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Supplementary Note 1 – Host-pathogen interactions data and network 

construction 

Non-human mammal-pathogen species interactions data 

We extracted mammal-pathogen interactions from the Enhanced Infectious Diseases Database (EID2) 

(1). EID2 contains 4,799 species of mammals and 70,614 species in the taxa comprising most 

mammalian pathogens (bacteria= 18,249, fungi= 32,687, helminth= 6,305, protozoa= 3,768, viruses= 

9,605). 

EID2 utilises automated text and data-mining procedures to extract information on pathogens, their 

hosts and locations from two sources: 1) meta-data accompanying nucleotide sequences (hereafter 

sequences) published in GenBank (2,3) and 2) titles and abstracts of publications indexed in the PubMed 

database (4). To date, EID2 has extracted information from 71,076,379 sequences (and processed 

100M+ sequences), and 8,643,203 PubMed titles and abstracts (TIABs).  

For the purposes of this study we considered a mammal species to be host to a pathogen if at least four 

independent TIABs or one sequence reported an association between the host (and any of its subspecies) 

and the pathogen species (or any of its subspecies or strains). 

Non-human domestication classification 

We classified our mammalian hosts into three groups: wild mammals (N=1430), semi-domesticated 

mammals (N=102), and domesticated mammals (N=27).  

We included the following mammals in our domesticated group: 13 ruminants (Bison bonasus, Bos 

frontalis, Bos grunniens, Bos grunniens x Bos taurus, Bos indicus, Bos indicus x Bos taurus, Bos 

javanicus, Bos taurus, Bos taurus x Bos indicus, Bubalus bubalis, Bubalus carabanensis, Capra hircus, 

and Ovis aries); 4 Tylopoda (Camelus bactrianus, Camelus dromedaries, Lama glama and Lama 

pacos); 3 carnivores (Canis lupus familiaris, Felis catus and Vulpes vulpes); 3 Perissodactyla (Equus 

asinus, Equus asinus x caballus and Equus caballus); and 1 of each of the following: Insectivora 

(Atelerix albiventris), Lagomorpha (Oryctolagus cuniculus), rodents (Cavia porcellus), and Suina (Sus 

scrofa).  

We removed three domesticated rodent species from this study: Mus musculus, Rattus norvegicus and 

Rattus rattus. These species are often associated with lab research in human (and other species) 

diseases, comprising approximately 95% of animal species used in research (5,6). Whilst EID2 has the 

capability of detecting and isolating laboratory generated host-pathogen associations (e.g. cell-lines, 

laboratory study publications); it cannot discriminate unlabelled associations (particularly in the genetic 

sequences meta-data). Therefore, we chose to remove these three species to avoid any contamination 

of our zoonoses definition. 

Our semi-domesticated group included 35 ruminants, 31 carnivores, 22 rodents, 3 Diprotodontia, 3 

Perissodactyla, 2 Tylopoda, 2 Proboscidea, and 1 of each: Dasyuromorphia, Pilosa, Sirenia and Suina.  

Network statistics 

To calculate the p-values for the network statistics listed in Table 1 (manuscript), we performed 1000 

permutation on each of networks, whereby we shuffled the non-human mammalian species-level host-

pathogen interactions extracted from EID2, and then re-generated the networks from the shuffled list 

and re-computed all statistics. The p-value listed in Table 1 (manuscript) is the number of times the 

statistics calculated for the permuted networks were at least as extreme as the ones observed in the 

original networks, divided by the number of permutations.  
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E-I Index 

Given a categorical node attribute describing mutually exclusive groups, the E-I index represents a ratio 

of external to internal edges. We chose order as our categorical attribute and calculated E-I index at 

both group level (i.e. order), and global level (i.e. whole network). A positive group level E-I index 

indicates a tendency of the species in the order to share pathogens with species outside their order (i.e. 

extrovert). A negative EI index indicates a tendency to share pathogens within the group’s order (i.e. 

introvert). Global level E-I index characterises the whole network in terms of bounded-ness and closure 

of its sub-groups (in terms of order). Order-level p-values was calculated from the 1000 permutations 

listed above, as the number of times the order-level E-I index in the shuffled networks was at least as 

extreme as the ones observed in the original networks, divided by the number of permutations.  

 

Figure SN1-1 – Order level EI-index. * next to the order name indicates permutation test p-value<=0.05, ** 

indicates p-value<=0.01. 
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Supplementary Note 2 – Centrality measures 

Centrality Measures 

Degree & Eigenvalue based centrality measures: In general, degree centralities assess the importance 

of a node based on its reachability within a network. These measures provide a description of network 

connectivity based on the individual components.  

Measure Definition Assumption/interpretation 

Degree 

centrality (DC) 

(1)  

DC(𝑖) =  𝐾(𝑖) = ∑ 𝑎𝑖𝑗

𝑗

 

 

Degree quantifies immediate risk of host species 

spreading or receiving pathogens. Host species 

with high degree may either: 1) pose high risk of 

pathogen transmission to many other host 

species, or 2) be at high risk of contracting 

pathogens from many other host species.  

Strength 

centrality (SC) 

(2) 

𝑆𝐶(𝑖) = 𝐾𝑤(𝑖) = ∑ 𝑤𝑖𝑗

𝑗

 
Host species with high strength centrality values 

either: 1) share many pathogens with few hosts, 

or 2) share fewer pathogens with many hosts. 

Opsahl degree 

centrality 

(ODC) (3) 

𝑂𝐷𝐶(𝑖) = 𝐾𝑎(𝑖) = 𝐾(𝑖)  × [
𝐾𝑤(𝑖)

𝐾(𝑖)
]

𝛼

 
Incorporates both the overall weights of the 

edges and the number of links to neighbouring 

nodes. 

Katz centrality 

(KC) (4,5) / 

Weighted Katz 

centrality 

(WKC) 

𝐾𝐶𝑘(𝑖) = 𝑥𝑖
𝑘 = 𝛼 ∑ 𝑎𝑖𝑗𝑥𝑗 

𝑗

+ 𝛽  

𝑥 = (𝐼 − 𝛼𝐴)−1𝛽 
Where A is the adjacency /weighted 

adjacency matrix of the network with 

eigenvalues λ. The parameter β controls 

the initial centrality and α < 1/λmax. 

Katz centrality quantified the importance of a 

host within a network by measuring the number 

of immediate neighbours the host has, and also 

all other species reachable through these 

immediate neighbours. Connections made with 

distant neighbours are, however, penalized by an 

attenuation factor 𝛼. In this study we computed 

𝜶 as the reciprocal of the first two eigenvalues 

(5). 

Page rank 

centrality (PRC) 

(6) / Weighted 

Page rank 

centrality 

(WPRC) 

𝐶𝑃𝑅(𝑖) = (1 − 𝑑) + 𝑑 (
𝐶𝑃𝑅(𝑡1)

𝐶(𝑡1)
+ ⋯

+
𝐶𝑃𝑅(𝑡𝑛)

𝐶(𝑡𝑛)
) 

Where 𝑑 ∈ [1,0]  is a damping factor, 

C(i) = number of edges from node i, and 

𝑡𝑖 = number of nodes pointing towards 

i.  

PageRank is an adjustment of Katz centrality by 

which the more links a node attracts, the more 

important it is perceived. 

Table SN2-1 – Degree & Eigenvalue centrality measures used in our analysis. 

Distance based measures: Betweenness and Closeness define the flow pathways, which have been 

shown to be important in spreading pathogens across species(7,8). Nodes with high values of these 

metrics may act as bridges, connecting one part of a network to another that would otherwise be sparsely 

or not connected at all, favouring the spreading of disease agents across the entire network (3,9). 

Measure definition Assumption/interpretation 

Closeness 

centrality (CC) 

(10) 
 𝐶𝐶(𝑖) = [∑ 𝑑(𝑖, 𝑗)

𝑁

𝑗

]

−1

 

Closeness is the inverse sum of shortest 

distances to all other host species from a focal 

host.  

Weighted 

Closeness 

centrality (WCC) 

(3) 

𝑑𝑤(𝑖, 𝑗) =  [
1

𝑤𝑖ℎ

+ ⋯ +
1

𝑤ℎ𝑗

] 

𝑊𝐶𝐶(𝑖) = [∑ 𝑑𝑤(𝑖, 𝑗)

𝑁

𝑗

]

−1

  

Weighted variation of closeness, by which 

edges encompassing larger number of 

pathogens are considered shorter than those 

containing fewer pathogens. 
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Opsahl closeness 

centrality (OCC) 

(3) 

𝑑𝑤𝛼(𝑖, 𝑗) =  [
1

𝑤𝑖ℎ
𝛼

+ ⋯ +
1

𝑤𝑖𝑗𝛼
] 

𝑂𝐶𝐶(𝑖) = ∑
1

𝑑𝑤𝛼(𝑖, 𝑗)

𝑉

𝑗

 

Extends the shortest path algorithm by taking 

into consideration the number of intermediary 

hosts. ODC considers both the number of 

intermediary hosts (nodes) and the edges’ 

weights (number of pathogens). 

 

Betweenness 

Centrality (BC) 

(1) 

𝐵𝐶(𝑖) =  ∑
𝜎𝑗𝑘(𝑖)

𝜎𝑗𝑘
𝑗<𝑘,𝑗≠𝑘≠𝑖∈𝑉

 

𝜎𝑗𝑘= the number of shortest paths between 

nodes j and k.  

𝜎𝑗𝑘(𝑖)= the number of shortest paths that 

pass through node i out of 𝜎𝑗𝑘. 

 

Betweenness centrality quantifies the number 

of times a host species acts as a bridge along the 

shortest path between two other hosts. It thus 

describes the importance of that node as an 

intermediary between different parts of the 

network. Hosts with betweenness > 0 act as 

bridges, connecting one part of a network to 

another that would otherwise be sparsely 

connected or not connected at all. 

Weighted 

Betweenness 

Centrality 

(WBC) (11) 

𝑊𝐵𝐶(𝑖) =  ∑
𝜎𝑗𝑘

𝑤(𝑖)

𝜎𝑗𝑘
𝑤

𝑗<𝑘,𝑗≠𝑘≠𝑖∈𝑉

 

 

Weighted variation of betweenness. The more 

pathogens are shared between two nodes, the 

stronger of the flow between them. 

 

Opsahl 

Betweenness 

Centrality 

(OBC) (3) 

𝑂𝐵𝐶(𝑖) =  ∑
𝜎𝑗𝑘

𝑤𝛼(𝑖)

𝜎𝑗𝑘
𝑤𝛼

𝑗<𝑘,𝑗≠𝑘≠𝑖∈𝑉

 

 

 Extends betweenness by combining both the 

number of intermediary hosts (nodes) and the 

edges’ weights (number of pathogens). 

Table SN2-2 – Distance based centrality measures used in our analysis. 

Principle component (PCA) and correlation analyses 

We performed a Principle Component Analysis (PCA) on the full array of centrality measures, across 

the nine networks included in the study, to identify which measures contained the most relevant 

information and can effectively identify the most influential host species in each network. As illustrated 

in figure SN-1, the profile of the distance to the centre of the plot is different for each type of pathogen. 

Table SN2-3 shows the mean contribution of each centrality measure to the first five principle 

components of PCA analyses performed on each network. From this table it is evident that ODC has 

contributed the most to the first principle component, whereas OBC had the most contribution to the 

second principle component of our analyses. Figure SN2-2 show the clustering of our selected measures 

across the networks. The analysis was performed using the R package FactoMineR (12). 

Additionally we performed correlation analyses on centrality measure in our networks. Table SN2-4 

and figure SN2-3 show the results of these analyses. 
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 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

DC 8.40 2.77 2.94 7.03 4.23 

SC 9.12 0.38 3.58 1.70 1.13 

ODC 9.13 0.46 3.43 2.01 1.45 

PRC 8.42 1.20 4.10 10.00 3.65 

WPRC 8.61 1.73 3.85 1.38 5.13 

CC 5.96 12.22 11.47 5.00 1.63 

WCC 7.55 2.50 6.78 15.28 12.15 

OCC 7.16 7.00 8.04 7.70 6.03 

BC 5.58 16.81 6.75 1.94 4.05 

WBC 5.72 10.66 7.95 8.72 24.03 

OBC 3.19 23.00 17.67 9.40 24.16 

KC 6.94 5.00 9.89 12.57 4.68 

WKC 8.81 1.14 4.36 3.85 1.60 

II 5.42 15.14 9.19 13.40 6.10 

Table SN2-3 – Mean contribution of each centrality measure to the first 5 principle components of PCA 

analyses performed on the networks included in our study. 

 

 SC ODC PRC WPRC CC WCC OCC BC WBC OBC KC WKC II 

DC 0.92 0.98 0.95 0.86 0.79 0.78 0.8 0.57 0.62 0.36 0.9 0.88 0.81 

SC  0.98 0.92 0.97 0.69 0.84 0.78 0.72 0.7 0.55 1 0.99 0.66 

ODC   0.95 0.94 0.75 0.83 0.81 0.66 0.68 0.46 0.97 0.96 0.74 

PRC    0.94 0.69 0.76 0.74 0.67 0.72 0.45 0.9 0.88 0.74 

WPRC     0.6 0.79 0.71 0.78 0.76 0.6 0.96 0.95 0.59 

CC      0.81 0.94 0.4 0.46 0.23 0.67 0.66 0.88 

WCC       0.95 0.57 0.61 0.38 0.84 0.83 0.70 

OCC        0.50 0.54 0.31 0.77 0.76 0.82 

BC         0.96 0.84 0.72 0.71 0.31 

WBC          0.7 0.69 0.68 0.38 

OBC           0.56 0.57 0.16 

KC             0.63 

WKC             0.61 

Table SN2-4 – mean correlation of centrality measure across all networks.  
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Figure SN2-1 - Biplot representation of the first two dimensions of PCA analyses performed on centrality 

measures from nine shared pathogen networks included in the study. In each plot, host species are shown as 

points, coloured by their domestication status, and centrality measures as vectors, coloured by their contribution. 



Wardeh et al RSPB-2019-2882 ESM 

8 

 

 

Figure SN2-2 – Clustering of centrality measures in each network based on their contribution in the 

principle component analysis. Clustering was performed using k-means (5 clusters, 1000 iterations). This 

clustering highlights how our measure Indirect Influence (II) clusters with closeness centralities. 
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Figure SN2-3 – Correlation of centrality measures in each network. Centrality measures are re-ordered 

in network sub-plot using hierarchical clustering. 
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Supplementary Note 3 – Construction of ensemble models and their 

performance metrics 

Ensembles to explain and predict centrality and influence measures 

We developed a series of ensembles to investigate whether centrality in networks of shared-pathogens 

between mammalian hosts can be explained by these hosts’ traits, phylogeny and relation to their 

neighbours in networks. We choose six learners to form the base models of our ensembles (Table SN3-

1). We used R packages Caret (1,2) and caretEnsemble (3) to tune and train all our base models. We 

provided search grids for each bae learners to minimise Root Mean Square Error (RMSE) of the base 

learners and the ensembles based on 10-fold cross validation (100 repeats). Table SN3-2 lists 

mathematical frameworks of the metrics used to measure the performance of our models.  

We utilised a greedy approach to construct our ensembles using the caretEnsemble (3) package.  

Each ensemble computed a weighted average of the predictions of its best-performing constituent 

learners. The performance of a learner is measured against a metric chosen at the training stage, and the 

weights are optimised using greedy algorithm to maximise or minimise our chosen metrics. Our 

ensembles to explain centrality were optimised to reduce RMSE. The greedy algorithm makes greedy 

choices at each step to ensure that the objective metric is optimised (minimising RMSE). The greedy 

algorithm has only one shot to compute the optimal solution (i.e., it never goes back and reverses any 

decision). The exact weights chosen varied with each fold of each training dataset. This dynamic nature 

allows the greedy ensemble to be tuned to perform well for each problem.  

 

Model Caret method/ R 

package 

Tuning parameters 

Stochastic Gradient Boosting gbm /gbm Number of trees, interaction depth (splits 

performed on each tree), shrinkage and 

minimum observation in node. 

Support Vector Machines with 

Radial Basis Function Kernel 

svmRadial/ kernlab Sigma (smoothing variable) and cost. 

k-Nearest Neighbors knn/knn Maximum number of neighbours. 

Decision trees/CART rpart/ rpart complexity parameter 

Random Forest ranger/ ranger number of variables to possibly split at in each 

node, minimal node size, and splitting rule (gini 

for classification & for regressions) 

Lasso and Elastic-Net 

Regularized Generalized Linear 

Models (glmnet) 

glmnet/ glmnet The elastic-net mixing parameter (alpha) and 

lambda 

Table SN3-1 – Base learners used in our ensemble models. 
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Measure Formula Meaning 

preliminaries 𝑦𝑖  is the true (observed) value for instance 𝑖 of the input data. 

𝑦̂𝑖 is the predicted value. 

 𝑛 is total number of observations (data points). 

 𝑘 is the number of predictors in model. 

R2 
𝑅2 = 1 −

∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑚𝑒𝑎𝑛(𝑦))2𝑛
𝑖=1

 
Coefficient of determination. R2 provides a 

“goodness of fit” measure for the predictions to the 

observations. Values of R2 ranges from 0 (no fit) to 

1 (perfect fit).  

Adjusted R2 
𝑅𝑎𝑑𝑗

2 = 1 − [
(𝑛 − 1)(1 − 𝑅2)

𝑛 − 𝑘 − 1
] 

Adjusted R2 modifies R2 for the number of 

predictors in the model. The adjusted R2 increases 

only if the new term improves the model more than 

would be expected by chance. It decreases when a 

predictor improves the model by less than expected 

by chance. Values of adjusted R2 ranges from 0 (no 

fit) to 1 (perfect fit). 

RMSE 
𝑅𝑀𝑆𝐸 =

√∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛
𝑖=1

𝑛
 

Root Mean Square Error (RMSE) is the standard 

deviation of the residuals (prediction errors). 

NRMSE 
𝑁𝑅𝑀𝑆𝐸 =

𝑅𝑀𝑆𝐸

𝑚𝑒𝑎𝑛(𝑦)
 

Normalised RMSE 

MAE 
𝑀𝐴𝐸 =

1

𝑛
∑ |𝑦̂𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 
Mean Absolute Error (MAE), describes the typical 

magnitude of the residuals. 

NMAE 
𝑁𝑀𝐴𝐸 =

𝑀𝐴𝐸

𝑚𝑒𝑎𝑛(𝑦)
 

Normalised MAE 

Table SN3-2 – Measures utilised to assess the performance of our 10-fold cross validated regression 

ensembles and their base components. 

Ensembles to predict mammalian reservoirs of zoonoses, and to explain number of 

zoonoses shared with mammalian hosts 

Using similar methodology to the one listed above. We developed two ensemble pipelines to answer 

two questions: 1) which mammals are more likely to harbour zoonotic pathogens? And 2) can the 

number of zoonoses be explained by centrality and/or host traits? Our ensembles comprised the same 

set of learners listed in table SN3-1. 

Our ensembles to answer the first question (a classification problem) were optimised to maximise the 

Area under the ROC curve (AUC); and their constituent models were also trained to maximise their 

AUCs. We additionally computed a comprehensive set of metrics of these ensembles and their 

component models (table SN3-3) using 10-fold cross validation (100 repeats). 

Our ensembles to answer the second question were constructed, tuned and assessed similarity to the 

ones discussed in the previous section.  
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Confusion 

matrix 

 

 Truth 

Predicted 1 0 

1 A B 

0 C D 

 

 

Measure Formula Meaning 

Sensitivity 

(recall) 

A /(A + C) Sensitivity is the percentage of actual 1’s that were 

correctly predicted. It indicates the percentage of 1s 

that was covered by the model. 

Specificity D/(B+D) Specificity is the percentage of 0s that were correctly 

predicted 

Precision A/(A+B) Percentage of accurate predictions of the model 

AUC Area Under the ROC 

Curve 

Model's true performance considering all possible 

probability cut-offs 

KS Max(Cumulative% 1's - 

Cumulative% 0's) 

KS statistic is the maximum difference between the 

cumulative percentage of responders or 1's (cumulative 

true positive rate) and cumulative percentage of non-

responders or 0's (cumulative false positive rate). 

F1-score F1 Score = (2 * Precision * 

Recall) / (Precision + 

Recall) 

A combination of Precision and Recall 

TSS sensitivity+ specificity-1 True skill statistics, provides a balance between 

correctly predicting the 1's and 0's 
Table SN3-3 – Measures utilised to assess the performance of our 10-fold cross validated classification 

ensembles and their base components. Shaded rows are not included in the main text, but are used to calculate 

the model performance metric listed. 
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Supplementary Note 4 – Ensemble pipeline to explain centrality in networks 

of shared pathogens 

Performance metrics 

Network Opsahl degree  

R2  Adjusted  

R2 

RMSE  NRMSE MAE  NMAE  

Overall 0.868 

[0.771, 

0.971] 

0.858 [0.732, 

0.969] 

39.6 [14.5, 

112] 

0.384 [0.130, 

0.531] 

25.3 [10.3, 

71.2] 

0.252 

[0.085, 

0.339] 

All  0.904 [0.893 

- 0.917] 

0.900 [0.890 - 

0.914] 

109.747 

[104.49 - 

115.19] 

0.384 [0.366 

- 0.403] 

70.27 [67.25 

- 73.03] 

0.246 [0.235 

- 0.256] 

Bacteria 0.864 [0.842 

- 0.882] 

0.854 [0.83 - 

0.872] 

71.672 [66.88 - 

76.25] 

0.367 [0.342 

- 0.390] 

47.81 [45.32 

- 50.35] 

0.245 [0.232 

- 0.258] 

Gram - 0.835 [0.799 

- 0.86] 

0.801 [0.757 - 

0.831] 

33.442 [31.13 - 

36.34] 

0.377 [0.351 

- 0.41] 

24.77 [23.14 

- 26.62] 

0.28 [0.261 - 

0.300] 

Gram + 0.877 [0.857 

- 0.891] 

0.866 [0.844 - 

0.881] 

58.068 [54.75 - 

61.36] 

0.317 [0.299 

- 0.335] 

39.13 [37.24 

- 41.14] 

0.213 [0.203 

- 0.224] 

Helminth 0.839 [0.814 

- 0.87] 

0.826 [0.798 - 

0.859] 

29.64 [27.64 - 

31.78] 

0.516 [0.481 

- 0.553] 

19.09 [18.01 

- 20.31] 

0.332 [0.313 

- 0.353] 

Protozoa 0.968 [0.962 

- 0.972] 

0.966 [0.959 - 

0.97] 

37.667 [34.39 - 

40.71] 

0.133 [0.122 

- 0.144] 

24.528 

[23.24 - 

26.12] 

0.087 [0.082 

- 0.093] 

Virus 0.864 [0.845 

- 0.88] 

0.855 [0.836 - 

0.873] 

43.695 [41.11 - 

46.42] 

0.422 [0.397 

- 0.449] 

28.67 [27.04 

- 29.93] 

0.277 [0.261 

- 0.289] 

DNA 0.782 [0.748 

- 0.818] 

0.746 [0.705 - 

0.788] 

14.93 [13.69 - 

15.88] 

0.415 [0.380 

- 0.441] 

10.647 [9.78 

- 11.34] 

0.296 [0.272 

- 0.315] 

RNA 0.88 [0.863 - 

0.897] 

0.871 [0.853 - 

0.889] 

38.98 [35.95 - 

41.91] 

0.393 [0.363 

- 0.423] 

24.42 [23.12 

- 25.84] 

0.246 [0.233 

- 0.261] 

Table SN4-1 - Performance metrics of our ensemble models to explain Opsahl Degree centrality in 

networks of shared pathogens between non-human mammals. Values in brackets indicate 95% confidence 

intervals of the metric. These intervals were obtained from the 100 runs (per pathogen taxa) of 10 fold cross 

validation performed. 
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Network Opsahl Betweenness  

R2  Adjusted  

R2 

RMSE  NRMSE MAE  NMAE  

Overall 0.687  

[0.433,    

0.923] 

0.658  [0.364   

, 0.916] 

326    [75.4 , 

1219] 

0.785  

[0.540, 

1.240] 

212.0 [72.7, 

662.0] 

0.509  

[0.386    , 

0.738] 

All 

pathogens  

0.713 

[0.496 - 

0.906] 

0.703 [0.478 

- 0.903] 

1128.057 

[789.377 - 

1375.273] 

1.13 [0.791 

- 1.378] 

625.633 

[463.29 - 

753.692] 

0.627 

[0.464 - 

0.755] 

Bacteria 0.688 

[0.369 - 

0.957] 

0.664 [0.321 

- 0.954] 

330.249 

[214.597 - 

425.754] 

0.959 [0.623 

- 1.237] 

216.685 

[176.666 - 

256.799] 

0.629 

[0.513 - 

0.746] 

Gram - 0.635 

[0.409 - 

0.835] 

0.559 [0.286 

- 0.801] 

81.878 [67.11 - 

98.218] 

0.639 [0.524 

- 0.767] 

83.491 

[67.962 - 

97.872] 

0.652 

[0.531 - 

0.764] 

Gram + 0.722 

[0.486 - 

0.946] 

0.698 [0.442 

- 0.942] 

246.227 

[170.523 - 

333.618] 

0.836 [0.579 

- 1.133] 

177.657 

[143.342 - 

212.356] 

0.603 

[0.487 - 

0.721] 

Helminth 0.584 

[0.405 - 

0.801] 

0.549 [0.355 

- 0.784] 

444.389 

[333.531 - 

581.973] 

0.82 [0.615 

- 1.073] 

272.529 

[228.633 - 

321.855] 

0.503 

[0.422 - 

0.594] 

Protozoa 0.706 

[0.535 - 

0.868] 

0.684 [0.5 - 

0.858] 

182.782 

[153.071 - 

216.286] 

0.69 [0.578 

- 0.816] 

115.357 

[99.061 - 

138.035] 

0.435 

[0.374 - 

0.521] 

Virus 0.729 

[0.541 - 

0.897] 

0.712 [0.514 

- 0.891] 

502.739 

[405.111 - 

628.682] 

0.818 [0.659 

- 1.023] 

274.209 

[241.677 - 

307.853] 

0.446 

[0.393 - 

0.501] 

DNA 0.777 

[0.529 - 

0.962] 

0.740 [0.45 - 

0.955] 

121.005 [87.909 

- 145.904] 

0.647 [0.47 

- 0.78] 

81.114 

[66.814 - 

94.11] 

0.433 

[0.357 - 

0.503] 

RNA 0.601 

[0.436 - 

0.848] 

0.573 [0.397 

- 0.838] 

396.562 

[309.141 - 

480.075] 

0.825 [0.643 

- 0.999] 

233.172 

[198.255 - 

263.467] 

0.485 

[0.413 - 

0.548] 

Table SN4-2 - Performance metrics of our ensemble models to explain Opsahl Betweenness centrality in 

networks of shared pathogens between non-human mammals. Values in brackets indicate 95% 

confidence intervals of the metric. These intervals were obtained from the 100 runs (per pathogen taxa) of 

10 fold cross validation performed. 

 

Network Indirect Influence  

R2  Adjusted  

R2 

RMSE  NRMSE MAE  NMAE  

Overall 0.873 [0.723, 

0.962] 

0.864 [0.666 

0.959] 

0.062 [0.039, 

0.093] 

0.123 [0.056, 

0.162] 

0.043 [0.023, 

0.0618] 

0.086 [0.033, 

0.117] 

All  0.901 [0.892 

- 0.91] 

0.897 [0.888 - 

0.907] 

0.057 [0.054 

- 0.059] 

0.113 [0.109 - 

0.117] 

0.038 [0.037 

- 0.04] 

0.076 [0.073 

- 0.079] 

Bacteria 0.864 [0.846 

- 0.884] 

0.853 [0.834 - 

0.875] 

0.063 [0.058 

- 0.066] 

0.107 [0.098 - 

0.113] 

0.041 [0.039 

- 0.043] 

0.07 [0.066 - 

0.073] 

Gram - 0.742 [0.691 

- 0.784] 

0.688 [0.627 - 

0.739] 

0.09 [0.081 - 

0.098] 

0.153 [0.139 - 

0.166] 

0.06 [0.056 - 

0.064] 

0.102 [0.095 

- 0.11] 

Gram + 0.874 [0.853 

- 0.895] 

0.863 [0.84 - 

0.886] 

0.064 [0.059 

- 0.069] 

0.103 [0.095 - 

0.111] 

0.041 [0.039 

- 0.043] 

0.066 [0.062 

- 0.068] 

Helminth 0.867 [0.849 

- 0.883] 

0.856 [0.836 - 

0.873] 

0.062 [0.06 - 

0.065] 

0.156 [0.15 - 

0.164] 

0.046 [0.043 

- 0.048] 

0.115 [0.11 - 

0.12] 
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Protozoa 0.96 [0.95 - 

0.97] 

0.957 [0.946 - 

0.968] 

0.041 [0.037 

- 0.045] 

0.059 [0.054 - 

0.066] 

0.023 [0.021 

- 0.025] 

0.034 [0.031 

- 0.036] 

Virus 0.872 [0.86 - 

0.886] 

0.865 [0.851 - 

0.88] 

0.062 [0.059 

- 0.064] 

0.129 [0.123 - 

0.135] 

0.044 [0.043 

- 0.046] 

0.093 [0.09 - 

0.097] 

DNA 0.858 [0.832 

- 0.882] 

0.834 [0.804 - 

0.863] 

0.063 [0.058 

- 0.067] 

0.141 [0.13 - 

0.15] 

0.047 [0.044 

- 0.051] 

0.106 [0.099 

- 0.114] 

RNA 0.89 [0.879 - 

0.903] 

0.882 [0.87 - 

0.897] 

0.062 [0.058 

- 0.065] 

0.123 [0.115 - 

0.128] 

0.044 [0.042 

- 0.046] 

0.086 [0.083 

- 0.091] 

Table SN4-3 - Performance metrics of our ensemble models to explain Indirect Influence in networks of 

shared pathogens between non-human mammals. Values in brackets indicate 95% confidence intervals of 

the metric. These intervals were obtained from the 100 runs (per pathogen taxa) of 10 fold cross 

validation performed.
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Figure SN4-2 – The relative influence all predictors included in our ensemble models to explain Opsahl degree centrality (ODC) in networks of 

shared pathogens amongst non-human mammals. Relative influence (variable importance) of predictors was calculated for each of the six base models and 

then averaged with weights (=contribution of models to the greedy ensemble) to produce final contribution. The predictors are coloured by their category. 
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Figure SN4-3 – The relative influence all predictors included in our ensemble models to explain Opsahl betweenness centrality (OBC) in networks of 

shared pathogens amongst non-human mammals. Relative influence (variable importance) of predictors was calculated for each of the six base models and 

then averaged with weights (=contribution of models to the greedy ensemble) to produce final contribution. The predictors are coloured by their category. 
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Figure SN4-4 – The relative influence all predictors included in our ensemble models to explain indirect influence (II) in networks of shared 

pathogens amongst non-human mammals. Relative influence (variable importance) of predictors was calculated for each of the six base models and then 

averaged with weights (=contribution of models to the greedy ensemble) to produce final contribution. The predictors are coloured by their category.
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Supplementary Note 5 – Ensemble pipelines to predict mammalian 

reservoirs of zoonoses, and to explain number of zoonoses harboured by 

mammalian hosts 

 AUC TSS KS  F1-score 

Overall 0.966 [0.94, 1.000] 0.706 [0.455, 1.000] 74.138 [62.31, 100] 0.946 [0.778, 0.992] 

Pathogen Taxa 

All  0.964 [0.958, 0.966] 0.672 [0.644, 0.722] 69.416 [66.82, 71.96] 0.946 [0.94, 0.950] 

Bacteria 0.976 [0.959, 0.991] 0.535 [0.485, 0.739] 73.431 [62.06, 95.78] 0.978 [0.976, 0.985] 

Gram - 0.990 [0.975, 1.000] 0.99 [0.25, 1.00] 99 [50, 100] 0.984 [0.983, 1.000] 

Gram + 0.976 [0.963, 0.985] 0.496 [0.37, 0.639] 68.407 [57.59, 86.51] 0.976 [0.968, 0.980] 

Helminth 0.965 [0.959, 0.974] 0.815 [0.788, 0.853] 81.73 [79.01, 85.65] 0.920 [0.909, 0.937] 

Protozoa 0.996 [0.991, 0.999] 0.874 [0.822, 0.929] 90 [85.94, 97.78] 0.985 [0.981, 0.992] 

Virus 0.946 [0.937, 0.958] 0.698 [0.657, 0.743] 70.94 [66.64, 75.15] 0.903 [0.889, 0.915] 

DNA 0.952 [0.931, 0.970] 0.712 [0.625, 0.771] 76.72 [69.82, 84.08] 0.800 [0.732, 0.851] 

RNA 0.953 [0.943, 0.964] 0.692 [0.635, 0.747] 72.32 [69.201, 76.36] 0.915 [0.905, 0.926] 

Table SN5-1 - Performance metrics of our ensemble classification models to predict sharing of pathogens 

between mammals and humans. Reported values are median results of model runs (n=100), Values 

between brackets indicates 95% CI. KS values range from 0 to 100. Other values range from 0 to 1. 

 R2  Adjusted  

R2 

RMSE  NRMSE MAE  NMAE  

Overall 0.892 [0.778, 

0.943] 

0.887 [0.757, 

0.942] 

1.353 [0.687, 

4.549] 

0.675 [0.389, 

1.17] 

0.744 [0.39, 

2.319]  

0.368 [0.228, 

0.66] 

Pathogen Taxa 

All  0.934 [0.899, 

0.954] 

0.932 [0.897, 

0.954] 

4.209 [3.697, 

4.848] 

0.71 [0.624, 

0.818] 

1.913 [1.807, 

2.381] 

0.323 [0.305, 

0.402] 

Bacteria 0.891 [0.842, 

0.94] 

0.886 [0.835, 

0.937] 

3.404 [2.653, 

4.423] 

0.709 [0.553, 

0.921] 

1.712 [1.5, 

1.986] 

0.357 [0.313, 

0.414] 

Gram - 0.916 [0.886, 

0.948] 

0.912 [0.881, 

0.945] 

1.63 [1.341, 

2.165] 

0.478 [0.393, 

0.635] 

0.929 [0.829, 

1.072] 

0.272 [0.243, 

0.314] 

Gram + 0.828 [0.718, 

0.902] 

0.809 [0.687, 

0.891] 

2.901 [2.268, 

3.92] 

0.763 [0.597, 

1.031] 

1.746 [1.534, 

2.236] 

0.459 [0.404, 

0.588] 

Helminth 0.908 [0.877, 

0.932] 

0.903 [0.871, 

0.929] 

1.323 [1.135, 

1.48] 

0.706 [0.605, 

0.789] 

0.688 [0.623, 

0.751] 

0.367 [0.332, 

0.401] 

Protozoa 0.9 [0.864, 

0.923] 

0.896 [0.858, 

0.92] 

0.833 [0.726, 

0.936] 

0.406 [0.354, 

0.456] 

0.483 [0.442, 

0.516] 

0.236 [0.215, 

0.251] 

Virus 0.884 [0.845, 

0.913] 

0.88 [0.84, 

0.91] 

1.299 [1.152, 

1.433] 

0.685 [0.607, 

0.756] 

0.742 [0.696, 

0.799] 

0.391 [0.367, 

0.421] 

DNA 0.827 [0.764, 

0.875] 

0.812 [0.743, 

0.864] 

0.724 [0.629, 

0.799] 

1.124 [0.977, 

1.241] 

0.408 [0.368, 

0.442] 

0.633 [0.571, 

0.686] 

RNA 0.873 [0.827, 

0.897] 

0.868 [0.821, 

0.893] 

0.996 [0.932, 

1.075] 

0.574 [0.537, 

0.62] 

0.637 [0.594, 

0.67] 

0.367 [0.343, 

0.387] 

Table SN5-2 - Performance metrics of our ensemble regression models to explain number of pathogens 

shared between mammals and humans. Reported values are median results of model runs (n=100), Values 

between brackets indicates 95% CI. 
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Figure SN5-1 – Performance metrics of our ensemble models to predict mammalian reservoirs of 

zoonoses (red) and their base learners. Each panel illustrates one performance metric calculated for all runs of 

the models: 100 runs of 10-fold cross validation per component (including ensembles) per type of pathogen 

(6300 runs in total). Higher values indicate better performance across all metrics. 

 

 

Figure SN5-2 – Performance metrics of our ensemble models to predict number of pathogens shared 

between mammals and humans (red) and their base learners. Each panel illustrates one performance metric 

calculated for all runs of the models: 100 runs of 10-fold cross validation per component (including ensembles) 

per type of pathogen (6300 runs in total). For R2 and adjusted R2 metrics higher values indicate better 

performance. For RMSE and MAE metrics lower values indicates better performance. 
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Figure SN5-3 – The relative influence of predictors included in our ensemble models to predict mammalian reservoirs of zoonoses. Relative influence (variable 

importance) of predictors was calculated for each of the six base models and then averaged with weights (=contribution of models to the greedy ensemble) to produce final 

contribution. Predictors are coloured by their category. 
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Figure SN5-4 – The relative influence of host order predictors included in our ensemble models to predict sharing of pathogens between mammals and humans. 

Relative influence (variable importance) of predictors was calculated for each of the six base models and then averaged with weights (=contribution of models to the greedy 

ensemble) to produce final contribution. Predictors are coloured by their category. 


