 13.99                 | 150                    | 43.34     | SRR8862739           |
| pummelo $(S_2S_8)$       | SU_S3_1                     | Style from -3       | 46429691             | 13.93                 | 150                    | 43.86     | SRR8862742           |
|                          | SU_S3_2                     | DBA                 | 49569693             | 14.87                 | 150                    | 44.37     | SRR8862741           |
|                          | SU_S5_1                     | Style from -5       | 34592510             | 10.38                 | 150                    | 44.54     | SRR8862744           |
|                          | SU_S5_2                     | DBA                 | 38624135             | 11.59                 | 150                    | 44.26     | SRR8862743           |
|                          | SJ_A_1                      | Anther from -1      | 35650637             | 10.70                 | 150                    | 44.68     | SRR8862889           |
|                          | SJ_A_2                      | DBA                 | 49096449             | 14.73                 | 150                    | 45.24     | SRR8862888           |
| c1                       | SJ_S1_1                     | Style from -1       | 48395409             | 14.52                 | 150                    | 44.20     | SRR8862891           |
| Shuijing<br>pummelo      | SJ_S1_2                     | DBA                 | 57505312             | 17.25                 | 150                    | 44.18     | SRR8862890           |
| (S5S6)                   | SJ_S3_1                     | Style from -3       | 60446005             | 18.13                 | 150                    | 44.43     | SRR8862893           |
|                          | SJ_S3_2                     | DBA                 | 48320149             | 14.50                 | 150                    | 44.83     | SRR8862892           |
|                          | SJ_S5_1                     | Style from -5       | 35372692             | 10.61                 | 150                    | 44.88     | SRR8862895           |
|                          | SJ_S5_2                     | DBA                 | 56603062             | 16.98                 | 150                    | 44.17     | SRR8862894           |
|                          | GX_A_1                      | Anther from -1      | 35249007             | 10.57                 | 150                    | 44.18     | SRR8863082           |
|                          | GX_A_2                      | DBA                 | 47088015             | 14.13                 | 150                    | 44.56     | SRR8863081           |
|                          | GX_S1_1                     | Style from -1       | 54147780             | 16.24                 | 150                    | 43.87     | SRR8863080           |
| Guanximiyou              | GX_S1_2                     | DBA                 | 51849281             | 15.55                 | 150                    | 44.53     | SRR8863079           |
| pummelo $(S_8S_9)$       | GX_S3_1                     | Style from -3       | 42133229             | 12.64                 | 150                    | 44.42     | SRR8863078           |
|                          | GX_S3_2                     | DBA                 | 49961516             | 14.99                 | 150                    | 44.52     | SRR8863077           |
|                          | GX_S5_1                     | Style from -5       | 34985907             | 10.50                 | 150                    | 44.38     | SRR8863076           |
|                          | GX_S5_2                     | DBA                 | 47723135             | 14.32                 | 150                    | 44.96     | SRR8863075           |
|                          | MD_A1_1                     | Anther from -1      | 35202890             | 10.56                 | 150                    | 44.52     | SRR8863197           |
|                          | MD_A1_2                     | DBA                 | 40000748             | 12.00                 | 150                    | 44.89     | SRR8863198           |
|                          | MD_S1_1                     | Style from -1       | 46929628             | 14.08                 | 150                    | 43.17     | SRR8863195           |
| Burma                    | MD_S1_2                     | DBA                 | 50304716             | 15.09                 | 150                    | 43.39     | SRR8863196           |
| pummelo $(S_3S_5)$       | MD_S3_1                     | Style from -3       | 48058900             | 14.42                 | 150                    | 44.20     | SRR8863201           |
|                          | MD_S3_2                     | DBA                 | 42769012             | 12.83                 | 150                    | 44.26     | SRR8863202           |
|                          | MD_S5_1                     | Style from -5       | 35605996             | 10.68                 | 150                    | 44.36     | SRR8863199           |
|                          | MD_S5_2                     | DBA                 | 38898539             | 11.67                 | 150                    | 44.49     | SRR8863200           |
| A ' 11                   | WS_A_1                      | Anther from -1      | 35131284             | 10.54                 | 150                    | 44.45     | SRR9124567           |
| Acidless<br>pummelo      | WS_A_2                      | DBA                 | 48123801             | 14.44                 | 150                    | 45.32     | SRR9124568           |
| $(S_2S_4)$               | WS_S1_1                     | Style from -1       | 42166068             | 12.65                 | 150                    | 44.40     | SRR9124569           |
|                          | WS_S1_2                     | DBA                 | 50294489             | 15.09                 | 150                    | 44.15     | SRR9124570           |

## Supplementary Table 3. Detailed information relating to data from citrus style and anther RNA-seq libraries.

Liang et al. Supplemental information

| ·                      | r       | T              | Т        | 1     |     | 1     |             |
|------------------------|---------|----------------|----------|-------|-----|-------|-------------|
| Acidless               | WS_S3_1 | Style from -3  | 51303398 | 15.39 | 150 | 44.36 | SRR9124563  |
| pummelo                | WS_S3_2 | DBA            | 53274604 | 15.98 | 150 | 44.31 | SRR9124564  |
| $(S_2S_4)$             | WS_S5_1 | Style from -5  | 35225241 | 10.57 | 150 | 44.51 | SRR9124565  |
|                        | WS_S5_2 | DBA            | 54403425 | 16.32 | 150 | 44.45 | SRR9124566  |
|                        | WB_A_1  | Anther from -1 | 34958874 | 10.49 | 150 | 44.59 | SRR8868189  |
|                        | WB_A_2  | DBA            | 45894467 | 13.77 | 150 | 45.41 | SRR8868188  |
|                        | WB_S1_1 | Style from -1  | 46744496 | 14.02 | 150 | 43.73 | SRR8868191  |
| Wanbai                 | WB_S1_2 | DBA            | 43126224 | 12.94 | 150 | 44.27 | SRR8868190  |
| pummelo<br>(S2S5)      | WB_S3_1 | Style from -3  | 57056644 | 17.12 | 150 | 43.49 | SRR8868193  |
|                        | WB_S3_2 | DBA            | 44779195 | 13.43 | 150 | 44.30 | SRR8868192  |
|                        | WB_S5_1 | Style from -5  | 34476290 | 10.34 | 150 | 44.47 | SRR8868195  |
|                        | WB_S5_2 | DBA            | 49019973 | 14.71 | 150 | 45.10 | SRR8868194  |
|                        | GB_A_1  | Anther from -1 | 35134343 | 10.54 | 150 | 44.35 | SRR8872464  |
|                        | GB_A_2  | DBA            | 48866759 | 14.66 | 150 | 44.65 | SRR8872465  |
| G 1                    | GB_S1_1 | Style from -1  | 47323297 | 14.20 | 150 | 44.05 | SRR8872462  |
| Gaoban<br>pummelo      | GB_S1_2 | DBA            | 54437906 | 16.33 | 150 | 43.91 | SRR8872463  |
| $(S_1S_3)$             | GB_S3_1 | Style from -3  | 47402934 | 14.22 | 150 | 44.15 | SRR8872468  |
|                        | GB_S3_2 | DBA            | 43047147 | 12.91 | 150 | 44.07 | SRR8872469  |
|                        | GB_S5_1 | Style from -5  | 35295439 | 10.59 | 150 | 44.41 | SRR8872466  |
|                        | GB_S5_2 | DBA            | 52479355 | 15.74 | 150 | 44.25 | SRR8872467  |
|                        | HB_A_1  | Anther from -1 | 34354387 | 10.31 | 150 | 44.73 | SRR8873603  |
|                        | HB_A_2  | DBA            | 37430244 | 11.23 | 150 | 45.16 | SRR8873602  |
|                        | HB_S1_1 | Style from -1  | 48755530 | 14.63 | 150 | 44.65 | SRR8873601  |
| HB pummelo             | HB_S1_2 | DBA            | 45563444 | 13.67 | 150 | 44.63 | SRR8873600  |
| $(S_2S_7)$             | HB_S3_1 | Style from -3  | 48163285 | 14.45 | 150 | 44.90 | SRR8873607  |
|                        | HB_S3_2 | DBA            | 52484687 | 15.75 | 150 | 44.80 | SRR8873606  |
|                        | HB_S5_1 | Style from -5  | 34936798 | 10.48 | 150 | 44.45 | SRR8873605  |
|                        | HB_S5_2 | DBA            | 53906104 | 16.17 | 150 | 44.29 | SRR8873604  |
|                        | JW_A_1  | Anthor         | 39652164 | 11.90 | 150 | 44.18 | SRR10168371 |
| Cocktail<br>grapefruit | JW_A_2  | Anther         | 39805971 | 11.94 | 150 | 44.48 | SRR10168370 |
| $(S_2S_m)$             | JW_S_1  | Stula          | 40976310 | 12.29 | 150 | 44.49 | SRR10168370 |
|                        | JW_S_2  | Style          | 44653340 | 13.40 | 150 | 44.50 | SRR10168368 |

Data from 68 RNA-seq libraries of style and anther from eight pummelos and one grapefruit. Nine candidate S-RNase genes with complete open reading frames (ORFs) were identified. <sup>a</sup>: Sample name is designate as A-B-C, with A indicating the accession code (Supplementary Table 1), B indicates the tissue, C indicates the repetition.

<sup>b</sup>: -1, -2, -3, -4 and -5 DBA represents 1, 2, 3, 4, and 5 days before anthesis.

| Supplementary Table 4. Predicted Mrs and IEFs for S-RNases from the Rutaceae with reference to |
|------------------------------------------------------------------------------------------------|
| those in the Plantaginaceae, Solanaceae, and Rosaceae.                                         |

| Gene                   | Organism                  | Full<br>length | Amino<br>acid | Molecular<br>mass (kDa) <sup>a</sup> | Isoelectric<br>point <sup>a</sup> | Source                                   | Accession<br>number |
|------------------------|---------------------------|----------------|---------------|--------------------------------------|-----------------------------------|------------------------------------------|---------------------|
| S <sub>1</sub> -RNase  | C. maxima                 | 669            | 222           | 23.38                                | 8.23                              | In this study                            | MN652897            |
| S <sub>2</sub> -RNase  | C. maxima                 | 699            | 232           | 24.17                                | 9.22                              | In this study                            | MN652898            |
| S <sub>3</sub> -RNase  | C. maxima                 | 696            | 231           | 24.06                                | 9.11                              | In this study                            | MN652899            |
| S4-RNase               | C. maxima                 | 675            | 224           | 23.16                                | 8.84                              | In this study                            | MN652900            |
| S5-RNase               | C. maxima                 | 660            | 219           | 23.16                                | 7.71                              | In this study                            | MN652901            |
| S <sub>6</sub> -RNase  | C. maxima                 | 660            | 219           | 22.96                                | 9.39                              | In this study                            | MN652902            |
| S <sub>7</sub> -RNase  | C. maxima                 | 696            | 231           | 24.02                                | 8.93                              | In this study                            | MN652903            |
| S <sub>8</sub> -RNase  | C. maxima                 | 690            | 229           | 24.47                                | 7.67                              | In this study                            | MN652904            |
| S9-RNase               | C. maxima                 | 690            | 229           | 24.10                                | 9.33                              | In this study                            | MN652905            |
| S10-RNase              | C. reticulata             | 690            | 229           | 24.02                                | 9.12                              | In this study                            | MN652906            |
| S <sub>11</sub> -RNase | C. reticulata             | 690            | 229           | 24.08                                | 9.47                              | In this study                            | MN652907            |
| S <sub>12</sub> -RNase | A. buxifolia              | 690            | 229           | 24.25                                | 9.30                              | In this study                            | MN652908            |
| S13-RNase              | C. ichangensis            | 660            | 219           | 23.22                                | 7.71                              | In this study                            | MN652909            |
| S14-RNase              | C. medica                 | 678            | 225           | 22.91                                | 8.27                              | In this study                            | MN652910            |
| Sm-RNase               | C. sinensis               | 501            | 166           | 17.47                                | 7.24                              | In this study                            | MN652911            |
| Sm <sup>R</sup> -RNase | C. sinensis               | 666            | 221           | 23.59                                | 8.23                              | In this study                            | MN652912            |
| S <sub>5</sub> -RNase  | Antirrhinum<br>hispanicum | 702            | 233           | 23.83                                | 9.01                              | Xue et al,<br>1996 <sup>13</sup>         | X96464              |
| S7-RNase               | Petunia x hybrida         | 657            | 218           | 23.08                                | 8.32                              | Kubo et al,<br>2010 <sup>8</sup>         | AB568388            |
| Sc-RNase               | Malus spectabilis         | 672            | 223           | 22.97                                | 9.13                              | Ushijima et al,<br>1998 <sup>14,15</sup> | FJ943264            |

<sup>a</sup>: The molecular mass and the isoelectric point of the *S*-RNases were predicted using the mature protein sequence without the signal peptide.

All of the S-RNases from the Rutaceae have a similar full length (~ 660 bp) coding region, amino acid number (~ 220), molecular weight (~ 24 kDa) and basic isoelectric point. They are similar to the characteristics of sample S-RNases from the Plantaginaceae, Solanaceae, and Rosaceae (indicated in blue). S-RNases differ from other RNases in having unusually high isoelectric points, which is a key characteristic of these proteins.

| ₽/♂                                               | ST<br><i>S</i> 1 <i>S</i> 2 | GB<br><i>S</i> <sub>1</sub> <i>S</i> <sub>3</sub> | SM<br><i>S</i> 1 <i>S</i> 3 | WS<br><i>S</i> <sub>2</sub> <i>S</i> <sub>4</sub> | TG<br><i>S</i> 2 <i>S</i> 4 | WB<br><i>S</i> <sub>2</sub> <i>S</i> <sub>5</sub> | MD<br><i>S</i> <sub>3</sub> <i>S</i> <sub>5</sub> | ZP<br><i>S</i> 3 <i>S</i> 5 | ZG<br><i>S</i> 3 <i>S</i> 5 | SJ<br><i>S</i> 5 <i>S</i> 6 | HB<br><i>S</i> <sub>2</sub> <i>S</i> <sub>7</sub> | CL<br><i>S</i> 1 <i>S</i> 7 | HN<br><i>S</i> 1 <i>S</i> 8 | SU<br>S <sub>2</sub> S <sub>8</sub> | GX<br>S8S9        |
|---------------------------------------------------|-----------------------------|---------------------------------------------------|-----------------------------|---------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------------------------|-----------------------------|-----------------------------|-------------------------------------|-------------------|
| ST<br><i>S</i> 1 <i>S</i> 2                       | (5/5)                       |                                                   |                             | +(2/3)<br>++(1/3)                                 |                             | +(2/4)<br>++(2/4)                                 | ++(3/3)                                           |                             |                             | ++(5/5)                     | +(2/2)                                            |                             |                             | +(4/4)                              | ++(4/4)           |
| GB<br><i>S</i> 1 <i>S</i> 3                       | +(3/4)<br>++(1/4)           | (10/10)                                           | (12/12)                     | ++(7/7)                                           |                             | ++(3/3)                                           | +(5/6)<br>++(1/6)                                 |                             |                             | ++(4/4)                     | ++(5/5)                                           |                             | +(3/5)<br>++(2/5)           | ++(8/8)                             | ++(9/9)           |
| SM<br>S1S3                                        |                             |                                                   | (3/3)                       |                                                   |                             |                                                   |                                                   |                             |                             |                             |                                                   |                             |                             |                                     |                   |
| WS<br><i>S</i> <sub>2</sub> <i>S</i> <sub>4</sub> | +(4/5)<br>++(1/5)           | ++(6/6)                                           |                             | (3/3)                                             | (6/6)                       | +(3/4)<br>++(1/4)                                 | ++(3/3)                                           | ++(7/7)                     |                             | ++(6/6)                     | +(3/3)                                            |                             | ++(6/6)                     | +(5/6)<br>++(1/6)                   | ++(4/4)           |
| TG<br><i>S</i> 2 <i>S</i> 4                       |                             |                                                   |                             |                                                   | (4/4)                       |                                                   |                                                   |                             |                             |                             |                                                   |                             |                             |                                     |                   |
| WB<br><i>S</i> <sub>2</sub> <i>S</i> <sub>5</sub> | +(3/3)                      | ++(5/5)                                           |                             | +(3/3)                                            |                             | (4/4)                                             | +(1/3)<br>++(2/3)                                 | +(10/15)<br>++(5/15)        |                             | +(4/5)<br>++(1/5)           | +(3/3)                                            |                             | ++(2/2)                     | +(1/2)<br>++(1/2)                   | ++(5/5)           |
| MD<br><i>S</i> 3 <i>S</i> 5                       | ++(2/2)                     |                                                   |                             | ++(10/10)                                         |                             | +(2/5)<br>++(3/5)                                 | <br>(11/11)                                       |                             |                             | +(2/4)<br>++(2/4)           | ++(2/2)                                           |                             |                             | ++(6/6)                             | ++(9/9)           |
| ZP<br><i>S</i> 3 <i>S</i> 5                       | ++(5/5)                     | +(3/5)<br>++(2/5)                                 |                             | ++(5/5)                                           |                             | +(5/6)<br>++(1/6)                                 | <br>(17/17)                                       | (14/14)                     | (4/4)                       | +(4/6)<br>++(2/6)           |                                                   |                             | ++(5/5)                     | ++(7/7)                             | ++(6/6)           |
| ZG<br><i>S</i> 3 <i>S</i> 5                       |                             |                                                   |                             |                                                   |                             |                                                   |                                                   |                             | (2/2)                       |                             |                                                   |                             |                             |                                     |                   |
| SJ<br><i>S</i> 5 <i>S</i> 6                       | ++(8/8)                     |                                                   |                             | ++(7/7)                                           |                             | +(2/4)<br>++(2/4)                                 | +(3/5)<br>++(2/5)                                 |                             |                             | (5/5)                       |                                                   |                             |                             | ++(6/6)                             | ++(7/7)           |
| HB<br><i>S</i> <sub>2</sub> <i>S</i> <sub>7</sub> | +(3/3)                      | ++(8/8)                                           |                             | +(5/5)                                            |                             | +(4/4)                                            | ++(5/5)                                           | ++(1/1)                     |                             | ++(5/5)                     | (8/8)                                             |                             | ++(5/5)                     | +(3/4)<br>++(1/4)                   | ++(4/4)           |
| CL<br><i>S</i> 1 <i>S</i> 7                       |                             |                                                   |                             |                                                   |                             |                                                   |                                                   |                             |                             |                             |                                                   | (5/5)                       |                             |                                     |                   |
| HN<br><i>S</i> 1 <i>S</i> 8                       | +(4/6)<br>++(2/6)           | +(4/7)<br>++(3/7)                                 |                             | ++(7/7)                                           |                             | ++(3/3)                                           | ++(5/5)                                           | ++(6/6)                     |                             | ++(6/6)                     |                                                   |                             | (13/13)                     | +(5/8)<br>++(3/8)                   | +(5/7)<br>++(2/7) |
| SU<br>S <sub>2</sub> S <sub>8</sub>               | +(2/2)                      |                                                   |                             |                                                   |                             | +(2/2)                                            | ++(4/4)                                           |                             |                             | ++(3/3)                     | +(4/4)                                            |                             |                             | (2/2)                               | +(3/3)            |
| GX<br><i>S</i> 8 <i>S</i> 9                       | ++(4/4)                     |                                                   |                             | ++(9/9)                                           |                             | ++(8/8)                                           | ++(7/7)                                           |                             |                             | ++(8/8)                     |                                                   |                             |                             | +(2/4)<br>++(2/4)                   | (6/6)             |

Supplementary Table 5. Compatibility relationships between different pummelo accessions, as assigned by aniline blue staining.

### Supplementary Table 5. Compatibility relationships between different pummelo accessions, as assigned by aniline blue staining.

The classification of pollinations to incompatible ("--"), half-compatible ("+") and fully compatible ("++") was performed by assessing aniline blue staining of pistils after pollination using multiple pollinations (see **Supplementary Fig. 7**). This method was used to assign the *S*-genotype of the pummelo accessions. For clarity and to show confidence in the assignment of these classifications, we have indicated the raw data here, showing the number of aniline blue pistils assigned to a particular compatibility class out of the number of pollinations made (indicated in the brackets; e.g. 5/5 indicates 5 classifications assigned this class out of 5 pollinations). We have also indicated the misclassifications here (indicated by red font), to show how we built confidence for the half-compatible assignments (e.g. 1/5 indicates 1 classifications in a block like this allows us to cross-check predicted outcomes and helps lend confidence to the classifications assigned. Here we show the result of 583 pollinations, of which 44 (< 8%) were misclassified; in all cases, it was clear what the correct classification should be, because of the pattern in which the pollinations were made.

The assignment of these classification classes (see **Supplementary Fig. 7** for examples of the pollinations) was as follows: When almost all pollen tubes were inhibited near the top of the style, the cross was assigned as fully-incompatible ("--", indicated by yellow boxes), with the same two *S*-alleles shared between the parents. When many pollen tube bunches extended to the base of the pistil, the cross was assigned as fully-compatible ("++", indicated by blue boxes), confirming that the parents did not share either *S*-alleles. When pollinations showed some pollen tubes inhibited in the upper style but some extended through the pistil, the cross was assigned as half-compatible ("+", indicated by green boxes), indicating that the parents have one common *S*-allele between them.

The numbering of *S*-alleles was started at  $S_1S_2$  for the first plant genotype. Compatibility with subsequent plants determined the assigned numbers: completely new numbers if assigned as fully compatible (as they cannot share any *S*-alleles), one new number if assigned as half-compatible (as they must share one *S*-allele), and the same number if assigned as incompatible (as they must share both *S*-alleles). In this way the accessions previously assigned the two-letter code (e.g. ST) were assigned an *S*-genotype.

### Supplementary Table 6. List of primer sequences

| Name   | Primer                         | Target / Purpose                                     |  |  |  |
|--------|--------------------------------|------------------------------------------------------|--|--|--|
| F-R1-F | ATGAACATTACTTTCTTCCTCTA        | Full-length amplification of S <sub>1</sub> -        |  |  |  |
| F-R1-R | TTAAGGCGGGGGAAAGGTA            | RNase                                                |  |  |  |
| F-R2-F | ATGATATCGACAAAGACGAAAA         | Full-length amplification of S <sub>2</sub> -        |  |  |  |
| F-R2-R | CTACTCATCGGTCGGCTCG            | RNase                                                |  |  |  |
| F-R3-F | ATGAAGACGAAGGCAACTTAC          | Full-length amplification of $S_3$ -                 |  |  |  |
| F-R3-R | CTACTTAGTCGGACTCGGAGCAG        | RNase                                                |  |  |  |
| F-R4-F | ATGAGTGCTACTCTCTTCATTTTC       | Full-length amplification of $S_4$ -                 |  |  |  |
| F-R4-R | TTATTTAGGCGGGGGAAAG            | RNase                                                |  |  |  |
| F-R5-F | ATGAAGGTGGCATCCATCAAC          | Full-length amplification of S <sub>5</sub> -        |  |  |  |
| F-R5-R | CTACCACCGTGGTGGGAAAATAATATCC   | RNase                                                |  |  |  |
| F-R6-F | ATGGGGACTAATTTCCTCATTATC       | Full-length amplification of <i>S</i> <sub>6</sub> - |  |  |  |
| F-R6-R | CTATATTTTAACGTATCGCGGC         | RNase                                                |  |  |  |
| F-R7-F | ATGAAGGCAGCTTATCTTCTTC         | Full-length amplification of S7-                     |  |  |  |
| F-R7-R | TCAGGAGCTGCTAATTTGAACCTTGG     | RNase                                                |  |  |  |
| F-R8-F | ATGGGGATTGGTTTCCTCATTTTC       | Full-length amplification of S <sub>8</sub> -        |  |  |  |
| F-R8-R | TTATTCTTCATGCCAAATATATCCATTCTC | <i>RNase</i>                                         |  |  |  |
| F-R9-F | ATGAAGACAAGGGCAACTTAC          | Full-length amplification of S <sub>9</sub> -        |  |  |  |
| F-R9-R | CTACTTAGTCCGAGTAGGGAAC         | RNase                                                |  |  |  |
| F-Rm-F | ATGAAGATTAATTTCTGCATTTTC       | Full-length amplification of <i>S</i> <sub>m</sub> - |  |  |  |
| F-Rm-R | TTATTTATGCCGGGGGAAGCTGATAAC    | <i>RNase</i>                                         |  |  |  |
| S-R1-F | ATGAACATTACTTTCTTCCTCTACA      | Specific amplification of $S_{l}$ -                  |  |  |  |
| S-R1-R | GTTGATCTCCGTTCTTCGTG           | RNase                                                |  |  |  |
| S-R2-F | GACTAACCTCTTTCGCTTTGC          | Specific amplification of <i>S</i> <sub>2</sub> -    |  |  |  |
| S-R2-R | CGGATCCATGCCTTTTCTAG           | <i>RNase</i>                                         |  |  |  |
| S-R3-F | TCCAACATCACCTATTGTACAGC        | Specific amplification of <i>S</i> <sub>3</sub> -    |  |  |  |
| S-R3-R | GATAACGACCATCACTAAAAACG        | <i>RNase</i>                                         |  |  |  |
| S-R4-F | GTTTGTTTCCTGCATTTCCTC          | Specific amplification of <i>S</i> <sub>4</sub> -    |  |  |  |
| S-R4-R | GACCCCTGTTCTTTTTACTGC          | RNase                                                |  |  |  |
| S-R5-F | ATGAAGGTGGCATCCATCA            | Specific amplification of <i>S</i> <sub>5</sub> -    |  |  |  |
| S-R5-R | AATAATATCCGGCCCACAG            | RNase                                                |  |  |  |
| S-R6-F | ATGGGGACTAATTTCCTCATTATCTTT    | Specific amplification of <i>S</i> <sub>6</sub> -    |  |  |  |
| S-R6-R | CTATATTTTAACGTATCGCGGCAA       | RNase                                                |  |  |  |
| S-R7-F | TCTTTCTTTTGTTTTGCTTGTTC        | Specific amplification of <i>S</i> <sub>7</sub> -    |  |  |  |
| S-R7-R | ATTTGAACCTTGGAAGGGAAC          | RNase                                                |  |  |  |
| S-R8-F | GTTGTAACGCAAAACACTTCTG         | Specific amplification of <i>S</i> <sub>8</sub> -    |  |  |  |
| S-R8-R | CGTATGAGCATGTTAGTCTTGG         | RNase                                                |  |  |  |
| S-R9-F | CATTACCTATTCTGCTGCTCA          | Specific amplification of S <sub>9</sub> -           |  |  |  |
| S-R9-R | CCGAGTAGGGAACATGATTG           | RNase                                                |  |  |  |
| q-R1-F | AAGGCCATCAGATTTCGTTC           | aRT-PCR of St-PMasa                                  |  |  |  |
| q-R1-R | CAGTGCTCATCCATTTCCATAC         | qRT-PCR of <i>S</i> <sub>1</sub> - <i>RNase</i>      |  |  |  |
| q-R2-F | TTCATCCTACATGGGCTCTG           | qRT-PCR of S2-RNase                                  |  |  |  |
| q-R2-R | TATCTCGCTTCAGCGATTTTAG         | qui i cicoi b2-nivase                                |  |  |  |
| q-R3-F | CCAACATCACCTATTGTACAGC         | qRT-PCR of S <sub>3</sub> -RNase                     |  |  |  |
| q-R3-R | ACGAACCATGTTACATTACGG          | que i en or by tuvase                                |  |  |  |

Liang et al. Supplemental information

| q-R4-F    | GTGCTACTCTCTTCATTTCATTG          | qRT-PCR of <i>S</i> <sub>4</sub> - <i>RNase</i>             |  |  |  |  |
|-----------|----------------------------------|-------------------------------------------------------------|--|--|--|--|
| q-R4-R    | CTGATGCTTTTCTTTTACAGTTG          | qitt-i Cit of 54-Mivase                                     |  |  |  |  |
| q-R5-F    | GCATCCATCAACATCTGTATTC           | qRT-PCR of S5-RNase                                         |  |  |  |  |
| q-R5-R    | TGAAGAACGAAGACTCCTGG             | qitti i Cit of 53-hivuse                                    |  |  |  |  |
| q-R6-F    | GCAAAATCCCTGCAATAACC             | qRT-PCR of <i>S</i> <sub>6</sub> - <i>RNase</i>             |  |  |  |  |
| q-R6-R    | CTGGAAATTCTTGAATGTGTGG           | qrt1-1 Crt 01 56-rivuse                                     |  |  |  |  |
| q-R7-F    | CCGCAATGGAACAAGTCTAC             | qRT-PCR of <i>S</i> <sub>7</sub> - <i>RNase</i>             |  |  |  |  |
| q-R7-R    | GCCAGTATTTTCCCATATCACTC          | qK1-1 CK 01 5/-Kivase                                       |  |  |  |  |
| q-R8-F    | GGTTGTAACGCAAAACACTTC            | qRT-PCR of <i>S</i> <sub>8</sub> - <i>RNase</i>             |  |  |  |  |
| q-R8-R    | AGGGGTATTTCTGGCAGAAG             | qrt1-1 Crt 01 58-rtivase                                    |  |  |  |  |
| q-R9-F    | GCATTACCTATTCTGCTGCTC            | qRT-PCR of S9-RNase                                         |  |  |  |  |
| q-R9-R    | TGACGAACCTTGATACATTTCG           | qx1-1 CX 01 39-NIVase                                       |  |  |  |  |
| q-Actin-F | ATCTGCTGGAAGGTGCTGAG             | apt DCD of Actin                                            |  |  |  |  |
| q-Actin-R | CCAAGCAGCATGAAGATCAA             | qRT-PCR of <i>Actin</i>                                     |  |  |  |  |
| A-R2-F    | TTCATCCTACATGGGCTCTG             | Absolute quantification of S <sub>2</sub> -                 |  |  |  |  |
| A-R2-R    | TATCTCGCTTCAGCGATTTTAG           | RNase                                                       |  |  |  |  |
| A-Rm-F    | AGGACGAGATCCGTACAAACATA          | Absolute quantification of Sm-                              |  |  |  |  |
| A-Rm-R    | GTTTCCCAGTAACTCCTTCCATC          | RNase                                                       |  |  |  |  |
| RT-R2-F   | GACTAACCTCTTTCGCTTTGC            | RT-PCR of <i>S</i> <sub>2</sub> - <i>RNase</i>              |  |  |  |  |
| RT-R2-R   | CGGATCCATGCCTTTTCTAG             | RI-PCK of S2-RNase                                          |  |  |  |  |
| RT-Rm-F   | AACAGATTTCGTCCTACACGG            |                                                             |  |  |  |  |
| RT-Rm-R   | CCAAAAGAATGATTGCGTAGC            | RT-PCR of <i>S</i> <sub>m</sub> - <i>RNase</i>              |  |  |  |  |
| F-F1-1-F  | ATGGTGATGACAAGCTATGGAG           | Full-length amplification of S <sub>1</sub> -               |  |  |  |  |
| F-F1-1-R  | CTATATATCCTCTTCTCTTACTATAATTAGAC | SLF1                                                        |  |  |  |  |
| F-F1-2-F  | ATGACGGTGATGACAGGC               | Full-length amplification of <i>S</i> <sub>1</sub> -        |  |  |  |  |
| F-F1-2-R  | TCAGAGTGTAATCAGACTCTCT           | SLF2                                                        |  |  |  |  |
| F-F1-3-F  | ATGGGGAGAGAGACGACG               | Full-length amplification of <i>S</i> <sub><i>l</i></sub> - |  |  |  |  |
| F-F1-3-R  | TTATGTATCCTCTTCTCTAACTATAATTAG   | SLF3                                                        |  |  |  |  |
| F-F1-4-F  | ATGGCGAGAGAGGCTAGGGT             | Full-length amplification of S                              |  |  |  |  |
| F-F1-4-R  | CTACATATCCTCTTCCTTCACTCTAAT      | SLF4                                                        |  |  |  |  |
| F-F1-5-F  | ATGATGGTGACCTGTACTGG             | Full-length amplification of S                              |  |  |  |  |
| F-F1-5-R  | TTATAAATACACACCCAATGTATG         | SLF5                                                        |  |  |  |  |
| F-F1-6-F  | ATGGTAGAAAGCAATGGAGA             | Full-length amplification of $S_{l}$ -                      |  |  |  |  |
| F-F1-6-R  | TTATTCCACTCCTAAGATATGCCATGG      | SLF6                                                        |  |  |  |  |
| F-F1-7-F  | ATGGTGTTATTTGGCAAAGACG           | Full-length amplification of $S_{l}$ -                      |  |  |  |  |
| F-F1-7-R  | TCAAACTCCTTCTGTTTGATACACAC       | SLF7                                                        |  |  |  |  |
| F-F1-8-F  | ATGGCGAAATGTAACGGA               | Full-length amplification of <i>S</i> <sub>1</sub> -        |  |  |  |  |
| F-F1-8-R  | TTAACAGGAATTAGTTTGATAAACC        | SLF8                                                        |  |  |  |  |
| F-F1-9-F  | ATGATGACAAGTGATGAACAG            | Full-length amplification of S <sub>1</sub> -               |  |  |  |  |
| F-F1-9-R  | CTATGGGAGTGATGCATCGATTAG         | <i>SLF9</i>                                                 |  |  |  |  |
| F-F2-1-F  | ATGGTGATGACAAGCTATGGAG           | Full-length amplification of S <sub>2</sub> -               |  |  |  |  |
| F-F2-1-R  | CTAAATATCTTCTTTCTGACAATAATTAG    | SLF1                                                        |  |  |  |  |
| F-F2-2-F  | ATGGAGAGAGAGATATGTCGGTGAT        | Full-length amplification of S <sub>2</sub> -               |  |  |  |  |
| F-F2-2-R  | CTATTCTTGGATTTTAATTAGACTTTCC     | SLF2                                                        |  |  |  |  |
| F-F2-3-F  | ATGGAGAGGGAGATGATGG              | Full-length amplification of S                              |  |  |  |  |
| F-F2-3-R  | CTATATATCCTCTACTCTAACTGAAATTAGAC | SLF3                                                        |  |  |  |  |
| F-F2-4-F  | ATGGCCAGAGAGACAAGG               | Full-length amplification of <i>S</i> <sub>2</sub> -        |  |  |  |  |
|           | plemental information            | 3                                                           |  |  |  |  |

Liang et al. Supplemental information

| F-F2-4-R | TTACTTCATTCTAATTAAACTCTCTTTTAAAATATG | SLF4                                              |  |  |
|----------|--------------------------------------|---------------------------------------------------|--|--|
| F-F2-5-F | ATGGTGATAAATACTGGAGACTT              | Full-length amplification of S <sub>2</sub> -     |  |  |
| F-F2-5-R | TTAATACACCCCAATGTATGC                | SLF5                                              |  |  |
| F-F2-6-F | ATGGCGATAATGGTGGAAAGC                | Full-length amplification of S <sub>2</sub> -     |  |  |
| F-F2-6-R | TCATTCATGTTCCACACCTAAGATATG          | SLF6                                              |  |  |
| F-F2-7-F | ATGGTGTTATTAGACAACGAAGATTCAT         | Full-length amplification of S <sub>2</sub> -     |  |  |
| F-F2-7-R | TCATTCTGTTTGATTTACATCCAAAAC          | SLF7                                              |  |  |
| F-F2-8-F | ATGGCGAAAAGCAACAGCAAGT               | Full-length amplification of S <sub>2</sub> -     |  |  |
| F-F2-8-R | TTAACAGGAATTAGTTTGATAAACTCCCA        | SLF8                                              |  |  |
| F-F2-9-F | ATGATGATGACAAGTAATGAAG               | Full-length amplification of S <sub>2</sub> -     |  |  |
| F-F2-9-R | CTAGGGGAGAGATCCATCATCG               | SLF9                                              |  |  |
| S-F1-1-F | GGTTGAGACACTATCGAGGTTG               | Specific amplification of S <sub>1</sub> -        |  |  |
| S-F1-1-R | CTTTCCTCATCGACTAAGGTG                | SLF1                                              |  |  |
| S-F1-2-F | TTATTGGGTGGCATCGGG                   | Specific amplification of S <sub>1</sub> -        |  |  |
| S-F1-2-R | CATAAACCGGTAATTCCAAGATCC             | SLF2                                              |  |  |
| S-F1-3-F | TGAATACAGAGTTGTTCCAGG                | Specific amplification of $S_{I}$ -               |  |  |
| S-F1-3-R | ATGTGCCATCTCTTCTGAATATAG             | SLF3                                              |  |  |
| S-F1-4-F | CTTCTCTATATTCCCCGATAAGAC             | Specific amplification of S <sub>1</sub> -        |  |  |
| S-F1-4-R | AGAATGTGCGAACTTATCCG                 | SLF4                                              |  |  |
| S-F1-5-F | TGCAACTAAGGAGTCTAGGGC                | Specific amplification of <i>S</i> <sub>1</sub> - |  |  |
| S-F1-5-R | TTAAAGTCTCCGTATAGTTGCG               | SLF5                                              |  |  |
| S-F1-6-F | TGAATACAGAGTTGTTCCAGG                | Specific amplification of <i>S</i> <sub>1</sub> - |  |  |
| S-F1-6-R | ATGTGCCATCTCTTCTGAATATAG             | SLF6                                              |  |  |
| S-F1-7-F | AATACACGAGGGTTTTTGGTAC               | Specific amplification of <i>S</i> <sub>1</sub> - |  |  |
| S-F1-7-R | CCCGGTATCAGGCTCATAC                  | SLF7                                              |  |  |
| S-F1-8-F | TGGCGAAATGTAACGGAAAT                 | Specific amplification of <i>S</i> <sub>1</sub> - |  |  |
| S-F1-8-R | CAAATCCCATAATAGTATCA                 | SLF8                                              |  |  |
| S-F1-9-F | GATGGAGCGTTTGATAGCG                  | Specific amplification of <i>S</i> <sub>1</sub> - |  |  |
| S-F1-9-R | CCTCTTTCTTCACTCCAATAAGAC             | SLF9                                              |  |  |
| S-F2-1-F | CCACGTAATACGACGGCTAAC                | Specific amplification of <i>S</i> <sub>2</sub> - |  |  |
| S-F2-1-R | GAAAGGTCCGAAGGTCAAG                  | SLF1                                              |  |  |
| S-F2-2-F | GGTGATGACACGCTGTGAAG                 | Specific amplification of <i>S</i> <sub>2</sub> - |  |  |
| S-F2-2-R | AAGTATTGCTGGGAAGACGAG                | SLF2                                              |  |  |
| S-F2-3-F | CAATGAGGGGAACTACAACTGG               | Specific amplification of S <sub>2</sub> -        |  |  |
| S-F2-3-R | GTATCCAAGGACTCATCGCTG                | SLF3                                              |  |  |
| S-F2-4-F | TATTCCCTGATAGGACACTAACAG             | Specific amplification of <i>S</i> <sub>2</sub> - |  |  |
| S-F2-4-R | CCCAGTAACAATATCCATTCAAG              | SLF4                                              |  |  |
| S-F2-5-F | AACTAAAGAGTATAGACCTGTCCC             | Specific amplification of <i>S</i> <sub>2</sub> - |  |  |
| S-F2-5-R | CAAGTGGCTTAGACACTCCTA                | SLF5                                              |  |  |
| S-F2-6-F | CTCACCTTGTTGGATACGAAAATAG            | Specific amplification of <i>S</i> <sub>2</sub> - |  |  |
| S-F2-6-R | ACATAAAACCACAAACCTCGTAGC             | SLF6                                              |  |  |
| S-F2-7-F | TGGTTGAAATTCTATCCAGGCTAC             | Specific amplification of <i>S</i> <sub>2</sub> - |  |  |
| S-F2-7-R | ATATTTCGGGAGAGTAATGGACTC             | SLF7                                              |  |  |
| S-F2-8-F | TGCCGGAGGATGTTATTATTG                | Specific amplification of S <sub>2</sub> -        |  |  |
| S-F2-8-R | GAAGAGTTCTTGACTCCTTGGTTG             | SLF8                                              |  |  |
| S-F2-9-F | GGAGAAGCACGACGGACCTGA                | Specific amplification of <i>S</i> <sub>2</sub> - |  |  |
| S-F2-9-R | CGTTACCTAGATGAAACGAAAGAAT            | SLF9                                              |  |  |

| q-F1-1-F             | ACTTTACTCAGAAGACGTCGC                                 |                                                            |
|----------------------|-------------------------------------------------------|------------------------------------------------------------|
| q-F1-1-R             | CAGTCGTTTGTCATTTGATTCT                                | qRT-PCR of S <sub>1</sub> -SLF1                            |
| q-F1-2-F             | GTCATTCAGCATGAGTGACGAG                                |                                                            |
| -                    |                                                       | qRT-PCR of S1-SLF2                                         |
| q-F1-2-R             | CAACCATCGTATATGCCTATCG                                |                                                            |
| q-F1-3-F             | GTACGCCGTCCTGATTATTAC                                 | qRT-PCR of <i>S</i> <sub>1</sub> - <i>SLF</i> 3            |
| q-F1-3-R             | CATCCAAGGTCTCATCGC                                    |                                                            |
| q-F1-4-F             | CAGTCAGTGAAGACACCTTGG                                 | qRT-PCR of <i>S</i> <sub>1</sub> - <i>SLF</i> 4            |
| q-F1-4-R             | AGAATGTGCGAACTTATCCG                                  |                                                            |
| q-F1-5-F             | GAGACTCACTCCGATCAGATG                                 | qRT-PCR of <i>S</i> <sub>1</sub> - <i>SLF</i> 5            |
| q-F1-5-R             | TTAAAGTCTCCGTATAGTTGCG                                |                                                            |
| q-F1-6-F             | GAAATGTTGTTACGATTGCCG                                 | qRT-PCR of <i>S</i> <sub>1</sub> - <i>SLF6</i>             |
| q-F1-6-R             | ACAGTATACCAAGAGACGGGTGT                               |                                                            |
| q-F1-7-F             | CCAACCACTCCTGTTTTGG                                   | qRT-PCR of <i>S</i> <sub>1</sub> - <i>SLF</i> 7            |
| q-F1-7-R             | CCCGGTATCAGGCTCATAC                                   |                                                            |
| q-F1-8-F             | GGATTTGGATTGGATATTATGAG                               | qRT-PCR of <i>S</i> <sub>1</sub> - <i>SLF8</i>             |
| q-F1-8-R             | GGATTTGGATTGGATATTATGAG                               |                                                            |
| q-F1-9-F             | GGGGTTTGTTATTGGTTATCT                                 | qRT-PCR of <i>S</i> <sub>1</sub> - <i>SLF</i> 9            |
| q-F1-9-R             | TATGGCTCCTGTATTTCTTCG                                 |                                                            |
| q-F2-1-F             | TGCCTTTCTTTGCTATACTCAG                                | qRT-PCR of S2-SLF1                                         |
| q-F2-1-R             | GAAAGGTCCGAAGGTCAAG                                   |                                                            |
| q-F2-2-F             | ACTTGGTCCTTGTGATGGTAT                                 | qRT-PCR of S2-SLF2                                         |
| q-F2-2-R             | AAGTATTGCTGGGAAGACGAG                                 |                                                            |
| q-F2-3-F             | CAATGAGGGGAACTACAACTG                                 | qRT-PCR of <i>S</i> <sub>2</sub> - <i>SLF</i> <sub>3</sub> |
| q-F2-3-R             | GAAGGCGAACTTCATAGCC                                   |                                                            |
| q-F2-4-F             | GTTGCATTGGGTTTAGATCTC                                 | qRT-PCR of S2-SLF4                                         |
| q-F2-4-R             | CATGAAACGAATCTCTTTGATC                                |                                                            |
| q-F2-5-F             | AGTAAATGCGGTGATGGG                                    | qRT-PCR of S2-SLF5                                         |
| q-F2-5-R             | GTCTTTAATCGTCCATATTTCC                                |                                                            |
| q-F2-6-F             | GGATTATTCGATGACTTACTGTCTC                             | qRT-PCR of S2-SLF6                                         |
| q-F2-6-R             | GTGTCAGGATCGTATAAGAGTAGTTG                            |                                                            |
| q-F2-7-F             | TGAATCTAACTCTTCACAGTTGCTC                             | qRT-PCR of S2-SLF7                                         |
| q-F2-7-R             | AAACCAACAGCATTCGAGTTC                                 |                                                            |
| q-F2-8-F             | TGCCGGAGGATGTTATTATTG                                 | qRT-PCR of S2-SLF8                                         |
| q-F2-8-R             | CTCTGCATACACACCTGAATCTTAG                             |                                                            |
| q-F2-9-F             | CGCTACGTGCTAACTCTTGGA                                 | qRT-PCR of S2-SLF9                                         |
| q-F2-9-R             | CAGATAACCAGTAACAAACCC                                 |                                                            |
| BAC-R1-F             | TTTATTTCCTGCATTTCCTCGG                                |                                                            |
| BAC-R1-R             | ACTCCTTCCATTTGGATATATTCC<br>GGAACCAAGACCAAGTACCATTATG |                                                            |
| BAC-R1-5'-F          |                                                       | Probe used to screen the $S_{I}$ -                         |
| BAC-R1-5'-R          | AGTAAGAACTGACCAAAATTCACAG<br>GAATCATCGTTTTGTGAAGAAGAG | locus from BAC library                                     |
| BAC-R1-3'-F          |                                                       |                                                            |
| BAC-R1-3'-R          | TCAATGCGGAGTTTAGGAAGA                                 |                                                            |
| BAC-R2-F             | CTCTTGAGGCTGATTTGATG                                  |                                                            |
| BAC-R2-R             | CGGGGAACTTGATATTGTCT                                  | Probe used to screen the $S_2$ -                           |
| BAC-R2-5'-F          | ACAAAACGCCATATAGAAAGAGTC                              | locus from BAC library                                     |
| BAC-R2-5'-R          | CATCCAAAGGAGTAATTCATCAC                               |                                                            |
| 6P-R1-F              | CGGAATTCAACAATTCTGGTTTTGACCACTT                       | <i>S</i> <sub>1</sub> - <i>RNase</i> cloned to pGEX-6P-1   |
| Liana et al. Sunnlen | nental information                                    | 38                                                         |

| 6P-R1-R                       | CCCTCGAGTTAAGGCGGGGGGAAAGGTA               |                                                         |
|-------------------------------|--------------------------------------------|---------------------------------------------------------|
| 6P-R2-F                       | CGGAATTCTCCTCGCAATTGTTCGACC                | S <sub>2</sub> -RNase cloned to pGEX-6P-1               |
| 6P-R2-R                       | CCCTCGAGCTACTCATCGGTCGGCTCG                | S2-Rivase cloned to pGEX-0P-1                           |
| 6P-Rm-F                       | GGATCCCCGGAATTCAATTCTGGTTTTGACCACTTTTGGC   | C DNasa alamada a CEV (D 1                              |
| 6P-Rm-R                       | ATGCGGCCGCTCGAGTTATTTATGCCGGGGGAAGCTGATAAC | <i>S</i> <sub><i>m</i></sub> -RNase cloned to pGEX-6P-1 |
| 6P-Rm <sup>R</sup> -F         | GGATCCCCGGAATTCAATTCTGGTTTTGACCACTTTTGGC   |                                                         |
| 6P-Rm <sup>R</sup> -overlap-R | GATTTCTTAGTATTCTCAGCAGGTTCACAC             | $S_m^R$ -RNase cloned to pGEX-6P-                       |
| 6P-Rm <sup>R</sup> -overlap-F | GAATACTAAGAAATCAAGGAATATTTCCAGATGG         | 1                                                       |
| 6P-Rm <sup>R</sup> -R         | ATGCGGCCGCTCGAGTTATTTATGCCGGGGGAAGCTGATAAC |                                                         |

Allele-specific primers were used to amplify full-length S-RNases; forward (F) and reverse (R).

| Locus                 | Clone   | Number of<br>read pairs | Clean<br>bases (G) | Read<br>length (bp) | GC<br>(%) | SRR id in<br>GenBank |
|-----------------------|---------|-------------------------|--------------------|---------------------|-----------|----------------------|
|                       | 84-N-5  | 4720                    | 1.42               | 150                 | 35.8      | SRR10168706          |
| S <sub>1</sub> -locus | 10-J-4  | 4450                    | 1.34               | 150                 | 39.07     | SRR10168705          |
|                       | 51-0-18 | 4597                    | 1.38               | 150                 | 39.96     | SRR10168704          |
| C le ave              | 72-E-8  | 3803                    | 1.14               | 150                 | 35.04     | SRR10168708          |
| $S_2$ -locus          | 57-F-22 | 4607                    | 1.38               | 150                 | 43.34     | SRR10168709          |

Supplementary Table 7. Information regarding the BAC clones for the pummelo S<sub>1</sub>- and S<sub>2</sub>-loci

A BAC library constructed from a pummelo of genotype  $S_1S_2$  was arrayed in 108 different 384-well microtiter plates. Clones (three for the  $S_1$ -locus and two for the  $S_2$ -locus) were screened by using the probes (**Supplementary Table 6**) of  $S_1$ -*RNase* and  $S_2$ -*RNase* respectively. Clones were identified as containing the *S*-locus by sequencing, using the Illumina platform.

### Supplementary Table 8. Other genes identified at the *S*<sub>1</sub>-locus with functions predicted by the Swissprot database.

| Gene      | Annotation                                                           | E value   | Description           |
|-----------|----------------------------------------------------------------------|-----------|-----------------------|
| S1.gene1  | Transformation/transcription domain-associated protein               | 0         |                       |
| S1.gene2  | Unknown                                                              |           |                       |
| S1.gene3  | Unknown                                                              |           |                       |
| S1.gene4  | Cytokinin riboside 5'-monophosphate phosphoribohydrolase             | 4.77E-101 |                       |
| S1.gene5  | Unknown                                                              |           |                       |
| S1.gene6  | Unknown                                                              |           |                       |
| S1.gene7  | Unknown                                                              |           |                       |
| S1.gene8  | Putative AC transposase                                              | 1.44E-91  |                       |
| S1.gene9  | Unknown                                                              |           |                       |
| S1.gene10 | Retrovirus-related Pol polyprotein from transposon                   | 6.33E-14  |                       |
| S1.gene11 | Unknown                                                              |           |                       |
| S1.gene12 | Putative ribonuclease H protein                                      | 9.48E-21  |                       |
| S1.gene13 | F-box/kelch-repeat protein                                           | 1.58E-19  | S <sub>1</sub> -SLF2  |
| S1.gene14 | Unknown                                                              |           |                       |
| S1.gene15 | Retrovirus-related Pol polyprotein from transposon                   | 2.02E-55  |                       |
| S1.gene16 | Unknown                                                              |           |                       |
| S1.gene17 | Unknown                                                              |           |                       |
| S1.gene18 | CENP-B homolog protein 2                                             | 7.35E-55  |                       |
| S1.gene19 | Unknown                                                              |           |                       |
| S1.gene20 | Unknown                                                              |           |                       |
| S1.gene21 | Putative F-box protein                                               | 2.22E-18  | S <sub>1</sub> -SLF1  |
| S1.gene22 | Unknown                                                              |           |                       |
| S1.gene23 | Unknown                                                              |           |                       |
| S1.gene24 | Unknown                                                              |           |                       |
| S1.gene25 | Unknown                                                              |           |                       |
| S1.gene26 | Unknown                                                              |           |                       |
| S1.gene27 | Retrovirus-related Pol polyprotein from transposon                   | 8.88E-05  |                       |
| S1.gene28 | Retrovirus-related Pol polyprotein from transposon                   | 1.97E-07  |                       |
| S1.gene29 | Nicotiana alata Ribonuclease S7                                      | 5.99E-28  | S <sub>1</sub> -RNase |
| S1.gene30 | Probable cytokinin riboside 5'-monophosphate<br>phosphoribohydrolase | 1.77E-10  |                       |
| S1.gene31 | Copia protein                                                        | 3.85E-10  |                       |
| S1.gene32 | Unknown                                                              |           |                       |
| S1.gene33 | Unknown                                                              |           |                       |
| S1.gene34 | F-box/kelch-repeat protein                                           | 5.07E-23  | S <sub>1</sub> -SLF6  |
| S1.gene35 | Unknown                                                              |           |                       |
| S1.gene36 | Unknown                                                              |           |                       |

| S1.gene37 | Putative F-box protein                                            | 5.32E-15  | S <sub>1</sub> -SLF5   |
|-----------|-------------------------------------------------------------------|-----------|------------------------|
| S1.gene38 | Unknown                                                           |           |                        |
| S1.gene39 | Cytochrome P450                                                   | 2.52E-132 |                        |
| S1.gene40 | Unknown                                                           |           |                        |
| S1.gene41 | F-box protein                                                     | 4.58E-17  | S <sub>1</sub> -SLF4   |
| S1.gene42 | Retrovirus-related Pol polyprotein from transposon opus           | 8.99E-06  |                        |
| S1.gene43 | Pol polyprotein (Fragment)                                        | 5.89E-12  |                        |
| S1.gene44 | Probable cytokinin riboside 5'-monophosphate phosphoribohydrolase | 1.49E-12  |                        |
| S1.gene45 | Unknown                                                           |           |                        |
| S1.gene46 | Unknown                                                           |           |                        |
| S1.gene47 | Unknown                                                           |           |                        |
| S1.gene48 | Putative F-box protein                                            | 1.13E-17  | S <sub>1</sub> -SLF3   |
| S1.gene49 | Unknown                                                           |           |                        |
| S1.gene50 | F-box protein CPR1                                                | 1.32E-17  | S <sub>1</sub> -SLF7   |
| S1.gene51 | F-box/kelch-repeat protein                                        | 7.49E-21  | S <sub>1</sub> -SLF9   |
| S1.gene52 | F-box/kelch-repeat protein                                        | 3.00E-18  | S <sub>1</sub> -SLF8   |
| S1.gene53 | Protein indeterminate-domain 7                                    | 1.95E-49  |                        |
| S1.gene54 | Calcium-dependent protein kinase 16                               | 0         |                        |
| S1.gene55 | Unknown                                                           |           |                        |
| S1.gene56 | DNA-(apurinic or apyrimidinic site) lyase 2                       | 0         |                        |
| S1.gene57 | Unknown                                                           |           |                        |
| S1.gene58 | Putative F-box/kelch-repeat protein                               | 9.04E-14  | S1-SLFL10              |
| S1.gene59 | Putative F-box/kelch-repeat protein                               | 1.32E-15  | S1-SLFL11              |
| S1.gene60 | Unknown                                                           |           |                        |
| S1.gene61 | F-box protein                                                     | 1.18E-18  | S <sub>1</sub> -SLFL12 |

| Gene      | Annotation                                               | E value   | Description                                          |
|-----------|----------------------------------------------------------|-----------|------------------------------------------------------|
| S2.gene1  | Transcription-associated protein                         | 0         |                                                      |
| S2.gene2  | Unknown                                                  |           |                                                      |
| S2.gene3  | Unknown                                                  |           |                                                      |
| S2.gene4  | Cytokinin riboside 5'-monophosphate phosphoribohydrolase | 1.37E-101 |                                                      |
| S2.gene5  | Putative F-box protein                                   | 2.72E-22  | S <sub>2</sub> -SLF1                                 |
| S2.gene6  | Unknown                                                  |           |                                                      |
| S2.gene7  | Unknown                                                  |           |                                                      |
| S2.gene8  | Unknown                                                  |           |                                                      |
| S2.gene9  | F-box/kelch-repeat protein                               | 4.21E-18  | S <sub>2</sub> -SLF2                                 |
| S2.gene10 | Unknown                                                  |           |                                                      |
| S2.gene11 | Unknown                                                  |           |                                                      |
| S2.gene12 | F-box protein                                            | 2.46E-16  | S <sub>2</sub> -SLF3                                 |
| S2.gene13 | Unknown                                                  |           |                                                      |
| S2.gene14 | Retrovirus-related Pol polyprotein from transposon       | 1.43E-37  |                                                      |
| S2.gene15 | Putative F-box protein                                   | 1.63E-15  | S <sub>2</sub> -SLF4                                 |
| S2.gene16 | Unknown                                                  |           |                                                      |
| S2.gene17 | L10-interacting MYB domain-containing protein            | 1.18E-06  |                                                      |
| S2.gene18 | Unknown                                                  |           |                                                      |
| S2.gene19 | Unknown                                                  |           |                                                      |
| S2.gene20 | F-box protein                                            | 7.54E-16  | S <sub>2</sub> -SLF5                                 |
| S2.gene21 | Retrovirus-related Pol polyprotein from transposon       | 2.62E-13  |                                                      |
| S2.gene22 | Retrovirus-related Pol polyprotein from transposon       | 1.46E-45  |                                                      |
| S2.gene23 | Retrovirus-related Pol polyprotein from transposon       | 1.20E-31  |                                                      |
| S2.gene24 | Retrovirus-related Pol polyprotein from transposon       | 2.25E-24  |                                                      |
| S2.gene25 | Unknown                                                  |           |                                                      |
| S2.gene26 | Unknown                                                  |           |                                                      |
| S2.gene27 | Unknown                                                  |           |                                                      |
| S2.gene28 | Petunia hybrida Ribonuclease S3                          | 8.86E-17  | S <sub>2</sub> -RNase                                |
| S2.gene29 | Retrovirus-related Pol polyprotein from transposon       | 5.06E-169 |                                                      |
| S2.gene30 | Spermidine synthase 2                                    | 1.21E-06  |                                                      |
| S2.gene31 | Unknown                                                  |           |                                                      |
| S2.gene32 | Unknown                                                  |           |                                                      |
| S2.gene33 | Unknown                                                  |           |                                                      |
| S2.gene34 | F-box/kelch-repeat protein                               | 9.07E-22  | S <sub>2</sub> -SLF6                                 |
| S2.gene35 | F-box/kelch-repeat protein                               | 1.55E-16  | <b>S</b> <sub>2</sub> - <b>S</b> <i>L</i> <b>F</b> 7 |
| S2.gene36 | Unknown                                                  |           |                                                      |

# Supplementary Table 9. Other genes identified at the S<sub>2</sub>-locus with functions predicted by the Swissprot database.

| S2.gene37 | Unknown                                     |           |                        |
|-----------|---------------------------------------------|-----------|------------------------|
| S2.gene38 | Unknown                                     |           |                        |
| S2.gene39 | Unknown                                     |           |                        |
| S2.gene40 | F-box/kelch-repeat protein                  | 9.15E-17  | S <sub>2</sub> -SLF9   |
| S2.gene41 | F-box/kelch-repeat protein                  | 1.16E-20  | S <sub>2</sub> -SLF8   |
| S2.gene42 | Calcium-dependent protein kinase 16         | 0         |                        |
| S2.gene43 | Unknown                                     |           |                        |
| S2.gene44 | DNA-(apurinic or apyrimidinic site) lyase 2 | 0         |                        |
| S2.gene45 | Unknown                                     |           |                        |
| S2.gene46 | Putative F-box protein                      | 2.33E-14  | S <sub>2</sub> -SLFL10 |
| S2.gene47 | Putative F-box/kelch-repeat protein         | 2.51E-16  | S <sub>2</sub> -SLFL11 |
| S2.gene48 | Unknown                                     |           |                        |
| S2.gene49 | F-box protein                               | 2.97E-19  | S <sub>2</sub> -SLFL12 |
| S2.gene50 | ABC transporter G family member 36          | 1.66E-27  |                        |
| S2.gene51 | ABC transporter G family member 40          | 4.34E-120 |                        |

# Supplementary Table 10. Pairwise sequence identities of the deduced amino acid sequence between the citrus Type 1 to Type 12 SLFs/SLFLs

| Туре 1                       | Predicted interaction: $S_I$ -RNase + $S_2/S_6/S_{10}/S_{11}/S_{12}/S_{13}/S_{14}$ -SLF1 |             |          |                |                              |          |          |  |  |
|------------------------------|------------------------------------------------------------------------------------------|-------------|----------|----------------|------------------------------|----------|----------|--|--|
|                              | $S_2$ -SLF1                                                                              | $S_6$ -SLF1 | S10-SLF1 | $S_{II}$ -SLF1 | <i>S</i> <sub>12</sub> -SLF1 | S13-SLF1 | S14-SLF1 |  |  |
| $S_I$ -SLF1                  | 89.646                                                                                   | 88.011      | 87.466   | 88.011         | 88.767                       | 88.556   | 88.011   |  |  |
| $S_2$ -SLF1                  |                                                                                          | 97.82       | 97.548   | 97.275         | 98.356                       | 98.365   | 97.82    |  |  |
| $S_6$ -SLF1                  |                                                                                          |             | 97.275   | 97.275         | 97.275                       | 97.82    | 97.275   |  |  |
| $S_{10}$ -SLF1               |                                                                                          |             |          | 98.365         | 97.275                       | 97.275   | 97.275   |  |  |
| $S_{11}$ -SLF1               |                                                                                          |             |          |                | 97.275                       | 97.275   | 97.275   |  |  |
| $S_{12}$ -SLF1               |                                                                                          |             |          |                |                              | 97.82    | 97.82    |  |  |
| <i>S</i> <sub>13</sub> -SLF1 |                                                                                          |             |          |                |                              |          | 97.82    |  |  |

| 90% <identity< th=""></identity<> |
|-----------------------------------|
| 80%≤Identity≤90%                  |
| 70%≤Identity≤80%                  |
| Identity≤70%                      |

| Trme 1                       |             | Predicted interaction: $S_2$ -RNase + $S_1/S_{11}/S_m/S_{13}/S_{10}/S_6/S_{12}/S_{14}$ -SLF2 |         |          |          |             |          |          |  |  |  |
|------------------------------|-------------|----------------------------------------------------------------------------------------------|---------|----------|----------|-------------|----------|----------|--|--|--|
| Type 2                       | $S_I$ -SLF2 | $S_{II}$ -SLF2                                                                               | Sm-SLF2 | S13-SLF2 | S10-SLF2 | $S_6$ -SLF2 | S12-SLF2 | S14-SLF2 |  |  |  |
| S <sub>2</sub> -SLF2         | 78.082      | 79.784                                                                                       | 80.165  | 75.202   | 79.515   | 80.863      | 80.054   | 80.495   |  |  |  |
| $S_I$ -SLF2                  |             | 87.123                                                                                       | 87.637  | 78.356   | 82.74    | 84.384      | 83.836   | 84.254   |  |  |  |
| $S_{11}$ -SLF2               |             |                                                                                              | 89.286  | 82.933   | 86.933   | 88.533      | 87.733   | 86.685   |  |  |  |
| $S_m$ -SLF2                  |             |                                                                                              |         | 80.939   | 86.188   | 86.813      | 85.635   | 86.188   |  |  |  |
| S13-SLF2                     |             |                                                                                              |         |          | 86.667   | 90.667      | 85.867   | 85.87    |  |  |  |
| $S_{10}$ -SLF2               |             |                                                                                              |         |          |          | 93.867      | 92       | 91.848   |  |  |  |
| $S_6$ -SLF2                  |             |                                                                                              |         |          |          |             | 92       | 92.663   |  |  |  |
| <i>S</i> <sub>12</sub> -SLF2 |             |                                                                                              |         |          |          |             |          | 90.761   |  |  |  |

| Туре3                | S <sub>2</sub> -SLF3 | Sm-SLF3 | <i>S</i> <sub>14</sub> -SLF3 | <i>S</i> <sub>13</sub> -SLF3b | S <sub>6</sub> -SLF3 | S10-SLF3 | <i>S</i> <sub>12</sub> -SLF3 | S13-SLF3a | <i>S</i> <sub>11</sub> -SLF3 |
|----------------------|----------------------|---------|------------------------------|-------------------------------|----------------------|----------|------------------------------|-----------|------------------------------|
| S <sub>1</sub> -SLF3 | 85.561               | 87.838  | 86.957                       | 88.525                        | 87.601               | 87.062   | 87.433                       | 87.968    | 88.41                        |
| S <sub>2</sub> -SLF3 |                      | 88.076  | 86.413                       | 86.649                        | 85.714               | 86.096   | 85.829                       | 86.631    | 88.076                       |
| Sm-SLF3              |                      |         | 85.87                        | 88.556                        | 87.297               | 88.076   | 87.568                       | 88.108    | 88.618                       |
| S14-SLF3             |                      |         |                              | 88.011                        | 86.957               | 87.772   | 88.043                       | 88.587    | 90.217                       |
| S13-SLF3b            |                      |         |                              |                               | 89.101               | 89.373   | 89.101                       | 90.191    | 89.918                       |
| S6-SLF3              |                      |         |                              |                               |                      | 92.992   | 90.836                       | 94.879    | 90.323                       |
| S10-SLF3             |                      |         |                              |                               |                      |          | 90.909                       | 94.609    | 90.786                       |
| S12-SLF3             |                      |         |                              |                               |                      |          |                              | 93.048    | 90.296                       |
| S13-SLF3a            |                      |         |                              |                               |                      |          |                              |           | 91.87                        |

| Trme 4               |         | Predicte | ed interaction | S6-RNase    | $-S_m/S_{10}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_{11}/S_$ | $S_1/S_2/S_{12}/S_{14}/S_{14}$ | 513-SLF4       |          |
|----------------------|---------|----------|----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|----------|
| Type 4               | Sm-SLF4 | S10-SLF4 | $S_{II}$ -SLF4 | $S_I$ -SLF4 | $S_2$ -SLF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $S_{12}$ -SLF4                 | $S_{14}$ -SLF4 | S13-SLF4 |
| S <sub>6</sub> -SLF4 | 75.946  | 77.717   | 76.902         | 77.151      | 78.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.957                         | 76.075         | 77.628   |
| Sm-SLF4              |         | 86.141   | 84.511         | 87.568      | 86.649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87.297                         | 86.757         | 88.076   |
| S10-SLF4             |         |          | 88.889         | 87.772      | 87.738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89.946                         | 88.859         | 89.946   |
| S11-SLF4             |         |          |                | 88.043      | 87.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89.13                          | 88.043         | 89.402   |
| S <sub>1</sub> -SLF4 |         |          |                |             | 89.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88.71                          | 88.172         | 90.786   |
| $S_2$ -SLF4          |         |          |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.101                         | 90.463         | 92.371   |
| S12-SLF4             |         |          |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 88.71          | 90.217   |
| $S_{14}$ -SLF4       |         |          |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                | 91.328   |

| True 5               |                              | Predicte                     | ed interaction       | S13-RNase            | $+ S_{14}/S_{12}/S_{1}/S_{1}$ | S <sub>2</sub> /S <sub>6</sub> /S <sub>10</sub> /S <sub>11</sub> /S | m-SLF5                |         |
|----------------------|------------------------------|------------------------------|----------------------|----------------------|-------------------------------|---------------------------------------------------------------------|-----------------------|---------|
| Type 5               | <i>S</i> <sub>14</sub> -SLF5 | <i>S</i> <sub>12</sub> -SLF5 | S <sub>1</sub> -SLF5 | S <sub>2</sub> -SLF5 | S <sub>6</sub> -SLF5          | S10-SLF5                                                            | S <sub>11</sub> -SLF5 | Sm-SLF5 |
| S13-SLF5             | 46.518                       | 46.089                       | 47.765               | 45.81                | 48.324                        | 47.887                                                              | 47.632                | 49.162  |
| $S_{14}$ -SLF5       |                              | 73.925                       | 77.688               | 75.806               | 75.806                        | 76.216                                                              | 76.882                | 77.419  |
| $S_{12}$ -SLF5       |                              |                              | 82.62                | 81.867               | 82.842                        | 86.933                                                              | 80                    | 82.667  |
| $S_I$ -SLF5          |                              |                              |                      | 84.225               | 85.791                        | 85.294                                                              | 82.62                 | 85.294  |
| S <sub>2</sub> -SLF5 |                              |                              |                      |                      | 86.327                        | 85.6                                                                | 83.2                  | 86.4    |
| $S_6$ -SLF5          |                              |                              |                      |                      |                               | 86.863                                                              | 83.646                | 87.131  |
| $S_{10}$ -SLF5       |                              |                              |                      |                      |                               |                                                                     | 82.4                  | 86.4    |
| S11-SLF5             |                              |                              |                      |                      |                               |                                                                     |                       | 83.2    |

| Type 6               | Sm-SLF6 | S12-SLF6 | S10-SLF6 | S <sub>6</sub> -SLF6 | S <sub>11</sub> -SLF6 | S <sub>1</sub> -SLF6 | S <sub>2</sub> -SLF6 | S13-SLF6a | S14-SLF6 |
|----------------------|---------|----------|----------|----------------------|-----------------------|----------------------|----------------------|-----------|----------|
| S13-SLF6b            | 57.796  | 56.72    | 56.989   | 56.452               | 57.796                | 58.333               | 58.333               | 58.491    | 58.602   |
| Sm-SLF6              |         | 87.366   | 87.903   | 88.889               | 88.71                 | 89.008               | 88.472               | 88.978    | 88.889   |
| S12-SLF6             |         |          | 90.667   | 89.067               | 89.572                | 89.247               | 87.733               | 87.968    | 88       |
| S10-SLF6             |         |          |          | 89.6                 | 87.433                | 89.247               | 87.733               | 88.235    | 87.733   |
| S6-SLF6              |         |          |          |                      | 87.701                | 90.323               | 88.564               | 89.572    | 88.451   |
| S11-SLF6             |         |          |          |                      |                       | 90.054               | 89.037               | 89.182    | 88.503   |
| S <sub>1</sub> -SLF6 |         |          |          |                      |                       |                      | 89.247               | 90.323    | 89.516   |
| S <sub>2</sub> -SLF6 |         |          |          |                      |                       |                      |                      | 90.909    | 90.133   |
| S13-SLF6a            |         |          |          |                      |                       |                      |                      |           | 90.909   |

| Trino 7                      |          | ]              | Predicted int | eraction: $S_I$ | $_0/S_{12}$ -RNase + | $S_{11}/S_2/S_1/S_{13}/S_1$ | S14/Sm-SLF7 a | nd S6-SLF7a/   | b       |
|------------------------------|----------|----------------|---------------|-----------------|----------------------|-----------------------------|---------------|----------------|---------|
| Type 7                       | S12-SLF7 | $S_{11}$ -SLF7 | $S_2$ -SLF7   | $S_I$ -SLF7     | S6-SLF7a             | S6-SLF7b                    | S13-SLF7      | $S_{14}$ -SLF7 | Sm-SLF7 |
| S10-SLF7                     | 84.777   | 80.366         | 80.628        | 81.365          | 82.275               | 83.508                      | 83.508        | 81.675         | 82.723  |
| <i>S</i> <sub>12</sub> -SLF7 |          | 80.628         | 81.414        | 81.89           | 82.54                | 83.246                      | 83.77         | 82.461         | 82.723  |
| S11-SLF7                     |          |                | 85.676        | 86.702          | 86.863               | 85.942                      | 86.207        | 86.737         | 85.942  |
| $S_2$ -SLF7                  |          |                |               | 88.298          | 90.323               | 88.859                      | 89.39         | 89.125         | 89.655  |
| $S_I$ -SLF7                  |          |                |               |                 | 91.421               | 92.021                      | 92.287        | 90.691         | 92.287  |
| S6-SLF7a                     |          |                |               |                 |                      | 91.153                      | 91.421        | 92.493         | 91.957  |
| S6-SLF7b                     |          |                |               |                 |                      |                             | 98.939        | 90.981         | 92.838  |
| S13-SLF7                     |          |                |               |                 |                      |                             |               | 91.247         | 93.103  |
| $S_{14}$ -SLF7               |          |                |               |                 |                      |                             |               |                | 92.042  |

| Type 8                | <i>S</i> <sub>12</sub> -<br>SLF8a | <i>S</i> <sub>2</sub> -<br>SLF8 | <i>S</i> <sub>6</sub> -<br>SLF8b | <i>S</i> <sub>12</sub> -<br>SLF8b | <i>S</i> <sub>11</sub> -<br>SLF8 | <i>S</i> <sub>1</sub> -<br>SLF8 | <i>S</i> <sub>6</sub> -<br>SLF8a | <i>S</i> <sub>10</sub> -<br>SLF8b | <i>S</i> 13-<br>SLF8a | <i>S</i> <sub>13</sub> -<br>SLF8b | <i>S</i> <sub>14</sub> -<br>SLF8 | Sm-<br>SLF8 |
|-----------------------|-----------------------------------|---------------------------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------------|-----------------------|-----------------------------------|----------------------------------|-------------|
| S10-SLF8a             | 87.566                            | 83.158                          | 80.576                           | 80.789                            | 82.895                           | 82.632                          | 83.158                           | 82.895                            | 79.211                | 81.053                            | 83.158                           | 83.158      |
| S12-SLF8a             |                                   | 83.069                          | 80.216                           | 82.275                            | 83.069                           | 83.069                          | 84.392                           | 83.333                            | 79.894                | 80.952                            | 83.598                           | 83.598      |
| S <sub>2</sub> -SLF8  |                                   |                                 | 89.928                           | 88.158                            | 92.895                           | 93.684                          | 92.105                           | 93.947                            | 88.421                | 89.211                            | 92.895                           | 92.368      |
| S <sub>6</sub> -SLF8b |                                   |                                 |                                  | 89.209                            | 90.288                           | 92.806                          | 93.165                           | 94.245                            | 88.489                | 89.568                            | 94.245                           | 93.165      |
| S12-SLF8b             |                                   |                                 |                                  |                                   | 88.684                           | 90.526                          | 90.789                           | 90.789                            | 86.579                | 88.158                            | 91.053                           | 90.789      |
| S11-SLF8              |                                   |                                 |                                  |                                   |                                  | 93.947                          | 92.632                           | 94.211                            | 88.158                | 88.947                            | 92.895                           | 92.632      |
| $S_I$ -SLF8           |                                   |                                 |                                  |                                   |                                  |                                 | 96.579                           | 98.158                            | 92.105                | 92.895                            | 96.579                           | 96.842      |
| S6-SLF8a              |                                   |                                 |                                  |                                   |                                  |                                 |                                  | 96.842                            | 92.895                | 93.421                            | 96.579                           | 96.579      |
| S10-SLF8b             |                                   |                                 |                                  |                                   |                                  |                                 |                                  |                                   | 92.895                | 93.684                            | 97.105                           | 97.632      |
| S13-SLF8a             |                                   |                                 |                                  |                                   |                                  |                                 |                                  |                                   |                       | 92.105                            | 92.632                           | 92.632      |
| S13-SLF8b             |                                   |                                 |                                  |                                   |                                  |                                 |                                  |                                   |                       |                                   | 93.421                           | 93.421      |
| S14-SLF8              |                                   |                                 |                                  |                                   |                                  |                                 |                                  |                                   |                       |                                   |                                  | 97.105      |

| Туре 9                                  | Predicted int        | teraction: $S_{11}$ | $S_{13}/S_{14}$ -RNase | $+ S_2/S_{12}/S_1/S_{10}/S_{10}$ | S <sub>m</sub> -SLF9 and S | 6-SLF9a/b |
|-----------------------------------------|----------------------|---------------------|------------------------|----------------------------------|----------------------------|-----------|
| Type 9                                  | S <sub>2</sub> -SLF9 | S12-SLF9            | S <sub>1</sub> -SLF9   | S <sub>6</sub> -SLF9a            | S10-SLF9                   | Sm-SLF9   |
| $S_{11}/S_{13}/S_{14}$ -SLF9 are absent |                      |                     |                        |                                  |                            |           |
| S <sub>6</sub> -SLF9b                   | 86.942               | 86.598              | 88.66                  | 87.973                           | 88.66                      | 88.66     |
| $S_2$ -SLF9                             |                      | 87.139              | 86.877                 | 86.387                           | 87.5                       | 87.5      |
| S <sub>12</sub> -SLF9                   |                      |                     | 90.263                 | 90                               | 90                         | 90        |
| S <sub>1</sub> -SLF9                    |                      |                     |                        | 95.263                           | 95.526                     | 95.526    |
| S <sub>6</sub> -SLF9a                   |                      |                     |                        |                                  | 97.638                     | 97.638    |
| <i>S</i> <sub>10</sub> -SLF9            |                      |                     |                        |                                  |                            | 100       |

|                                | Pr                                 | Predicted interaction: $S_{13}$ -RNase + $S_{12}/S_1/S_2/S_6/S_{10}/S_{11}/S_m$ -SLFL10 and $S_{14}$ -SLFL10a/ |               |                                   |                                    |                  |                                     |                                     |               |  |  |
|--------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------|------------------------------------|------------------|-------------------------------------|-------------------------------------|---------------|--|--|
| Type 10                        | <i>S</i> <sub>12</sub> -<br>SLFL10 | $S_{I}$ -SLFL10                                                                                                | S2-<br>SLFL10 | <i>S</i> <sub>6</sub> -<br>SLFL10 | <i>S</i> <sub>10</sub> -<br>SLFL10 | $S_{II}$ -SLFL10 | <i>S</i> <sub>14</sub> -<br>SLFL10a | <i>S</i> <sub>14</sub> -<br>SLFL10b | Sm-<br>SLFL10 |  |  |
| <i>S</i> <sub>13</sub> -SLFL10 | 62.368                             | 68.158                                                                                                         | 67.895        | 67.895                            | 68.158                             | 67.368           | 67.895                              | 67.895                              | 67.632        |  |  |
| S12-SLFL10                     |                                    | 86.614                                                                                                         | 86.352        | 86.614                            | 86.614                             | 85.564           | 86.352                              | 86.352                              | 86.089        |  |  |
| S <sub>1</sub> -SLFL10         |                                    |                                                                                                                | 99.738        | 99.476                            | 100                                | 98.953           | 99.738                              | 99.738                              | 99.476        |  |  |
| $S_2$ -SLFL10                  |                                    |                                                                                                                |               | 99.738                            | 99.738                             | 98.691           | 99.476                              | 99.476                              | 99.215        |  |  |
| S <sub>6</sub> -SLFL10         |                                    |                                                                                                                |               |                                   | 99.476                             | 98.429           | 99.215                              | 99.215                              | 98.953        |  |  |
| S10-SLFL10                     |                                    |                                                                                                                |               |                                   |                                    | 98.953           | 99.738                              | 99.738                              | 99.476        |  |  |
| S <sub>11</sub> -SLFL10        |                                    |                                                                                                                |               |                                   |                                    |                  | 98.691                              | 98.691                              | 98.429        |  |  |
| S14-SLFL10a                    |                                    |                                                                                                                |               |                                   |                                    |                  |                                     | 100                                 | 99.215        |  |  |
| S14-SLFL10b                    |                                    |                                                                                                                |               |                                   |                                    |                  |                                     |                                     | 99.215        |  |  |

| Type 11                         | <i>S</i> <sub>13</sub> -<br>SLFL11b | <i>S</i> <sub><i>I</i></sub> -<br>SLFL11 | <i>S</i> <sub>2</sub> -<br>SLFL11 | <i>S</i> <sub>10</sub> -<br>SLFL11 | <i>S</i> <sub>11</sub> -<br>SLFL11 | <i>S</i> <sub>12</sub> -<br>SLFL11 | <i>S</i> <sub>14</sub> -<br>SLFL11a | <i>S</i> <sub>14</sub> -<br>SLFL11b | $S_m$ -SLFL11 |
|---------------------------------|-------------------------------------|------------------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|---------------|
| <i>S</i> <sub>13</sub> -SLFL11a | 89.691                              | 94.33                                    | 94.33                             | 93.557                             | 93.668                             | 91.451                             | 93.299                              | 93.299                              | 93.557        |
| <i>S</i> <sub>13</sub> -SLFL11b |                                     | 94.898                                   | 94.898                            | 94.133                             | 93.963                             | 91.582                             | 93.878                              | 93.878                              | 94.133        |
| $S_I$ -SLFL11                   |                                     |                                          | 99.49                             | 98.724                             | 98.688                             | 96.173                             | 98.469                              | 98.469                              | 98.724        |
| $S_2$ -SLFL11                   |                                     |                                          |                                   | 98.724                             | 98.688                             | 96.173                             | 98.469                              | 98.469                              | 98.724        |
| S10-SLFL11                      |                                     |                                          |                                   |                                    | 98.163                             | 95.408                             | 97.704                              | 97.704                              | 100           |
| $S_{II}$ -SLFL11                |                                     |                                          |                                   |                                    |                                    | 95.801                             | 97.638                              | 97.638                              | 98.163        |
| <i>S</i> <sub>12</sub> -SLFL11  |                                     |                                          |                                   |                                    |                                    |                                    | 95.153                              | 95.153                              | 95.408        |
| S14-SLFL11a                     |                                     |                                          |                                   |                                    |                                    |                                    |                                     | 100                                 | 97.704        |
| <i>S</i> <sub>14</sub> -SLFL11b |                                     |                                          |                                   |                                    |                                    |                                    |                                     |                                     | 97.704        |

| Type 12                         | <i>S</i> <sub>2</sub> -<br>SLFL12 | <i>S</i> <sub>6</sub> -<br>SLFL12 | <i>S</i> <sub>10</sub> -<br>SLFL12 | <i>S</i> <sub>11</sub> -<br>SLFL12 | <i>S</i> <sub>12</sub> -<br>SLFL12 | <i>S</i> <sub>13</sub> -<br>SLFL12a | <i>S</i> <sub>13</sub> -<br>SLFL12b | <i>S</i> <sub>14</sub> -<br>SLFL12a | <i>S</i> <sub>14</sub> -<br>SLFL12b | Sm-<br>SLFL12 |
|---------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------------|
| S <sub>1</sub> -SLFL12          | 99.733                            | 99.194                            | 98.663                             | 98.93                              | 97.594                             | 98.396                              | 95.722                              | 98.93                               | 98.93                               | 98.925        |
| $S_2$ -SLFL12                   |                                   | 99.462                            | 98.396                             | 98.663                             | 97.326                             | 98.128                              | 95.455                              | 98.663                              | 98.663                              | 98.656        |
| $S_6$ -SLFL12                   |                                   |                                   | 97.849                             | 98.387                             | 96.774                             | 97.581                              | 94.892                              | 98.118                              | 98.118                              | 98.118        |
| S10-SLFL12                      |                                   |                                   |                                    | 98.663                             | 96.257                             | 97.059                              | 94.652                              | 97.594                              | 97.594                              | 98.118        |
| <i>S</i> <sub>11</sub> -SLFL12  |                                   |                                   |                                    |                                    | 96.524                             | 97.326                              | 94.652                              | 97.861                              | 97.861                              | 97.849        |
| S12-SLFL12                      |                                   |                                   |                                    |                                    |                                    | 96.524                              | 94.652                              | 97.059                              | 97.594                              | 96.505        |
| <i>S</i> <sub>13</sub> -SLFL12a |                                   |                                   |                                    |                                    |                                    |                                     | 95.187                              | 97.861                              | 97.861                              | 97.312        |
| S13-SLFL12b                     |                                   |                                   |                                    |                                    |                                    |                                     |                                     | 95.455                              | 95.722                              | 94.624        |
| <i>S</i> <sub>14</sub> -SLFL12a |                                   |                                   |                                    |                                    |                                    |                                     |                                     |                                     | 99.465                              | 97.849        |
| S14-SLFL12b                     |                                   |                                   |                                    |                                    |                                    |                                     |                                     |                                     |                                     | 97.849        |

These twelve tables show the pairwise % identities (using deduced amino acid sequences) for each of the twelve Types of citrus SLFs (indicated in red font, one for each table) based on pairwise sequence identities

of their deduced amino acid sequences. Different degrees of identity are indicated by grey shading (see key at top). Duplicate SLF copies within each type are indicated by a and b. The predicted interactions between SLF and *S*-RNase (based on the non-self model<sup>8,9,16</sup>) are shown on the top part of each table. The SLFs in each type indicated in orange are either diverged or deleted and their cognate *S*-RNases (also indicated in orange) are predicted to interact with the conserved SLFs under the non-self recognition model.

For type 1 SLFs, the  $S_1$ -SLF1 (indicated in orange) sequence is diverged, with 87.5 ~ 89.6% identity with other SLF1s ( $S_2$ -,  $S_6$ -,  $S_{10}$ -,  $S_{11}$ -,  $S_{12}$ -,  $S_{13}$ - and  $S_{14}$ -SLF1), while the pairwise identities of the other SLF1s range from 97.3 to 98.4%. The cognate S-RNase of  $S_1$ -SLF1,  $S_1$ -RNase (in orange), is predicted to interact with the  $S_2$ -,  $S_6$ -,  $S_{10}$ -,  $S_{11}$ -,  $S_{12}$ -,  $S_{13}$ - and  $S_{14}$ -SLF1 based on the non-self model. Similarly, the  $S_2$ -RNase is predicted to interact with the  $S_1$ -,  $S_{11}$ -,  $S_{12}$ -,  $S_{13}$ -,  $S_{10}$ -,  $S_{10}$ -,  $S_{12}$ -, and  $S_{14}$ -SLF2 (see type 2 table); the  $S_6$ -RNase is predicted to interact with the  $S_m$ -,  $S_{10}$ -,  $S_{11}$ -,  $S_2$ -,  $S_{12}$ -,  $S_{14}$ - and  $S_{13}$ -SLF4 (see type 4 table); the  $S_{13}$ -RNase is predicted to interact with the  $S_{14}$ -,  $S_{12}$ -,  $S_{1-}$ ,  $S_{1$ 

For the type 3, 11 and 12 SLFs, there are no diverged or deleted SLFs and the pairwise SLFs in each type show comparable identities, respectively ranging from  $85.6 \sim 94.9\%$ ,  $89.7 \sim 100\%$ ,  $94.6 \sim 99.7\%$ . For the type 6, the  $S_{I3}$ -haplotype has a diverged  $S_{I3}$ -SLF6b, but it also has a conserved  $S_{I3}$ -SLF6a. Similarly, the  $S_{I0}$ -haplotype has a diverged allele ( $S_{I0}$ -SLF8a) and a conserved allele ( $S_{I0}$ -SLF8b) in type 8. These suggest that the SLFs in type 3, 6, 8, 11, and 12 do not interact with the S-RNases identified in the study.

| No. | Accession<br>name | Марре | d <i>S</i> -RNase <sup>a</sup> | Catalog             | Scientific<br>name | Source                         | SRR id      |
|-----|-------------------|-------|--------------------------------|---------------------|--------------------|--------------------------------|-------------|
| 1   | DX1               | Sm    | $S_x$                          | Wild mandarin       | C. reticulata      | Wang et al, 2018 <sup>17</sup> | SRR5796819  |
| 2   | DX2               | Sm    | $S_x$                          | Wild mandarin       | C. reticulata      | Wang et al, 2018               | SRR5796821  |
| 3   | DX3               | Sm    | $S_x$                          | Wild mandarin       | C. reticulata      | Wang et al, 2018               | SRR5796820  |
| 4   | DX4               | Sm    | $S_x$                          | Wild mandarin       | C. reticulata      | Wang et al, 2018               | SRR5796645  |
| 5   | MS1               | Sm    | S10                            | Wild mandarin       | C. reticulata      | Wang et al, 2018               | SRR5796818  |
| 6   | MS2               | Sm    | S10                            | Wild mandarin       | C. reticulata      | Wang et al, 2018               | SRR5796635  |
| 7   | LHJ               | Sm    | $S_x$                          | Wild mandarin       | C. reticulata      | In this study                  | SRR10163368 |
| 8   | LRH               | Sm    | $S_x$                          | Wild mandarin       | C. reticulata      | In this study                  | SRR10163367 |
| 9   | WLM               | Sm    | $S_{11}$                       | Cultivated mandarin | C. reticulata      | Wu et al, 2018 <sup>18</sup>   | SRR1023625  |
| 10  | ORI               | Sm    | $S_{11}$                       | Cultivated mandarin | C. reticulata      | Wang et al, 2017 <sup>12</sup> | SRR3820595  |
| 11  | QH117             | Sm    | $S_7$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3822244  |
| 12  | 18H               | Sm    | $S_7$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3749605  |
| 13  | 19P               | Sm    | $S_2$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3747617  |
| 14  | CSNJ              | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3747609  |
| 15  | CZG               | Sm    | <i>S</i> 11                    | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3747583  |
| 16  | NJ                | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3750668  |
| 17  | HPJ               | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3750611  |
| 18  | WLK               | Sm    | S11                            | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3820551  |
| 19  | 20H               | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3747635  |
| 20  | WHPG              | Sm    | $S_2$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2018               | SRR5796644  |
| 21  | YJNJ              | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2018               | SRR5796865  |
| 22  | YSJ               | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3750648  |
| 23  | NFJ               | Sm    | $S_7$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR5796630  |
| 24  | JGA               | Sm    | $S_2$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2018               | SRR5796822  |
| 25  | DFZS              | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2018               | SRR5807899  |
| 26  | SM                | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2018               | SRR5807909  |
| 27  | WZ                | Sm    | $S_8$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2018               | SRR5807910  |
| 28  | KYM               | Sm    | $S_7$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3820643  |
| 29  | CLP               | $S_m$ | $S_x$                          | Cultivated mandarin | C. reticulata      | Wu et al, 2018                 | SRR6188441  |
| 30  | CSM               | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wu et al, 2018                 | SRR6188440  |
| 31  | KSH               | $S_m$ | $S_7$                          | Cultivated mandarin | C. reticulata      | Wu et al, 2018                 | SRR6188456  |
| 32  | DNC               | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wu et al, 2018                 | SRR6188439  |
| 33  | KNG               | $S_m$ | $S_8$                          | Cultivated mandarin | C. reticulata      | Wu et al, 2018                 | SRR6188438  |
| 34  | SNK               | Sm    | $S_x$                          | Cultivated mandarin | C. reticulata      | Wu et al, 2018                 | SRR6188455  |
| 35  | S6                | $S_m$ | $S_2$                          | Cultivated mandarin | C. reticulata      | In this study                  | SRR10163366 |
| 36  | <b>S</b> 8        | Sm    | $S_2$                          | Cultivated mandarin | C. reticulata      | In this study                  | SRR10163366 |
| 37  | MSJ               | $S_x$ | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3751832  |
| 38  | STJ               | $S_x$ | $S_2$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3756933  |
| 39  | MLTJ              | $S_x$ | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2017               | SRR3750679  |
| 40  | ZHJ               | $S_x$ | $S_x$                          | Cultivated mandarin | C. reticulata      | Wang et al, 2018               | SRR5796927  |
| 41  | DD                | $S_m$ | $S_x$                          | Sour orange         | C. aurantium       | Wang et al, 2017               | SRR3885049  |
| 42  | BH                | $S_m$ | S5/S13                         | Sour orange         | C. aurantium       | In this study                  | SRR9127844  |
| 43  | HBLT              | $S_m$ | $S_x$                          | Sour orange         | C. aurantium       | In this study                  | SRR9127845  |

# Supplementary Table 11. Detailed information relating to checking the S-haplotypes for 153 Citrus accessions

|          |       |                | r                               | r            |                            | 7                                    |                          |
|----------|-------|----------------|---------------------------------|--------------|----------------------------|--------------------------------------|--------------------------|
| 44       | HP    | $S_m$          | $S_x$                           | Sour orange  | C. aurantium               | In this study                        | SRR9127842               |
| 45       | JJSC  | $S_m$          | $S_8$                           | Sour orange  | C. aurantium               | In this study                        | SRR9127843               |
| 46       | YDL   | $S_m$          | $S_x$                           | Sour orange  | C. aurantium               | In this study                        | SRR9127840               |
| 47       | XGTC  | $S_m$          | $S_x$                           | Sour orange  | C. aurantium               | In this study                        | SRR9127841               |
| 48       | JJDD  | $S_m$          | $S_x$                           | Sour orange  | C. aurantium               | In this study                        | SRR9127838               |
| 49       | DGTC  | Sm             | $S_x$                           | Sour orange  | C. aurantium               | In this study                        | SRR9127839               |
| 50       | XHC   | $S_m$          | $S_x$                           | Sour orange  | C. aurantium               | In this study                        | SRR9127848               |
| 51       | Aur   | $S_m$          | $S_x$                           | Sour orange  | C. aurantium               | Wang et al, 2017                     | SRR3885125               |
| 52       | CBSC  | $S_m$          | S5/S13                          | Sour orange  | C. aurantium               | Wang et al, 2017                     | SRR3915646               |
| 53       | HNSC  | $S_m$          | S5/S13                          | Sour orange  | C. aurantium               | Wang et al, 2017                     | SRR3926631               |
| 54       | SCSC  | $S_m$          | <i>S</i> <sub>7</sub>           | Sour orange  | C. aurantium               | Wang et al, 2017                     | SRR3926581               |
| 55       | ZGSC  | $S_m$          | $S_2$                           | Sour orange  | C. aurantium               | Wang et al, 2017                     | SRR3916939               |
| 56       | ANJ   | $S_m$          | S5/S13                          | Sour orange  | C. aurantium               | In this study                        | SRR9127847               |
| 57       | BXI   | $S_m$          | <i>S</i> <sub>7</sub>           | Sour orange  | C. aurantium               | In this study                        | SRR9127857               |
| 58       | CHG   | Sm             | Sx                              | Sour orange  | C. aurantium               | In this study                        | SRR9127858               |
| 59       | DFL   | Sm             | S7                              | Sour orange  | C. aurantium               | In this study                        | SRR9127855               |
| 60       | GP    | Sm             | Sx                              | Sour orange  | C. aurantium               | In this study                        | SRR9127856               |
| 61       | GXSJ  | Sm             | $S_x$                           | Sour orange  | C. aurantium               | In this study                        | SRR9127853               |
| 62       | HYDD  | Sm             | $S_{7}$                         | Sour orange  | C. aurantium               | In this study                        | SRR9127854               |
| 63       | HZL   | Sm<br>Sm       | S <sub>x</sub>                  | Sour orange  | C. aurantium               | In this study                        | SRR9127851               |
| 64       | KYC   | Sm<br>Sm       | S5/S13                          | Sour orange  | C. aurantium               | In this study                        | SRR9127852               |
| 65       | QLJ   | Sm<br>Sm       | S3/5/3<br>Sx                    | Sour orange  | C. aurantium               | In this study                        | SRR9127849               |
| 66       | XGCC  | Sm<br>Sm       | $S_x$                           | Sour orange  | C. aurantium               | In this study                        | SRR9127850               |
| 67       | YG2   | Sm<br>Sm       | $S_x$                           | Sour orange  | C. aurantium               | In this study                        | SRR9127846               |
| 68       | AL    | Sm<br>Sm       | $S_x$<br>$S_7$                  | Sweet orange | C. uaramaan<br>C. sinensis | Wang et al, 2017                     | SRR3127646<br>SRR3883626 |
| 69       | HML   | Sm<br>Sm       | S7<br>S7                        | Sweet orange | C. sinensis                | Wang et al, 2017<br>Wang et al, 2017 | SRR3883647               |
| 70       | XSO   | Sm<br>Sm       | S7<br>S7                        | Sweet orange | C. sinensis                | Wang et al, 2017<br>Wang et al, 2017 | SRR4237671               |
| 70       | 13X   | Sm<br>Sm       | S7<br>S7                        | Sweet orange | C. sinensis                | Wang et al, 2017<br>Wang et al, 2017 | SRR4237071<br>SRR3884813 |
| 71       | 29B   | Sm<br>Sm       | S7<br>S7                        | Sweet orange | C. sinensis                | Wang et al, 2017<br>Wang et al, 2017 | SRR3804813<br>SRR3926732 |
|          | JC    |                |                                 | Sweet orange | C. sinensis                | <u> </u>                             |                          |
| 73<br>74 | SO3   | Sm<br>Sm       | $S_7$<br>$S_x$                  | e            | C. sinensis                | Wang et al, 2017<br>Wang et al, 2017 | SRR3884491<br>SRR5799051 |
|          |       |                |                                 | Sweet orange |                            |                                      |                          |
| 75       | LQ    | S <sub>m</sub> | S7                              | Sweet orange | C. sinensis                | Wang et al, 2017                     | SRR3884773               |
| 76       | NHE   | Sm             | Sx                              | Sweet orange | C. sinensis                | Wang et al, 2017                     | SRR3927459               |
| 77       | WSO   | $S_m$          | S7                              | Sweet orange | C. sinensis                | Wang et al, 2017                     | SRR4240447               |
| 78       | GXY   | S9/S12         | S8                              | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR5802549               |
| 79       | STY   | $S_l$          | $S_2$                           | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR5796631               |
| 80       | WSY   | S4             | S <sub>2</sub>                  | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR5796633               |
| 81       | 10Z   | S <sub>3</sub> | S <sub>5</sub> /S <sub>13</sub> | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR3823645               |
| 82       | GBY   | S3             | S <sub>1</sub>                  | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR3823447               |
| 83       | HNHY  | $S_l$          | S8                              | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR3823230               |
| 84       | WBY   | $S_2$          | S5/S13                          | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR3823251               |
| 85       | CHP   | S <sub>4</sub> | $S_x$                           | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR1023627               |
| 86       | SYBS  | $S_8$          | $S_2$                           | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR3844987               |
| 87       | SYPS  | $S_{I}$        | $S_2$                           | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR3824065               |
| 88       | MaJia | $S_x$          | $S_x$                           | Pummelo      | C. maxima                  | Wang et al, 2017                     | SRR3822290               |
| 89       | HB    | $S_7$          | $S_2$                           | Pummelo      | C. maxima                  | In this study                        | SRR9127779               |
| 90       | SMST  | $S_{I}$        | $S_3$                           | Pummelo      | C. maxima                  | In this study                        | SRR9127778               |

| 91         YNMD         S/S <sub>11</sub> S.         Pummelo         C. maxima         In this study         SRR012776           93         ZGST         S/S <sub>12</sub> S.         S/S <sub>12</sub> S/S         Pummelo         C. maxima         In this study         SRR0127780           94         2011-GL-1         S/a         S/a         Pummelo         C. maxima         Wang et al. 2017         SRR383213           95         CQ-016         S/a         S/a         Pummelo         C. maxima         Wang et al. 2017         SRR3823148           97         Q-04         S/S/12         S/a         Pummelo         C. maxima         Wang et al. 2017         SRR3823149           98         RL-06         S/S/13         S/a         Pummelo         C. maxima         Wang et al. 2017         SRR3823409           99         NJYPS         S/a         S/a         Pummelo         C. maxima         Wang et al. 2017         SRR3823409           100         HHILY         S/a         S/a         Pummelo         C. maxima         Wang et al. 2018         SRR4802755           101         HIILY         S/a         S/a         Grapefruit         C. paradist         Wang et al. 2017         SRR3802585           10 |     |           |          |          | ſ             |                |                  |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|----------|----------|---------------|----------------|------------------|------------|
| 93         Z438T         Sylip         Sylip         Sylip         Purmuelo         C. maxima         In this study         SRR358312           94         2011-GL-1         Sin         Sin         Furmuelo         C. maxima         Wang et al. 2017         SRR35832303           95         CQ-016         Sylip         Sin         Purmuelo         C. maxima         Wang et al. 2017         SRR3823148           97         Q-04         SinSylip         Sin         Purmuelo         C. maxima         Wang et al. 2017         SRR3823409           98         RL-06         SinSylip         Sin         Purmuelo         C. maxima         Wang et al. 2017         SRR3823409           99         NJYPS         Sin         Sin         Purmuelo         C. maxima         Wang et al. 2018         SRR5803252           101         HHHXY         Sin         Sin         Grapefruit         C. paradist         Wang et al. 2017         SRR392747           104         Ruby         Sa         Sin         Grapefruit         C. paradist         In this study         SRR392747           105         HJ         Sa         Sin         Grapefruit         C. paradist         In this study         SRR4128407           106      | 91  | YNMD      | S5/S13   | $S_x$    | Pummelo       | C. maxima      | In this study    | SRR9127777 |
| 94         2011-GL-1 $S_{ii}$ <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           |          |          |               |                |                  |            |
| 95         CQ-016 $S_{11}$ $S_{r}$ Purnnelo $C.maxima$ Wang et al, 2017         SRR382303           96         JA-02 $S_{S}/S_{12}$ $S_{r}$ Purnnelo $C.maxima$ Wang et al, 2017         SRR3823455           98         RL-06 $S_{S}/S_{12}$ $S_{r}$ Purnnelo $C.maxima$ Wang et al, 2017         SRR3823459           99         NIYPS $S_{10}$ $S_{r}$ Purnnelo $C.maxima$ Wang et al, 2017         SRR3823450           100 $AJH$ $S_{8}$ $S_{r}$ Purnnelo $C.maxima$ Wang et al, 2018         SRR5802552           101         HHRXY $S_{8}$ $S_{r}$ Grapefruit $C.paradisi$ Wang et al, 2017         SRR3927437           104         Ruby $S_{m}$ $S_{2}$ Grapefruit $C.paradisi$ Wang et al, 2017         SRR3927445           105         HJ $S_{m}$ $S_{2}$ Grapefruit $C.paradisi$ Wang et al, 2017         SRR3927445           106         Flame $S_{m}$ $S_{2}$ Lemon $C.limon$ Wang et al, 2017                                                                                                                                                                                                                                                                                                                                             | 93  | ZGST      | S5/S13   |          | Pummelo       | C. maxima      | In this study    |            |
| 96         JA-02         Sr. St.         Purnmelo         C. maxima         Wang et al. 2017         SRR3823148           97         Q-04         SySt:         Sr.         Purnmelo         C. maxima         Wang et al. 2017         SRR3823409           98         RL-06         SySt:         Sr.         Purnmelo         C. maxima         Wang et al. 2017         SRR3832409           90         NJYPS         Sr.         Sr.         Purnmelo         C. maxima         Wang et al. 2018         SRR5802352           101         HHHXY         Sr.         Sr.         Purnmelo         C. maxima         Wang et al. 2018         SRR5802582           103         141         Sm.         Sr.         Grapefruit         C. paradisi         Wang et al. 2017         SRR3927475           104         Ruby         Sm.         Sr         Grapefruit         C. paradisi         Wang et al. 2017         SRR39212405           105         HJ         Sm.         Sr         Grapefruit         C. paradisi         Wu et al. 2017         SRR39212405           106         Flame         Sm.         Sr         Grapefruit         C. paradisi         Wu et al. 2017         SRR392134           108         JY2         Sm.          | 94  | 2011-GL-1 | S10      | $S_x$    | Pummelo       | C. maxima      | Wang et al, 2017 | SRR3858312 |
| 97         Q-04 $S_{s}(2)_{1}$ $S_{s}$ Purnnelo $C.maxima$ Wang et al, 2017         SRR3823455           98         RI-06 $S_{s}(2)_{12}$ $S_{s}$ Purnnelo $C.maxima$ Wang et al, 2017         SRR3823455           99         NJYPS $S_{10}$ $S_{s}$ Purnnelo $C.maxima$ Wang et al, 2018         SRR5802532           101         HHHXY $S_{s}$ $S_{s}$ Purnnelo $C.maxima$ Wang et al, 2018         SRR5802582           103         141 $S_{m}$ $S_{s}$ Grapefruit $C.paradisi$ Wang et al, 2017         SRR3927405           104         Ruby $S_{m}$ $S_{s}$ Grapefruit $C.paradisi$ Wang et al, 2017         SRR3927405           106         Flame $S_{m}$ $S_{s}$ Grapefruit $C.paradisi$ Wu et al, 2018         SRR4982134           108         JY22 $S_{m}$ Lemon $C.limon$ Wang et al, 2017         SRR3948107           109         YLK $S_{m}$ $S_{s}$ Lemon $C.limon$ Wang et al, 2017         SRR3948171                                                                                                                                                                                                                                                                                                                                  | 95  | CQ-016    | $S_{11}$ | $S_x$    | Pummelo       | C. maxima      | Wang et al, 2017 | SRR3822303 |
| 98         RL-06 $S_yS_{12}$ $S_x$ Pummelo $C. maxima$ Wang et al, 2017         SRR3823409           99         NYPS $S_x$ $S_x$ Pummelo $C. maxima$ Wang et al, 2018         SRR3848607           100         AJH $S_x$ $S_x$ Pummelo $C. maxima$ Wang et al, 2018         SRR5802552           101         HHHXY $S_x$ $S_x$ Pummelo $C. maxima$ Wang et al, 2018         SRR5802552           103         141 $S_m$ $S_x$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3926757           104 $Ruby$ $S_m$ $S_x$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3927405           105         HJ $S_m$ $S_x$ Lemon $C. limon$ Wang et al, 2017         SRR39218405           106         FV22 $S_m$ $S_x$ Lemon $C. limon$ Wang et al, 2017         SRR3951937           110         FMN $S_m$ $S_x$ Lemon $C. limon$ Wang et al, 2017         SRR3951931937 <t< td=""><td>96</td><td>JA-02</td><td>S5/S13</td><td><math>S_x</math></td><td>Pummelo</td><td>C. maxima</td><td>Wang et al, 2017</td><td>SRR3823148</td></t<>                                                                                                                                                                                                                | 96  | JA-02     | S5/S13   | $S_x$    | Pummelo       | C. maxima      | Wang et al, 2017 | SRR3823148 |
| 99         NJYPS $S_{10}$ $S_{c}$ Pummelo $C. maxima$ Wang et al, 2017         SRR3848607           100 $AJH$ $S_{s}$ $S_{c}$ Pummelo $C. maxima$ Wang et al, 2018         SRR5802532           101         HHHXY $S_{s}$ $S_{c}$ Pummelo $C. maxima$ Wang et al, 2018         SRR5802556           103         14J $S_{m}$ $S_{2}$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3924747           105         HJ $S_{m}$ $S_{2}$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3921747           106         Flame $S_{m}$ $S_{2}$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3981870           107         PAR $S_{m}$ $S_{2}$ Lemon $C. limon$ Wang et al, 2017         SRR39818910           109         YLK $S_{m}$ $S_{2}$ Lemon $C. limon$ Wang et al, 2017         SRR3981891           109         YLK $S_{m}$ $S_{2}$ Lemon $C. limon$ In this stady         SRR19129115 <td>97</td> <td>Q-04</td> <td>S9/S12</td> <td><math>S_x</math></td> <td>Pummelo</td> <td>C. maxima</td> <td>Wang et al, 2017</td> <td>SRR3823455</td>                                                                                                                                                                                          | 97  | Q-04      | S9/S12   | $S_x$    | Pummelo       | C. maxima      | Wang et al, 2017 | SRR3823455 |
| 100         AJII $S_t$ Purmelo $C. maxima$ Wang et al, 2018         SRR5802532           101         HIIHXY $S_t$ $S_r$ Purmelo $C. maxima$ Wang et al, 2018         SRR5802582           103         I41 $S_n$ $S_r$ Grapefruit $C. paradisi$ Wang et al, 2018         SRR3926757           104         Ruby $S_n$ $S_r$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3927675           105         HJ $S_m$ $S_r$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3927447           106         Flame $S_m$ $S_r$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR39248190           107         PAR $S_m$ $S_r$ Lemon $C. limon$ Wang et al, 2017         SRR3948190           109         YLK $S_m$ $S_r$ Lemon $C. limon$ Wang et al, 2017         SRR3948277           111         LS $S_m$ $S_r$ Lemon $C. limon$ In this study         SRR9129151           113         FMM                                                                                                                                                                                                                                                                                                                                                      | 98  | RL-06     | S5/S13   | $S_x$    | Pummelo       | C. maxima      | Wang et al, 2017 | SRR3823409 |
| 101         IHIHXY $S_8$ $S_7$ Pummelo $C. maxima$ Wang et al. 2018         SRR5802582           103         14J $S_m$ $S_2$ Grapefruit $C. paradisi$ Wang et al. 2017         SRR3926757           104         Ruby $S_m$ $S_2$ Grapefruit $C. paradisi$ Wang et al. 2017         SRR392747           105         HJ $S_m$ $S_2$ Grapefruit $C. paradisi$ Wang et al. 2017         SRR3927407           106         Flame $S_m$ $S_2$ Grapefruit $C. paradisi$ Wang et al. 2017         SRR3927407           108 $JY22$ $S_m$ $S_2$ Lemon $C. limon$ Wang et al. 2017         SRR394810           109         YLK $S_m$ $S_2$ Lemon $C. limon$ Wang et al. 2017         SRR394817           111         LS $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR9129150           113         FMNL $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR9129154           114                                                                                                                                                                                                                                                                                                                                                                           | 99  | NJYPS     | S10      | $S_x$    | Pummelo       | C. maxima      | Wang et al, 2017 | SRR3848607 |
| 102         HHSWY $S_{r}$ $S_{r}$ Pummelo $C. maxima$ Wang et al, 2018         SRR802582           103         14J $S_{m}$ $S_{2}$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3927477           104         Ruby $S_{m}$ $S_{2}$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3927405           105         HJ $S_{m}$ $S_{2}$ Grapefruit $C. paradisi$ Wu et al, 2017         SRR3927405           107         PAR $S_{m}$ $S_{2}$ Grapefruit $C. paradisi$ Wu et al, 2017         SRR3981910           109         YLK $S_{m}$ $S_{2}$ Lemon $C. limon$ Wang et al, 2017         SRR3951937           110         FMN $S_{m}$ $S_{2}$ Lemon $C. limon$ In this study         SRR9129151           113         FMNL $S_{m}$ $S_{2}$ Lemon $C. limon$ In this study         SRR9129149           115         N4 $S_{m}$ $S_{2}$ Lemon $C. limon$ In this study         SRR9129153                                                                                                                                                                                                                                                                                                                                                        | 100 | AJH       | $S_8$    | $S_x$    | Pummelo       | C. maxima      | Wang et al, 2018 | SRR5802532 |
| 103         14J $S_m$ $S_2$ Grapefruit $C. paradist$ Wang et al, 2017         SRR3926757           104         Ruby $S_m$ $S_2$ Grapefruit $C. paradist$ Wang et al, 2017         SRR3927447           105         HIm $S_m$ $S_2$ Grapefruit $C. paradist$ Wang et al, 2017         SRR3927405           106         Flame $S_m$ $S_2$ Grapefruit $C. paradist$ Wu et al, 2018         SRR3927405           107         PAR $S_m$ $S_2$ Lemon $C. limon$ Wang et al, 2017         SRR3948190           109         YLK $S_m$ $S_2$ Lemon $C. limon$ Wang et al, 2017         SRR3951937           111         L.S $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR9129151           113         FMNL $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR9129149           114         L-17 $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR91291414           115                                                                                                                                                                                                                                                                                                                                                                          | 101 | HHHXY     | $S_8$    | $S_x$    | Pummelo       | C. maxima      | Wang et al, 2018 | SRR5802565 |
| 103         14J $S_m$ $S_2$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3926757           104         Ruby $S_m$ $S_2$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3927447           105         HIm $S_m$ $S_2$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3927405           106         Flame $S_m$ $S_2$ Grapefruit $C. paradisi$ Wu et al, 2018         SRR3927405           107         PAR $S_m$ $S_2$ Lemon $C. limon$ Wang et al, 2017         SRR3948190           109         YLK $S_m$ $S_2$ Lemon $C. limon$ Wang et al, 2017         SRR3951937           111         LS $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR9129151           113         FMNL $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR9129149           114         L-17 $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR91291414           114                                                                                                                                                                                                                                                                                                                                                                           | 102 | HHSWY     | Sx       | $S_x$    | Pummelo       | C. maxima      | Wang et al, 2018 | SRR5802582 |
| 104         Ruby $S_m$ $S_j$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3927447           105         HJ $S_m$ $S_j$ Grapefruit $C. paradisi$ In this study         SRR9128709           106         Flame $S_m$ $S_j$ Grapefruit $C. paradisi$ Wu et al, 2017         SRR3927405           107         PAR $S_m$ $S_j$ Grapefruit $C. paradisi$ Wu et al, 2017         SRR3948190           109         YLK $S_m$ $S_j$ Lemon $C. limon$ Wang et al, 2017         SRR3948190           109         YLK $S_m$ $S_j$ Lemon $C. limon$ Wang et al, 2017         SRR3948277           111         LS $S_m$ $S_j$ Lemon $C. limon$ In this study         SRR9129150           113         FMNL $S_m$ $S_j$ Lemon $C. limon$ In this study         SRR9129159           114         L-17 $S_m$ $S_j$ Lemon $C. limon$ In this study         SRR9129153           115         N4                                                                                                                                                                                                                                                                                                                                                                       | 103 | 14J       | Sm       | $S_2$    | Grapefruit    | C. paradisi    |                  | SRR3926757 |
| 105         HJ $S_m$ $S_r$ Grapefruit $C. paradisi$ In this study         SRR9128709           106         Flame $S_m$ $S_s$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3927405           107         PAR $S_m$ $S_s$ Grapefruit $C. paradisi$ Wu et al, 2018         SRR6188447           108         JY22 $S_m$ $S_s$ Lemon $C. limon$ Wang et al, 2017         SRR3952134           109         YLK $S_m$ $S_s$ Lemon $C. limon$ Wang et al, 2017         SRR3952134           110         FMN $S_m$ $S_s$ Lemon $C. limon$ In this study         SRR9129151           111         LS $S_m$ $S_s$ Lemon $C. limon$ In this study         SRR9129151           114         L-17 $S_m$ $S_s$ Lemon $C. limon$ In this study         SRR9129148           115         N4 $S_m$ $S_s$ Lemon $C. limon$ In this study         SRR9129152           117         YN                                                                                                                                                                                                                                                                                                                                                                                  | 104 | Ruby      | Sm       | $S_3$    |               | -              |                  |            |
| 106         Flame $S_m$ $S_2$ Grapefruit $C. paradisi$ Wang et al, 2017         SRR3927405           107         PAR $S_m$ $S_2$ Grapefruit $C. paradisi$ Wu et al, 2018         SRR6188447           108         JY22 $S_m$ $S_2$ Lemon $C. limon$ Wang et al, 2017         SRR3948190           109         YLK $S_m$ $S_2$ Lemon $C. limon$ Wang et al, 2017         SRR3948170           110         FMN $S_m$ $S_2$ Lemon $C. limon$ Wang et al, 2017         SRR3948277           112         ALN $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR9129151           113         FMNL $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR9129149           115         N4 $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR9129153           118         WLF $S_m$ $S_2$ Lemon $C. limon$ In this study         SRR9129152           120         JY                                                                                                                                                                                                                                                                                                                                                                                     |     |           |          |          |               | -              |                  |            |
| 107         PAR $S_m$ $S_i$ Grapefruit $C. paradisi$ Wu et al, 2018         SRR6188447           108         JY22 $S_m$ $S_i$ Lemon $C. limon$ Wang et al, 2017         SRR3948190           109         YLK $S_m$ $S_i$ Lemon $C. limon$ Wang et al, 2017         SRR3952134           110         FMN $S_m$ $S_i$ Lemon $C. limon$ Wang et al, 2017         SRR3951937           111         LS $S_m$ $S_i$ Lemon $C. limon$ In this study         SRR3948277           112         ALN $S_m$ $S_i$ Lemon $C. limon$ In this study         SRR9129150           113         FMNL $S_m$ $S_i$ Lemon $C. limon$ In this study         SRR9129154           116         POST $S_m$ $S_i$ Lemon $C. limon$ In this study         SRR9129153           118         WLF $S_m$ $S_i$ Lemon $C. limon$ In this study         SRR3948174           120         JY $S_n'S_i$                                                                                                                                                                                                                                                                                                                                                                                       |     |           |          |          |               |                | •                |            |
| 108         JY22 $S_m$ $S_2$ Lemon $C.\ limon$ Wang et al, 2017         SRR3948190           109         YLK $S_m$ $S_2$ Lemon $C.\ limon$ Wang et al, 2017         SRR3952134           110         FMN $S_m$ $S_2$ Lemon $C.\ limon$ Wang et al, 2017         SRR3952137           111         LS $S_m$ $S_2$ Lemon $C.\ limon$ Wang et al, 2017         SRR3948277           112         ALN $S_m$ $S_2$ Lemon $C.\ limon$ In this study         SRR9129150           114         L-17 $S_m$ $S_2$ Lemon $C.\ limon$ In this study         SRR9129149           115         N4 $S_m$ $S_2$ Lemon $C.\ limon$ In this study         SRR9129154           116         POST $S_m$ $S_2$ Lemon $C.\ limon$ In this study         SRR9129154           117         YN $S_m$ $S_2$ Lemon $C.\ limon$ In this study         SRR9129152           118         WLF $S_m$ <                                                                                                                                                                                                                                                                                                                                                                                       |     |           |          |          |               | -              |                  |            |
| 109         YLK $S_m$ $S_2$ Lemon $C.\ linon$ Wang et al, 2017         SRR3952134           110         FMN $S_m$ $S_2$ Lemon $C.\ linon$ Wang et al, 2017         SRR3951337           111         LS $S_m$ $S_2$ Lemon $C.\ linon$ Wang et al, 2017         SRR3948277           112         ALN $S_m$ $S_2$ Lemon $C.\ linon$ In this study         SRR9129150           113         FMNL $S_m$ $S_2$ Lemon $C.\ linon$ In this study         SRR9129149           114         L-17 $S_m$ $S_2$ Lemon $C.\ linon$ In this study         SRR9129148           116         POST $S_m$ $S_2$ Lemon $C.\ linon$ In this study         SRR9129153           117         YN $S_m$ $S_2$ Lemon $C.\ linon$ In this study         SRR9129154           117         YN $S_m$ $S_2$ Lemon $C.\ linon$ In this study         SRR948129153           120         DYL $S_m^{\prime}$ <                                                                                                                                                                                                                                                                                                                                                                               |     |           |          |          | -             | 1              |                  |            |
| 110         FMN $S_m$ $S_2$ Lemon $C.$ limon         Wang et al, 2017         SRR3951937           111         LS $S_m$ $S_2$ Lemon $C.$ limon         Wang et al, 2017         SRR3948277           112         ALN $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129151           113         FMNL $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129149           114         L-17 $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129148           116         POST $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129153           118         WLF $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129152           119         05L-06 $S_m$ $S_2$ Lemon $C.$ limon         In this study         SR8952242           119         05L-06 $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR938734           121         XZI $S_x$                                                                                                                                                                                                                                                                                                                          |     |           |          |          |               |                |                  |            |
| 111         LS $S_m$ $S_2$ Lemon $C.$ limon         Wang et al, 2017         SRR3948277           112         ALN $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129151           113         FMNL $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129150           114         L-17 $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129148           115         N4 $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129148           116         POST $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129153           118         WLF $S_m$ $S_2$ Lemon $C.$ limon         In this study         SRR9129152           120         JY $Sy/S_{12}$ $S_x$ Citron $C.$ medica         Wang et al, 2017         SRR3938253           121         XZ1 $S_x$ $S_x$ Citron $C.$ medica         Wang et al, 2017         SRR3948093           124         JY4 $S_3$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                   |     |           |          |          |               |                |                  |            |
| 112ALN $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129151113FMNL $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129150114L-17 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129149115N4 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129148116POST $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129154117YN $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129153118WLF $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129152120JY $S_m/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938734121XZ1 $S_x$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938734122JY15 $S_t$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR394803124JY4 $S_3$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY8 $S_xS_{13}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY4 $S_3$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY8 $S_xS_{13}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ Citron $C. medica$                                                                                                                                                                                                                                                                                                    |     |           |          |          |               |                |                  |            |
| 113FMNL $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129150114L-17 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129149115N4 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129148116POST $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129154117YN $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129153118WLF $S_m$ $S_2$ Lemon $C. limon$ In this studySRR912915211905L-06 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129152120JY $S_w/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938734121XZ1 $S_x$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3948173122JY15 $S_f$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3948093124JY4 $S_3$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY8 $S_y/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY8 $S_y/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ Citron $C. medi$                                                                                                                                                                                                                                                                                              |     |           |          |          |               |                | -                |            |
| 114L-17 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129149115N4 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129148116POST $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129154117YN $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129153118WLF $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129152120JY $SwS_{12}$ $S_x$ Citron $C. limon$ In this studySRR938234121XZ1 $S_x$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938253122JY15 $S_1$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944177123JY28 $Sw/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3948093124JY4 $S_3$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944125125JY5 $S_y/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY8 $S_y/S_{13}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY8 $S_y/S_{13}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3929760128DYC $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929760129JF $S_x$ $S_x$ Ich                                                                                                                                                                                                                                                                                       |     |           |          |          |               |                | •                |            |
| 115N4 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129148116POST $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129154117YN $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129153118WLF $S_m$ $S_2$ Lemon $C. limon$ Wang et al. 2017SRR395224211905L-06 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129152120JY $S_{\theta}/S_{12}$ $S_x$ Citron $C. medica$ Wang et al. 2017SRR3938734121XZ1 $S_x$ $S_x$ Citron $C. medica$ Wang et al. 2017SRR3938253122JY15 $S_I$ $S_x$ Citron $C. medica$ Wang et al. 2017SRR3944177123JY28 $S_{\theta}/S_{12}$ $S_x$ Citron $C. medica$ Wang et al. 2017SRR3948093124JY4 $S_3$ $S_x$ Citron $C. medica$ Wang et al. 2017SRR3944125125JY5 $S_{\theta}/S_{13}$ $S_x$ Citron $C. medica$ Wang et al. 2017SRR3944160127XZ $S_{14}$ $S_x$ Citron $C. medica$ Wang et al. 2017SRR398056128DYC $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al. 2017SRR3929760130KM $S_{\theta}/S_{12}$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al. 2017SRR3928164132TK $S_x$                                                                                                                                                                                                                                                   |     |           |          |          |               |                | •                |            |
| 116POST $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129154117YN $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129153118WLF $S_m$ $S_2$ Lemon $C. limon$ Wang et al, 2017SRR39524211905L-06 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129152120JY $SyS_{22}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938734121XZ1 $S_x$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938253122JY15 $S_1$ $S_x$ $Citron$ $C. medica$ Wang et al, 2017SRR394803124JY4 $S_3$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944125125JY5 $SyS_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY8 $SyS_{13}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938056128DYC $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929760130KM $SyS_{12}$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929263131PY11 $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928264133XJC<                                                                                                                                                                                                                                                               |     |           |          |          |               |                | •                |            |
| 117YN $S_m$ $S_2$ LemonC. limonIn this studySRR9129153118WLF $S_m$ $S_2$ LemonC. limonWang et al, 2017SRR395224211905L-06 $S_m$ $S_2$ LemonC. limonIn this studySRR9129152120JY $Sy/S_{12}$ $S_x$ CitronC. medicaWang et al, 2017SRR3938734121XZ1 $S_x$ $S_x$ CitronC. medicaWang et al, 2017SRR3938734122JY15 $S_1$ $S_x$ CitronC. medicaWang et al, 2017SRR3948033124JY4 $S_3$ $S_x$ CitronC. medicaWang et al, 2017SRR3944125125JY5 $Sy/S_{12}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944139126JY8 $S_s/S_{13}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ CitronC. medicaWang et al, 2017SRR3938056128DYC $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929763130KM $S_x/S_{12}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928264133XJC $S_x/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928264134YCC $S$                                                                                                                                                                                                                                                                                                  |     |           |          |          |               |                | •                |            |
| 118WLF $S_m$ $S_2$ Lemon $C. limon$ Wang et al, 2017SRR395224211905L-06 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129152120JY $Sy/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938734121XZ1 $S_x$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938253122JY15 $S_1$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3948177123JY28 $Sy/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3948093124JY4 $S_3$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944125125JY5 $Sy/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY8 $S_3/S_{13}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR398056128DYC $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929760130KM $Sy/S_{12}$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928244132TK $S_x$ S_xIchang papeda $C. ichangensis$ Wang et al, 2017SRR3929760133XJC $S_x/S_{13}$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928212 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td>                                                                                                                                                      |     |           |          |          |               |                | ,                |            |
| 11905L-06 $S_m$ $S_2$ Lemon $C. limon$ In this studySRR9129152120JY $Sy/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938734121XZ1 $S_x$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938734122JY15 $S_1$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3948073123JY28 $Sy/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944177123JY4 $S_3$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944093124JY4 $S_3$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139125JY5 $Sy/S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY8 $S_x/S_{13}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR392075128DYC $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929760130KM $Sy/S_{12}$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928212134YCC $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928212                                                                                                                                                                                                                                              |     |           |          |          |               |                |                  |            |
| 120JY $S_{y}/S_{12}$ $S_x$ CitronC. medicaWang et al, 2017SRR3938734121XZ1 $S_x$ $S_x$ $S_x$ CitronC. medicaWang et al, 2017SRR3938253122JY15 $S_1$ $S_x$ CitronC. medicaWang et al, 2017SRR3944177123JY28 $S_{y}/S_{12}$ $S_x$ CitronC. medicaWang et al, 2017SRR3948093124JY4 $S_3$ $S_x$ CitronC. medicaWang et al, 2017SRR3944093124JY4 $S_3$ $S_x$ CitronC. medicaWang et al, 2017SRR3944105125JY5 $S_y/S_{12}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944139126JY8 $S_5/S_{13}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ CitronC. medicaWang et al, 2017SRR3938056128DYC $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929760130KM $S_{y}/S_{12}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928210133XJC $S_2/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928212134YCC $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SR                                                                                                                                                                                                                                                                        |     |           |          |          |               |                |                  |            |
| 121XZ1 $S_x$ $S_x$ CitronC. medicaWang et al, 2017SRR3938253122JY15 $S_I$ $S_x$ CitronC. medicaWang et al, 2017SRR3944177123JY28 $S_yS_{I2}$ $S_x$ CitronC. medicaWang et al, 2017SRR3948093124JY4 $S_3$ $S_x$ CitronC. medicaWang et al, 2017SRR3944125125JY5 $S_yS_{I2}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944139126JY8 $S_3/S_{I3}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944160127XZ $S_{I4}$ $S_x$ CitronC. medicaWang et al, 2017SRR39438056128DYC $S_x$ $S_x$ CitronC. ichangensisWang et al, 2017SRR3929735129JF $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929760130KM $S_y/S_{I2}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928212133XJC $S_y/S_{I3}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928264135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928264136YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564<                                                                                                                                                                                                                                                                |     |           |          |          |               |                |                  |            |
| 122JY15 $S_1$ $S_x$ CitronC. medicaWang et al, 2017SRR3944177123JY28 $S_{9}/S_{12}$ $S_x$ CitronC. medicaWang et al, 2017SRR3948093124JY4 $S_3$ $S_x$ CitronC. medicaWang et al, 2017SRR3944125125JY5 $S_{9}/S_{12}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944139126JY8 $S_5/S_{13}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944160128DYC $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929735129JF $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929760130KM $S_{9}/S_{12}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928763131PY11 $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR392810133XJC $S_5/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928264134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017<                                                                                                                                                                                                                                                       |     |           |          |          |               |                |                  |            |
| 123JY28 $S_{y}S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3948093124JY4 $S_3$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944125125JY5 $S_{y}S_{12}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944139126JY8 $S_{5}/S_{13}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938056128DYC $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929735129JF $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929760130KM $S_y/S_{12}$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928763131PY11 $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR392810133XJC $S_s/S_{13}$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR392812134YCC $S_x$ $S_{11}$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928790136YCYJ $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928943                                                                                                                                                                                                                                               |     |           |          |          |               |                |                  |            |
| 124JY4 $S_3$ $S_x$ CitronC. medicaWang et al, 2017SRR3944125125JY5 $S_9/S_{12}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944139126JY8 $S_5/S_{13}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ CitronC. medicaWang et al, 2017SRR398056128DYC $S_x$ $S_x$ CitronC. ichangensisWang et al, 2017SRR3929735129JF $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929760130KM $S_9/S_{12}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928763131PY11 $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928214132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR392810133XJC $S_5/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928212134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928943                                                                                                                                                                                                                                                                                                           |     |           |          |          |               |                |                  |            |
| 125JY5 $S_{9}/S_{12}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944139126JY8 $S_5/S_{13}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ CitronC. medicaWang et al, 2017SRR3944160128DYC $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929735129JF $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929760130KM $S_{9}/S_{12}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929763131PY11 $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929810133XJC $S_x/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928212134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                            |     |           |          |          |               |                |                  |            |
| 126JY8 $S_5/S_{13}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3944160127XZ $S_{14}$ $S_x$ Citron $C. medica$ Wang et al, 2017SRR3938056128DYC $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929735129JF $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929760130KM $S_9/S_{12}$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929763131PY11 $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR392810133XJC $S_5/S_{13}$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR392810133YCC $S_x$ $S_{11}$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3928790136YCYJ $S_x$ $S_x$ Ichang papeda $C. ichangensis$ Wang et al, 2017SRR3929790                                                                                                                                                                                                                                                                                                                                                                                       |     |           |          |          |               |                |                  |            |
| 127XZ $S_{14}$ $S_x$ CitronC. medicaWang et al, 2017SRR3938056128DYC $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929735129JF $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929760130KM $S_{9/S_{12}}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929763131PY11 $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928810133XJC $S_s/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928212134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |           |          |          |               |                |                  |            |
| 128DYC $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929735129JF $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929760130KM $S_{9}/S_{12}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929763131PY11 $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928810133XJC $S_s/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928212134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |          |          |               |                |                  |            |
| 129JF $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929760130KM $S_{9}/S_{12}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929763131PY11 $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928210133XJC $S_5/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928212134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           |          |          |               |                |                  |            |
| 130KM $S_{9}/S_{12}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929763131PY11 $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928810133XJC $S_5/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928810134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |           |          |          |               |                |                  |            |
| 131PY11 $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928244132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928210133XJC $S_5/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928212134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |           |          |          | 0.1.1         | ę              |                  |            |
| 132TK $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929810133XJC $S_s/S_{13}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928212134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |           |          |          |               | 0              |                  |            |
| 133XJC $S_5/S_{I3}$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928212134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           |          |          | 0.1.1         | ę              |                  |            |
| 134YCC $S_x$ $S_{11}$ Ichang papedaC. ichangensisWang et al, 2017SRR3928564135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |           |          |          |               | -              |                  |            |
| 135YCLS $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929790136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |           |          |          | 011           |                |                  |            |
| 136YCYJ $S_x$ $S_x$ Ichang papedaC. ichangensisWang et al, 2017SRR3929943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |           |          |          |               | °              |                  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 135 | YCLS      | $S_x$    | $S_x$    |               | C. ichangensis |                  | SRR3929790 |
| 137YLS5/S13S10Ichang papedaC. ichangensisWang et al, 2017SRR3930078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 136 | YCYJ      | $S_x$    | $S_x$    | Ichang papeda | C. ichangensis | Wang et al, 2017 | SRR3929943 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 137 | YL        | S5/S13   | $S_{10}$ | Ichang papeda | C. ichangensis | Wang et al, 2017 | SRR3930078 |

| 138 | ZY    | $S_x$   | $S_x$   | Ichang papeda | C. ichangensis | Wang et al, 2017 | SRR3931949 |
|-----|-------|---------|---------|---------------|----------------|------------------|------------|
| 139 | Ace   | $S_x$   | $S_x$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3988226 |
| 140 | Amo   | $S_x$   | $S_x$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3989253 |
| 141 | ARO   | S9/S12  | $S_{I}$ | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3989264 |
| 142 | CDSJ  | $S_x$   | $S_{I}$ | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3989910 |
| 143 | GDMM  | $S_x$   | $S_x$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3990142 |
| 144 | HDGKZ | $S_x$   | $S_x$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3990145 |
| 145 | HKC   | S9/S12  | $S_2$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3988729 |
| 146 | JBL   | $S_x$   | $S_x$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3988460 |
| 147 | JMPG1 | $S_{I}$ | $S_6$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3990571 |
| 148 | JMPG2 | $S_x$   | $S_x$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3990663 |
| 149 | Sdi   | $S_x$   | $S_x$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3989214 |
| 150 | SND   | $S_I$   | S5/S13  | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3990714 |
| 151 | WNNL  | $S_x$   | S5/S13  | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3990759 |
| 152 | WNSMW | $S_6$   | $S_x$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3992564 |
| 153 | WSD   | $S_x$   | $S_x$   | Atalantia     | A. buxifolia   | Wang et al, 2017 | SRR3992888 |

Genome sequences of 153 citrus accessions containing published and unpublished sources were mapped to 15 *S-RNase* sequences. As a result, 132/153 accessions were found to contain these *S-RNase* genes and 90/153 accessions harbor the  $S_m$ -RNase gene.

<sup>a</sup>: We assumed all accessions were heterozygous with two *S*-haplotypes segregating.  $S_x$ -*RNase* indicates the unmapped *S*-haplotypes.

Note that the sequences between  $S_9$ -RNase and  $S_{12}$ -RNase and between  $S_5$ -RNase and  $S_{13}$ -RNase are so highly similar that these pairs of genes cannot be distinguished from each other through reads mapping.

#### **References for Supplemental Information**

- 1 Kheyr-Pour, A. *et al.* Sexual plant reproduction sequence diversity of pistil S-proteins associated with gametophytic selfincompatibility in *Nicotiana alata. Sex. Plant Reprod.* **3**, 88-97 (1990).
- 2 Eddy, S. R. A new generation of homology search tools based on probabilistic inference. *Genome Inform.* 23, 205-211 (2009).
- 3 Liang, M. *et al.* Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. *Mol. Genet. Genomics* **292**, 325-341 (2017).
- 4 Nowak, M. D., Davis, A. P., Anthony, F. & Yoder, A. D. Expression and trans-specific polymorphism of self-incompatibility RNases in *coffea* (Rubiaceae). *PloS One* **6**, e21019 (2011).
- 5 Asquini, E. *et al.* S-RNase-like sequences in styles of *Coffea* (Rubiaceae). Evidence for S-RNase based gametophytic self-Incompatibility? *Trop. Plant Biol.* **4**, 237-249 (2011).
- 6 Ramanauskas, K. & Igić, B. The evolutionary history of plant T2/S-type ribonucleases. *PeerJ* 5, e3790 (2017).
- 7 Tsuchimatsu, T. *et al.* Patterns of polymorphism at the self-incompatibility locus in 1,083 *Arabidopsis thaliana* genomes. *Mol. Biol. Evol.* **34**, 1878-1889 (2017).
- 8 Kubo, K. *et al.* Collaborative non-self recognition system in S-RNase–based self-incompatibility. *Science* **330**, 796-799 (2010).
- 9 Kubo, K. *et al.* Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in *Petunia*. *Nat. Plants* **1**, 14005 (2015).
- 10 Workenhe, S. T., Kibenge, M. J. T., Iwamoto, T. & Kibenge, F. S. B. Absolute quantitation of infectious salmon anaemia virus using different realtime reverse transcription PCR chemistries. *J. Virol. Methods* **154**, 128-134 (2008).
- 11 Ida, K. *et al.* The 1.55 Å resolution structure of *Nicotiana alata* S<sub>F11</sub>-RNase associated with gametophytic self-incompatibility. *J. Mol. Biol.* **314**, 103-112 (2001).
- 12 Wang, X. *et al.* Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. *Nat. Genet.* **49**, 765-772 (2017).
- 13 Xue, Y., Carpenter, R., Dickinson, H. G. & Coen, E. S. Origin of allelic diversity in antirrhinum *S* locus RNases. *Plant Cell* **8**, 805-814 (1996).
- 14 Ushijima, K. *et al.* Cloning and characterization of cDNAs encoding S-RNases from almond (*Prunus dulcis*): primary structural features and sequence diversity of the S-RNases in Rosaceae. *Mol. Gen. Genet.* **260**, 261-268 (1998).
- 15 Mir, J. *et al.* Molecular identification of S-alleles associated with self-incompatibility in apple (Malus spp.) genotypes. *Indian J. Agr. Sci.* **86**, 78-81 (2016).
- 16 Fujii, S., Kubo, K.-i. & Takayama, S. Non-self- and self-recognition models in plant self-incompatibility. *Nat. Plants* **2**, 16130 (2016).
- 17 Wang, L. *et al.* Genome of wild mandarin and domestication history of mandarin. *Mol. Plant* **11**, 1024-1037 (2018).
- 18 Wu, G. A. *et al.* Genomics of the origin and evolution of *Citrus. Nature* **554**, 311-316 (2018).