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Supplementary material, S1 

 

Methods for an accuracy assessment of structure-from-motion photogrammetry models for 3D 

mapping in ecological contexts. 

 

Error in structure-from-motion photogrammetry models was tested by comparison with terrestrial 

laser scanner data of plots in three common and ecologically important habitats (rocky shore, 

saltmarsh and honeycomb worm reef) that together cover approximately 72% of UK intertidal land 

[1]. Rocky shores are a classic model for investigating relationships between biodiversity and habitat 

structural complexity [2]. Saltmarshes are vegetated habitats with both terrestrial and marine features 

where fine-scale variation in topography can result in substantial biological and physical responses 

[3]. Honeycomb worm (Sabellaria alveolata) reef is a habitat of conservation importance listed in 

national and international environmental legislation, making up the most 

significant intertidal bioconstructions in Europe [4]. Study sites were located along the North Wales 

coast (UK) with fieldwork conducted on spring low tides during summer and autumn 2017.   

  

Terrestrial laser scanning and structure-from-motion surveys for each plot were conducted 

simultaneously for direct comparison of outputs. Weather conditions were optimal for both survey 

techniques, with data collected on days with sunshine, low wind speed and no 

precipitation. Three spatial scales were tested to maximise the relevance of results to a wide range of 

ecological study designs: three 25 m2 quadrats per habitat with a target spatial resolution of < 1 

cm (fine-scale), a single 2500 m2 area per habitat with < 2 cm resolution (medium-scale) and the same 

2500 m2 area with 5 cm resolution (broad-scale). Fine-scale plots represent quadrat scale field 

sampling, medium-scale plots tested the level of detail and accuracy achievable at a habitat scale and 

broad-scale sampling was based on a typical design for a large extent drone survey that could be used 

at ecosystem scales. 
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The same tripod-mounted terrestrial laser scanning equipment (Leica Geosystems ScanStation C10) 

was used at all scales. All surveys used full field-of-view (360° horizontal, 270° vertical), medium 

resolution scans (point spacing of 10 cm at 100 m range) with no photographs. Fine-scale plots used 

four scanning stations while medium- and broad-scale plots used 7−8 stations. 3D mapping 

using structure-from-motion requires simply a set of overlapping photographs of a scene. 

Photographs for SfM were taken using a pole mounted camera (18 MP Canon EOS M with 22mm 

prime lens) for fine scale plots, and a quadrocopter drone (DJI Phantom 3 Pro with 12 MP camera) for 

medium- and broad-scale plots, flying at 25 m and 90 m altitude respectively. The drone was flown on 

an automated parallel track flight path by a professional drone pilot. Shared reference targets were 

used for terrestrial laser scanning and structure-from-motion so data from the two techniques could be 

aligned without georeferencing, minimising error introduction. Fine-scale plots included scaling 

objects which provided scale reference along x, y and z axes. Medium- and broad-scale plots included 

reference objects of known size and shape for comparison of results. 

  

After data collection, both terrestrial laser scanning and structure-from-motion require a series of data 

processing steps to ensure high quality outputs. With calibrated equipment, data from each terrestrial 

laser scanning station are correctly scaled, levelled and have known precision (6 mm individual 

measurement precision at a range of 50 m for the equipment we used). Data processing was conducted 

using Leica Geosystems Cyclone and involves aligning data from multiple stations using reference 

target positions or regions of overlapping geometry. Station data were aligned to a single complete 

dataset so that 3D errors in target positions between individual stations were a maximum of 6 mm. 

The complete point cloud dataset was manually cleaned of unwanted objects (e.g. people), artefacts 

(e.g. reflections in water surfaces) and noise (erroneous points). 

 

Data processing for structure from motion was conducted using the popular software Agisoft 

Photoscan Professional. This software option was chosen because it provides a good balance between 

quality of outputs, control over settings, user-friendliness and cost. The workflow for processing 

structure-from-motion data using Photoscan is similar to other software options. First, images were 
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checked for sharpness and exposure, blurred images were discarded and exposure was corrected 

where necessary. Background and moving features like shadows were masked from images. Images 

were automatically aligned using “High” accuracy and 40,000 tie points to generate a sparse point 

cloud. Markers were manually placed at the centre of each reference target in each image. For fine-

scale image sets, 15-19 pairs of scale markers were placed at various separations from 1 cm to 1 m. 

Shared reference markers were assigned the same coordinates as in the relevant terrestrial laser 

scanning dataset. Image alignment was iteratively optimised after marker placements and using the 

gradual selection tool to delete low quality tie points using a workflow adapted from [5]. A dense 

cloud was then generated using “High” quality setting and “Mild” depth filtering to retain fine 

topographic features while removing noise. The resulting point cloud was exported for analysis.  

  

Pairs of aligned terrestrial laser scanning and structure-from-motion point cloud models were cropped 

to common extents, subsampled to similar point densities and further cleaned using the statistical 

outlier removal tool in the open source software CloudCompare. Broad-scale terrestrial laser scanning 

data were generated by subsampling medium-scale data to a density similar to broad-scale drone data 

(5 cm point spacing). 

 

The distance between each pair of models was measured at 100,000 random positions using the 

multiscale model-to-model cloud comparison algorithm (M3C2), a robust method developed 

specifically for comparison of point cloud data from natural environments which contain multiscale 

complexity, implemented in the open source software CloudCompare [6]. In brief, the algorithm 

calculates the distance between point clouds in the direction of the local surface orientation at each 

measured point. This is an improvement over nearest neighbour methods or measuring distance along 

a single axis, typically vertically. 

 

The mean of absolute distances measured was used to quantify the accuracy of the structure-from-

motion model relative to the terrestrial laser scanning model, as mean absolute error (MAE) (figure 

3). While another metric, root mean square error (RMSE) is commonly used for model comparisons, 
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this can be heavily influenced by a small number of large errors which were likely to be present in our 

data due to some noise remaining after data cleaning. We visually analysed point cloud models and 

cross sections to determine the key differences between outputs from two different techniques 

(electronic supplementary material, figure S2). 
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Supplementary material, figure S2 

Visual examples of differences between terrestrial laser scanning and structure-from-motion derived 

3D habitat models 

 

 

 

Differences in 3D point cloud models generated by terrestrial laser scanning (TLS, black points) and 

structure-from-motion photogrammetry (SfM, red points) at three spatial scales and three habitats are 

demonstrated. Models agree closely at fine-scales (25 m2 extent, <1 cm resolution) in areas of solid 

substrate or short vegetation. In tall and dense vegetation the models differ, with points captured from 
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further in to the feature by terrestrial laser scanning. At medium-scales (2500 m2 extent, <2 cm 

resolution) on solid substrate average difference in models is low, but fine details are generalised by 

structure-from-motion. Terrestrial laser scanning data have gaps due to some areas being out of line-

of-sight from any scanning position. At broad-scales (2500 m2 extent, 5 cm resolution) SfM models 

the general form of the scene well but detailed topographic morphology is more accurate in terrestrial 

laser scanner data. As scale increases detailed features become smoothed by structure-from-motion, as 

demonstrated by models of reference objects with known shape and size. 


