
Appendix A. Construction Algorithm of the distributed Bitmap Join Index (dBJI) with

MapReduce

The MapReduce implementation of the bitmap index construction is detailed in Algo-

rithm 3. The algorithm starts by loading the dimension table into the memory of each node

at the Map Setup function. The fact table partitions are processed in the Map function,

which checks if each record contains (or not) the indexed attribute value. The Map function

outputs a set of key-value pairs corresponding to primary keys and boolean values. The

Partitioner function distributes the key-value pairs evenly across the n reducers (i.e., parti-

tions). The Grouping and Sorting Comparator function groups and sorts, respectively, the

key-value pairs in order to form blocks of size m within each partition. Finally, the Reduce

function receives the key-value pairs grouped according to the block size. Moreover, each

Reduce tasks corresponds to a different partition. The Reduce function processs each block

of key-value pairs emitting the first fact table primary key pkF as key, and the block bitmap

array as value. The bitmap partitions are stored as Sequence Files in the HDFS.

Appendix B. Bitmap Star-join Processing Algorithm in MapReduce

The MapReduce implementation of the star-join processing is detailed in Algorithm 4.

The algorithm consists of two MapReduce jobs: the first processes the bitmap indices and

access the fact table; the second access dimension tables and performs the join operation.

In the first job, the Map function reads the bitmap indices, returning key-value pairs corre-

sponding to primary keys and bitmap blocks. The Reduce function processes blocks with

the same key. It executes the logical bitwise operations according to the predicates of the

query Q (line 1). Then, it generates a list of primary keys (lines 2-8). Lastly, it returns the

result of the random access of the fact table (lines 9-12). In the second job, the Map function

process the result of the first job (line 2), together with the dimension tables (lines 4-5). The

mapping of the dimension records is defined according to a parameter p, which computa-

tion is detailed by Afrati et al. [9]. The Partitioner function combines the primary keys and

the mapping parameter values to define to which Reduce task a record must be sent. The

Reduce function performs the join operations with the help of hash maps structures (lines

2-8).

Appendix C. Bitmap Star-join Processing Algorithm in Spark

The Spark implementation of the star-join processing is detailed in Algorithm 5. The

algorithm starts by loading the bitmap arrays in RDDs (lines 1-3). Then, logical bitwise

operations are executed according to the predicates of Q(lines 4-7). The RDD generated

in the last step is used to build a partitioned list of primary keys from the fact table (line

8). This list is passed to a BulkGet function that randomly accesses tuples from the fact

table (line 9). Next, the dimension tables are read and filtered, generating a set of RDDs

(lines 9-12). The next step consists in joining the resulting RDDs, which depends on the

join strategy chosen. The SP-Broadcast-Bitmap performs a hash join by broadcasting the

dimension RDDs to all nodes (lines 14-17), while the SP-Bitmap executes a sequence of

joins between the dimension and fact RDDs (lines 19-22).

Algorithm 3 Creation of the dBJI in MapReduce
input: F , D, a, value, t, n and m

input: F : fact table

input: D: dimension table

input: a: indexed attribute

input: value: indexed value of a

input: t: number of tuples of the fact table

input: n: number of reducers (equal to number of bitmap)

input: m: number of tuples indexed in each bitmap block partitions

output: a join bitmap index representing a = value

Map Setup

H is a hash map to store the filtered dimension table

1: Result = ReadDimensionTable(D, a = value)

2: H.add(pkD from Result)

Map(k, v)

k is null

v is a record from F

1: if H.has(fkD from v) then

2: Emit (pkF , 1)

3: else

4: Emit (pkF , 0)

5: end if

Partitioner(k)

k is the value of pkF

1: Return
k ∗ n
t

Grouping/Sorting Comparator(k1, k2)

k1 and k2 are two values of pkF being compared

to compose blocks within partitions

1: Return
k1

m
<
k2

m

Reduce(k, v)

k is the value of pkF stored at the beginning of each block

v is 0 or 1

1: Bitmap← []

2: i = 0

3: for each value in v do

4: Bitmap[i] = value

5: i+ = 1

6: end for

7: Emit (k, Bitmap)

Algorithm 4 Bitmap Star-Join Processing in MapReduce
input: Q, F , D and BJI

input: Q: star join query

input: F : fact table

input: D: set of dimension tables

input: p: set of mapping parameter values

input: BJI: set of bitmap join indices

output: result of Q

First MapReduce Job

input: BJI

output: tuples from fact table

Map(k, v)

k is the value of pkF of the first tuple indexed by the

bitmap array

v is a bitmap array

1: Emit (k, v)

Reduce(k, v)

k is the value of pkF of the first tuple indexed by the

bitmap arrays

v is a set of bitmap arrays with the same pkF

1: Bitmap = BitwiseLogicalOperations(v)

2: KeyList← ∅

3: for i ∈ {0, ..., Bitmap.length− 1} do

4: if Bitmap[i] == 1 then

5: pk = k + i

6: KeyList← pk

7: end if

8: end for

9: Result = RandomAcess(KeyList, F)

10: for each tuple in Result do

11: Emit (tuple, null)

12: end for

Second MapReduce Job

input: Q, D and Result from Job 1

output: tuples from fact table

Map(k, v)

k is null

v is a record from D or result of Job 1

1: if v is from Job 1 then

2: Emit ([f , {fk}], {m})

3: else if v is from D then

4: for i = 0 to i < pd do

5: Emit ([d, pkd, i], {ad})

6: end for

7: end if

Partitioner(k, v, n)

k is an array of three elements

n is the number of reducers

1: Return r = f (k), where 1 ≤ r ≤ n

Reduce(k, v)

k is an array of with the table identifier, primary/foreign keys

and attributes

v is a set of records with the same key

Hi are Hash Maps to store data from dimensions

1: id = k[0]

2: if id is from {d} then

3: Hid.add(k[1], v)

4: else if {H} has all fk in k then

5: for each value in v do

6: Emit ([{Hd.get(fkd from k)}], value)

7: end for

8: end if

Algorithm 5 Bitmap Star-Join Processing in Spark
input: Q, F , D and BJI

input: Q: star join query

input: F : fact table

input: D: set of dimension tables

input: BJI: set of bitmap join indices

output: result of Q

1: for each Bitmap in BJI do

2: RDDBiti = Bitmap.mapToPair(pkF , bitmap)

3: end for

/∗ Logical operations of the bitmap arrays ∗/

4: RDDBitmap ← ∅

5: for each RDDBiti in RDDBit do

6: RDDBitmap = RDDBitmap.join(RDDBiti).mapToPair(pkF , v1 op v2)

7: end for

/∗ Creating an RDD with the list of selected row-ids ∗/

8: RDDkeys = paralelize(RDDBitmap.getRowIds())

9: RDD = BulkGet(F , RDDkeys)

10: for each d in D do

11: RDDd = d

12: RDDd.filter(Q).mapToPair(pkd, ad)

13: end for

14: if joinStrategy is SP-Broadcast-Bitmap then

15: for each d in D do

16: Hd = broadcast(RDDd.collect())

17: end for

18: RDD.mapToPair([{Hd.get(ad)}], m)

19: else if joinStrategy is SP-Bitmap then

20: RDD = RDDF

21: for each d in D do

22: RDD = RDD.join(RDDd).mapToPair(fkd′ , [ad, m])

23: end for

24: end if

