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SUMMARY

Cordycepin (3'-deoxyadenosine) is a major bioactive
agent in Cordyceps militaris, a fungus used in tradi-
tional Chinese medicine. It has been proposed to
have many beneficial metabolic effects by activating
AMP-activated protein kinase (AMPK), but the mech-
anism of activation remained uncertain. We report
that cordycepin enters cells via adenosine trans-
porters and is converted by cellular metabolism into
mono-, di-, and triphosphates, which at high cordyce-
pin concentrations can almost replace cellular
adenine nucleotides. AMPK activation by cordycepin
in intact cells correlates with the content of cordyce-
pin monophosphate and not other cordycepin or
adenine nucleotides. Genetic knockout of AMPK sen-
sitizes cells to the cytotoxic effects of cordycepin. In
cell-free assays, cordycepin monophosphate mimics
all three effects of AMP on AMPK, while activation in
cells is blocked by a y-subunit mutation that prevents
activation by AMP. Thus, cordycepin is a pro-drug
that activates AMPK by being converted by cellular
metabolism into the AMP analog cordycepin mono-
phosphate.

INTRODUCTION

Cordycepin (3'-deoxyadenosine) is an adenosine analog derived
from Cordyceps militaris, a parasitic fungus that infects insect
larvae and is highly prized in traditional Chinese medicine (Tuli
et al., 2013). Cordycepin is taken up into cells and converted to
mono-, di-, and triphosphates (Klenow, 1963); since it lacks a
3'-hydroxyl group, if incorporated into RNA it would cause chain
termination. Indeed, cordycepin inhibits RNA synthesis in cells,
as well as inhibiting RNA polymerases |, I, and Ill and (more
potently) poly(A) polymerases in cell-free assays (Muller et al.,
1977). In budding yeast, cordycepin reduces the amount of
poly(A)* RNA without affecting rRNA or tRNA, while mutations in
the poly(A) polymerase Pap1 have similar effects on global gene
expression (Holbein et al., 2009). In mammalian cells, cordycepin
reduces the poly(A) tail lengths of some, but not all, mRNAs (Wong
et al., 2010). These results indicate that a major mode of cordyce-
pin action is to inhibit 3’ end processing of MRNAs.

Cordycepin has also been reported to activate AMP-activated
protein kinase (AMPK) (Guo et al., 2010; Wong et al., 2010). This
has been proposed to be how the compound prevents hyperlip-
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idemia induced by high-fat diet in hamsters (Guo et al., 2010),
inhibits the mammalian target-of-rapamycin complex-1
(mMTORC1) (Wong et al., 2010), downregulates mTORC1 function
and HIF-1a expression in tumor cells (Wu et al., 2014b), inhibits
TNF-a production in macrophages (Zhang et al., 2014), activates
autophagy (Marcelo et al., 2019), inhibits senescence and radia-
tion ulcers in mouse skin and intestine (Wang et al., 2019), and
inhibits survival, migration, and invasion of lung cancer cells
(Wei et al., 2019). In some of these studies the evidence for
involvement of AMPK relied on the inhibitor compound C, which
has very poor selectivity for AMPK (Bain et al., 2007), and in none
was the detailed mechanism for AMPK activation established.

AMPK is a sensor of cellular energy status occurring as hetero-
trimeric complexes comprising a catalytic o subunit and regulatory
B and y subunits. In mammals, each subunit has alternate isoforms
(a1/a2; B1/B2; y1/v2/v3) encoded by distinct genes (Ross et al.,
2016b; Lin and Hardie, 2017). AMPK is significantly active only af-
ter phosphorylation at Thr172 within the kinase domain by up-
stream kinases, especially the tumor suppressor LKB1. Binding
of AMP to the y subunit activates AMPK by three complementary
mechanisms: (1) allosteric activation (Yeh et al., 1980), (2) promo-
tion of Thr172 phosphorylation by upstream kinases (Hawley et al.,
1996; Oakhilletal., 2010; Ross et al., 2016a), (3) inhibition of Thr172
dephosphorylation by protein phosphatases (Davies et al., 1995).
Although allosteric activation is caused only by AMP, effects (2)
and (3) are mimicked by higher concentrations of ADP (Oakhill
et al., 2011; Xiao et al., 2011; Gowans et al., 2013; Ross et al.,
2016a). These activating effects are antagonized by ATP, so that
AMPK is activated by increases in AMP:ATP and ADP:ATP ratios,
which occur whenever cellular energy is compromised. AMPK
then acts to restore energy homeostasis by switching on catabolic
pathways, while switching off most anabolic processes (Ross
et al., 2016b; Lin and Hardie, 2017).

Because cordycepin 5-monophosphate (CoMP) is a close
analog of AMP, it seemed likely that it would mimic effects of
AMP on AMPK. Indeed, binding of CoMP to the AMPK-a1
and -y1 subunits has been modeled by molecular docking (Wang
et al., 2010; Wang et al., 2019), while cordycepin was reported to
bind to the isolated AMPK-y1 subunit (Wu et al., 2014a)
and CoMP to allosterically activate AMPK (Wang et al., 2010).
However, no detailed studies of the molecular mechanism(s) by
which cordycepin activates AMPK have been reported until now.

RESULTS

Cordycepin Activates AMPK in Intact Cells
Incubation of HepG2 cells with cordycepin at 100 uM and above
for 1 h increased phosphorylation of Thr172 on AMPK itself and
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Figure 1. AMPK Activation and Nucleotide Contents in HepG2 Cells Treated with Cordycepin

(A-D) Changes induced by incubation with cordycepin for 1 h. (A) Phosphorylation of AMPK, ACC, and Raptor. (B) AMPK activity in immunoprecipitates. (C)
Cellular content of adenine nucleotides (note logarithmic scale on y axis). (D) Cellular content of cordycepin nucleotides.

(E-H) Time courses of changes induced by incubation with 100 uM cordycepin. (E) Phosphorylation of AMPK, ACC, and Raptor. (F) AMPK activity in immu-
noprecipitates. (G) Cellular content of adenine nucleotides. (H) Cellular content of cordycepin nucleotides. For (B), results are expressed relative to control and
were fitted to the following equation: activity = 1 + (((activation — 1) x [AMP])/(ECso + [AMP])). The curve was generated with best-fit parameters mentioned in
the text.

Results are means + SEM; n=2in (A) and (E), n=4to 6in (B), n=4in (F), n=3in (C), (D), (G), and (H). In (A) and (E), “?” indicates non-specific bands detected by
the probes used. See also Figure S1.
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Figure 2. Effects of Cordycepin on Oxygen Uptake, Cell Proliferation, and Viability
(A) Changes in oxygen uptake following addition of cordycepin or phenformin to HepG2 cells. At the points shown by arrows, 2,4-dinitrophenol (DNP, 100 uM) or

rotenone (2 pM) plus antimycin A (1 uM) were added. Results are means + SD (n =

same time point (*p < 0.05, *p < 0.01, ***p < 0.0001).

6 to 8); results labeled with asterisks are significantly different from control at the

(B) Effect of cordycepin on cell proliferation assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays; results are means + SEM (n = 6).
(C) Effect of incubation of HepG2 cells with cordycepin for the indicated time on cell viability, assessed by clonal survival assays; results are means + SEM (n = 3).
(D) Effect of incubation of wild-type (WT) and AMPK DKO U20S cells with cordycepin for 8 h on clonal survival; results are means + SEM (n = 3). Results
significantly different for WT and DKO cells are indicated by asterisks (****p < 0.0001). See also Figure S2.

of AMPK sites on two downstream targets, acetyl-coenzyme A
carboxylase (ACC1, Ser80) and Raptor (Ser792) (Figure 1A).
The kinase activity of AMPK also increased by a maximum of
7 = 1-fold (+SEM), with a half-maximal effect (ECso) at 310 +
60 uM (Figure 1B). No activation was evident at 30 uM, although
it has been reported that cordycepin activated AMPK in HepG2
cells at concentrations as low as 1 uM, using incubations in me-
dium without serum but with 0.02% (w/v) bovine serum albumin
(BSA) (Guo et al., 2010). When we repeated our experiments un-
der those conditions, cordycepin was indeed much more potent
(Figure S1A). Thus, the potency of cordycepin is enhanced in
serum-free medium, most likely due to its sequestration by
some component of serum. Consistent with this, when cordyce-
pin (100 uM) was incubated with cell medium and centrifugally
filtered through a membrane with a cutoff of 3 kDa (which would
allow cordycepin through, but not proteins), the recovery of cor-
dycepin was 4- to 5-fold lower when 10% serum had been
added to the medium, compared with medium plus 0.02%
BSA or medium alone (Figure S1B). Note that all of the papers
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cited above (other than Guo et al. (2010)) that studied effects
of cordycepin on AMPK included serum and used cordycepin
at 10-200 uM. We believe that serum-free conditions are less
physiologically relevant, so we included serum in all other
experiments.

We next monitored the cellular contents of adenine and cordy-
cepin nucleotides by liquid chromatography-mass spectrometry
(LC-MS). At cordycepin concentrations above 30 uM, levels of
ATP, ADP, and AMP progressively declined (Figure 1C). Remark-
ably, at 1 mM cordycepin the ATP content had dropped by 100-
fold (note logarithmic scale), although the decreases in ADP
(14-fold) and AMP (5-fold) were smaller. Over the same concen-
tration range, the levels of cordycepin triphosphate (CoTP),
cordycepin diphosphate (CoDP), and CoMP increased (Fig-
ure 1D), with CoTP accumulating at lower cordycepin concentra-
tions and CoDP and CoMP only at higher concentrations. AMPK
activity correlated best with CoMP: for example, neither AMPK
activation nor CoMP formation was observed at 30 uM cordyce-
pin or below, although both CoDP and CoTP had increased
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Figure 3. Effects of Cordycepin Nucleotides on AMPK Function in Cell-Free Assays

(A) Allosteric activation of AMPK (purified from rat liver) by AMP and CoMP at 200 pM ATP. Results (means + SD, n = 3) are expressed relative to the activity
without AMP/CoMP and were fitted to the following equation: activity = 1 + ((activation — 1) x X)/(ECso + X) — ((activation x X)/(ICso + X)), where activation is
maximal activation, X is AMP/CoMP concentration, and EC5o/ICsq is the concentration giving half-maximal activation/inactivation. Curves were drawn with best-
fit parameters given in the text.

(B) As in (A), but assays were also performed at 5 mM ATP.

(C) Phosphorylation of a GST-ACC1 fusion by a human «2p2y1 complex (phosphorylated on Thr172 using CaMKK2) using ATP or CoTP as co-substrate;
phosphorylation was quantified by western blotting using anti-pACC antibody. Mg?* was kept at a constant 4.8 mM excess above [ATP)/[CoTP]. Results
(means + SEM, n = 2) were fitted to the Michaelis-Menten equation: activity = Vinax X X/(Ki, + X), where X is ATP/CoTP concentration. Curves were generated
using the K, values in the text and estimated V,,,x of 1.02 for ATP and 0.92 for CoTP.

(legend continued on next page)
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(compare Figures 1B and 1D). Figure S1C shows the same data
plotted as cellular energy charge for either adenine or cordyce-
pin nucleotides. Although adenine nucleotide energy charge
did decrease slightly at the highest cordycepin concentrations,
the cordycepin nucleotide energy charge decreased much
more markedly and showed a much better negative correlation
with AMPK activity.

Using standards for reference, the recovery of CoTP during
perchloric acid extraction and LC-MS (see STAR Methods)
was lower (57 + 3%) than that of ATP, so the finding that the
peak area of CoTP after incubation of cells with cordycepin at
100 M and above for 1 h (4 x 107, Figure 1D) was actually higher
than that of ATP in cells incubated without cordycepin (3 x 10,
Figure 1C) indicated (remarkably) that CoTP was almost
completely replacing ATP within the cells.

We next examined the time course of AMPK activation and
nucleotide changes at 100 uM cordycepin. The increases in
phosphorylation and activation of AMPK were transient, peaking
at =2-fold at 1 h and returning to baseline by 4 h (Figures 1E and
1F). Decreases in adenine nucleotides (Figure 1G) were also
transient, peaking at 2 h and then slowly reversing, although re-
covery was incomplete by 8 h. Cordycepin nucleotides also
reached a maximum at 1-2 h (Figure 1H) and then slowly
declined. Once again, the best correlation with AMPK activity
was with CoMP, since both AMPK activity and CoMP had almost
returned to baseline by 4 h, whereas the levels of CoDP and
CoTP remained elevated up to 8 h.

The reversal of the effects of cordycepin after 2 h was likely
because cordycepin was being taken up and metabolized by
the cells. Measurements of cordycepin in the medium revealed
that it had declined by 70% by 2 h and had almost disappeared
by 4 h; the half-life of cordycepin in the medium was about
80 min (Figure S1D).

Effects of Cordycepin on Cell Viability

The results discussed above suggested, remarkably, that at cor-
dycepin concentrations of 300 uM and above, cordycepin nucle-
otides almost completely replaced adenine nucleotides in the
cells, at least transiently. Surprisingly, the cells appeared to
remain viable, at least in the short term. For example, Figure 2A
shows that, unlike the complex | inhibitor phenformin, cordyce-
pin had only minor effects on basal oxygen uptake, with modest
inhibition by 300 uM after 45 min and by 1 mM after 30 and
45 min. There were no significant effects on maximal oxygen up-
take measured after addition of the uncoupler 2,4-dinitrophenol
or on residual oxygen uptake after subsequent addition of the
respiratory chain inhibitors rotenone and antimycin A.

To assess longer-term effects of cordycepin, we examined its
effects on cell proliferation and clonal survival. Figure 2B shows
that cordycepin at 30 uM had only very small effects on prolifera-
tion after 72 h, while at 100 uM it caused a 30% decrease. How-
ever, 300 uM and 1 mM cordycepin completely prevented cell
proliferation. At 300 uM and 1 mM, cordycepin also caused almost
complete death of HepG2 cells in clonal survival assays, whereas

100 uM had only partial effects (Figure 2C). The effects depended
on the incubation time; half-maximal effects on cell survival after
2, 8, and 24 h treatment were at 130, 70, and 35 uM, respectively.
To assess whether AMPK provided protection against cell
death induced by cordycepin, we utilized double-knockout
(AMPK DKO) human osteosarcoma (U20S) cells in which
both the o1 and the a2 catalytic subunit isoforms had been
knocked out using CRISPR. Figure S2A shows AMPK activation
in wild-type (WT) U20S cells by different concentrations of
cordycepin, compared with treatment with phenformin or
starvation for both glucose and glutamine, these being treatments
that activate AMPK by AMP-dependent mechanisms (Hawley
etal., 2010; Zhang et al., 2017). To confirm AMPK knockout, Fig-
ure S2B shows that AMPK could not be detected in the DKO cells
using either anti-a1 or pan-a antibodies, while increased phos-
phorylation of ACC in response to H,O, was also completely abol-
ished. Figure 2D shows that DKO cells were significantly more
sensitive to cordycepin in clonal survival assays than WT cells,
with half-maximal effects at 44 + 2 and 81 + 4 uM, respectively.

Multiple Effects of CoMP on AMPK in Cell-Free Assays
Figure 3A shows allosteric activation of purified rat liver AMPK by
AMP and CoMP in cell-free assays conducted at 200 uM ATP.
Under these conditions, AMP activated 4.4 + 0.1-fold, with an
ECs5o of 3.8 + 0.2 uM. At higher concentrations, AMP inhibits
AMPK due to binding at the catalytic site (Gowans et al., 2013);
the ICs9 (concentration giving half-maximal inhibition) in this
study was 1.6 + 0.1 mM. CoMP gave a similar bell-shaped curve,
although because the activating and inhibitory phases were not
as well separated as with AMP, a high degree of uncertainty in
best-fit parameters was obtained unless the maximal activation
parameter was constrained. If it was constrained to a maximum
of 4.4-fold (as obtained for AMP), CoMP activated and inacti-
vated with estimated ECsq and I1Csq values of 120 + 50 and
500 + 180 pM, respectively. Thus, CoMP is = 30-fold less potent
as an allosteric activator than AMP.

Figure 3B compares allosteric activation by CoMP at 200 M
ATP and at a more physiologically relevant ATP concentration
of 5 mM. As expected, the curve was shifted rightward at
5 mM ATP; ECsg increased from 120 uM to 1.4 mM (maximal
activation constrained to 4.4-fold). Thus, ATP competes with
CoMP for binding at the activating site(s).

Since CoTP appeared to almost replace ATP in cells incubated
in high cordycepin concentrations (Figure 1), we tested whether
the catalytic domain of AMPK would utilize CoTP as a phosphate
donor in place of ATP. Strikingly, bacterially expressed human
a2B2y1 complex could use either ATP or CoTP as phosphate
donor with very similar kinetics (Figure 3C), the K;,, values being
36 + 3 uM for ATP and 22 + 3 uM for CoTP. AMP also caused a
similar 4-fold activation when the kinase was assayed using
either 200 uM ATP or CoTP as substrate, but this activation
was abolished when the ATP or CoTP concentrations were
increased to 5 mM (Figure 3D). Thus, at high concentrations,
both ATP and CoTP antagonize allosteric activation by AMP.

(D) Activation of human «2p2y1 complex by 30 uM AMP when the assays contained 200 uM or 5 mM ATP/CoTP.
(E) Promotion of Thr172 phosphorylation by 200 uM AMP and varying CoMP, using human a232y1 complex.
(F) Inhibition of Thr172 dephosphorylation by 200 uM AMP and varying CoMP, using purified rat liver kinase. Results significantly different from controls are

indicated by asterisks (****p < 0.0001).

218 Cell Chemical Biology 27, 214-222, February 20, 2020



A  Effect of inhibitors of adenosine kinase and transport

~ 4 | *kkk E“"
22
s 5 &
£ 8 3F
® o %
E G>) 2 | *kkk :"‘
=35 <
<3 s
= %‘ -
V.2
V.27
pT172—> [~ b
AMPK-0= |98 0 i o s o i o0 0 o 1 8
pACQ)—> e =
ACC':; BECECEEEEESEEEEnoEEEREEN
ABT-702: + + + +
dipyridamole: , + +.. + +
control  cordycepin  AICAR  phenformin
B Cordycepin does not activate the R531G mutant
> /_é\ 3 — dkkk T
£¢ 7
T)’ o *:,i* *kkk
(] _9 2+ I I
X
a2
25 =
g 1= = N 7
pTI72— " FeFNEmESSm=-=wp®
AMPKo—r-mgpeesp=mheem~ el 4
| IS [ NN Dy SNy SN SNl SUS—  SS— i S—
cordycepin: + +
phenformin: + +
A-769662: + +

WT 2 R531G mutant

Figure 4. Detailed Mechanism for AMPK Activation by Cordycepin in
Intact Cells

(A) HepG2 cells were incubated with 300 uM cordycepin, 3 mM AICAR, or
10 mM phenformin for 1 h in the presence or absence of 1 uM ABT-702 or
0.5 uM dipyridamole. AMPK activity was measured in anti-AMPK-o immuno-
precipitates (top) and phosphorylation of AMPK and ACC was analyzed in
duplicate samples by western blotting. Results in the top graph are means +
SEM (n = 3); asterisks indicate results significantly different from controls
without cordycepin, AICAR, or phenformin.

(B) HepG2 cells were transiently transfected with DNAs encoding FLAG-tag-
ged wild type (WT) AMPK-v2 or an R531G mutant. Cells were treated for 1 h +
300 uM cordycepin, 10 mM phenformin, or 300 uM A-769662, and AMPK
activity in anti-FLAG immunoprecipitates was determined; asterisks indicate
results significantly different from controls without cordycepin, phenformin, or
A-769662 (****p < 0.0001).

Like AMP, CoMP promoted activation and Thr172 phosphor-
ylation of AMPK by LKB1 (Figure 3E), while also protecting
against inactivation and Thr172 dephosphorylation by the pro-

tein phosphatase PP2Co. (Figure 3F). Fitting of AMPK activity in
Figure 3F as a function of CoMP concentration yielded an EC5o
of 68 = 12 uM. While lower than the ECsq obtained for allosteric
activation (120 uM), the latter was measured in the presence of
200 uM ATP, which would have competed with CoMP for binding
to the +y subunit.

Mechanism for AMPK Activation by Cordycepin in
Intact Cells
We hypothesized that cordycepin enters cells via adenosine
transporters and is then converted to CoMP by adenosine ki-
nase. To test this, we made use of dipyridamole and ABT-702,
which are inhibitors of Equilibrative Nucleoside Transporters
(ENT1 and ENT2; Pastor-Anglada and Perez-Torras, 2018) and
adenosine kinase (Jarvis et al., 2000), respectively. Figure 4A
shows that both inhibitors blocked the effect of cordycepin to
activate and phosphorylate AMPK. As expected, they also
blocked the effects of AICA riboside (which is taken up by
ENTs; Gadalla et al., 2004), but not phenformin (which activates
AMPK by inhibiting the respiratory chain; Hawley et al., 2010).
The results in Figure 3 suggested that CoMP mimicked all
three effects of AMP on the AMPK system, albeit with lower po-
tency. To confirm that the CoMP effect required binding to the
crucial CBSS3 site on the y subunit, we examined the activation
of AMPK complexes in HepG2 cells containing transfected y2
subunits, with either the WT sequence or the R531G mutation.
Arg531 is involved in binding of the phosphate group of AMP
to the CBSS3 site, and we have shown that this mutation renders
AMPK insensitive to AMP (Hawley et al., 2010). Figure 4B shows
that AMPK complexes containing WT y2 were activated similarly
by cordycepin, phenformin, and A-769662. However, although
complexes containing the R531G mutant were still activated
by A-769662 (which, unlike AMP, binds at the ADaM site; Lan-
gendorf and Kemp, 2015), they were not activated by phenfor-
min (which increases cellular AMP; Hawley et al., 2010) or
cordycepin.

DISCUSSION

Although it was shown many years ago that cordycepin is con-
verted inside cells into mono-, di-, and triphosphates (Klenow,
1963), we have now quantified by LC-MS the appearance of
CoMP, CoDP, and CoTP and the disappearance of AMP, ADP,
and ATP, as functions of cordycepin concentration and time.
Remarkably, incubation of cells with concentrations of cordyce-
pin above 100 uM caused CoTP, CoDP, and CoMP to almost
completely replace adenine nucleotides in the cells. Despite
this, the cells remained viable in the short term, with only mar-
ginal effects on oxygen uptake. Many cellular ATP-utilizing en-
zymes may be able to utilize CoTP in place of ATP; indeed, we
showed this for AMPK itself, which utilized ATP or CoTP as co-
substrate with very similar kinetic parameters. Our finding that
treating cells with 1 mM cordycepin for 45 min caused only
modest reductions in oxygen uptake also suggests that mito-
chondrial adenine nucleotide translocases and ATP synthases
are able to utilize CoDP to generate CoTP.

High cordycepin concentrations (300 uM and 1 mM, Figure 2)
are cytotoxic as judged by cell proliferation and clonal survival as-
says, most likely due to effects on mRNA synthesis or stability.
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However, 100 uM cordycepin caused a large activation of AMPK,
although a large proportion of cells remained viable in survival as-
says. It is also clear that AMPK activation helps cells to survive
treatment with cordycepin, since its cytotoxic effects were more
potent in AMPK-null U20S cells. The mechanism underlying
this is not clear, but it may be because AMPK restrains cell growth
and proliferation; cells in a more quiescent state may be more
resistant to effects of inhibitors of MRNA synthesis or stability.

Our results suggest that cordycepin activates AMPK in cells
via uptake by adenosine transporters (ENT1/ENT2) and conver-
sion by adenosine kinase to CoMP, which then acts as an AMP
analog. In cell-free assays, CoMP mimicked all three effects of
AMP on the AMPK system, although it was less potent. In addi-
tion, the activity of AMPK measured in immunoprecipitate kinase
assays (Which cannot detect allosteric activation) correlated well
with the cellular content of CoMP, but not CoDP, CoTP, or any
adenine nucleotide, in both concentration-dependence and
time-course experiments. AMPK activity also showed a better
negative correlation with the energy charge of cordycepin rather
than adenine nucleotides. Although correlations do not prove a
causal relationship, taken overall our results suggest that cordy-
cepin activates AMPK in intact cells by conversion to cordycepin
monophosphate.

The efficacy of cordycepin as a drug in vivo is limited by its
rapid cellular uptake and metabolism. In mice treated with a sin-
gle oral dose of cordycepin of 63 mg/kg, a peak plasma concen-
tration of 10 uM was reached after 1.5 h, and the concentration
then declined, with a half-life of 2.1 h (Wei et al., 2009). Cordyce-
pin may be primarily metabolized by adenosine deaminase,
which deaminates cordycepin with kinetics similar to those of
adenosine (Agarwal et al., 1975). Uptake by ENT1/ENT2 and
rapid deamination by adenosine deaminase may explain our
findings that cordycepin is rapidly removed from the medium
by HepG2 cells.

SIGNIFICANCE

Cordycepin now joins AICAR (Corton et al., 1995) and C13
(Gomez-Galeno et al., 2010) in the class of AMPK activators
that are pro-drugs converted into AMP analogs by cellular
metabolism (although C2, which is derived from C13, binds
the y subunit in a different orientation than AMP; Langendorf
et al., 2016). While cordycepin can be used to activate AMPK
in intact cells, it exhibits cytotoxicity at concentrations only
slightly higher than those that activate AMPK. This cytotox-
icity is AMPK-independent (although AMPK provides some
protection against it) and may be due to the known effects
of cordycepin on mRNA synthesis and/or stability. This
toxicity of cordycepin, and its rapid cellular uptake and
metabolism, may limit its clinical utility except perhaps as
a cytotoxic drug for cancer therapy. In that scenario, our
finding that AMPK protects against cell death induced by
cordycepin suggests that its efficacy might be enhanced
by addition of an AMPK inhibitor.
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AMPK-a1 (for immunoprecipitation)
AMPK-a2 (for immunoprecipitation)
AMPK-a1 (for Western blotting)
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EZview™ Red anti-FLAG M2 affinity gel
pACC1/pACC2 (S79/5212)

Streptavidin conjugated to 800 nm fluorophore
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Sigma-Aldrich
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Grahame
Hardie (d.g.hardie@dundee.ac.uk). All unique/stable reagents generated in this study are available from the Lead Contact with a
completed Materials Transfer Agreement, with reasonable compensation for processing and shipping.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture

HepG2 cells (male) were cultured in Minimum Essential Medium (MEM) supplemented with 10% (v/v) FBS, 1% (v/v) non-essential
amino acids and 1% (v/v) penicillin/streptomycin. Transient transfection of DNAs encoding FLAG-tagged AMPK-y2 or an
R531G mutant of AMPK-y2 were carried out 36-48 hr prior to experiments using Fugene 6 according to manufacturers’
instructions. U20S cells (female) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% (v/v)
FBS and 1% (v/v) penicillin/streptomycin.

METHOD DETAILS

CRISPR/Cas9 (D10A)-Mediated Knock-Out of AMPK

AMPK-a17" -227~ U20S cells were generated using the Cas9 (D10A) double nickase system. Pairs of guide RNAs targeted to exon
4 in both PRKAA1 and PRKAAZ2, along with screening primers for genotyping, were designed and cloned by Thomas Macartney and
are available by contacting MRCPPU Reagents and Services (https://mrcppureagents.dundee.ac.uk). Sense guides were cloned
into the puromycin-selectable pBABED puro U6 vector and antisense guides into the Cas9 (D10A) vector pX335. U20S cells carrying
a FIp recombinase target site were transfected with 1 pug of each plasmid using Fugene6 according to manufacturers’ instructions. At
24 and 48 hr after transfection, medium was replaced with fresh medium containing 1 ng/ml puromycin. Medium was replaced with
fresh medium with no selection agent and, after 24 hr, the transfection was repeated without selection. At 24 hr later, single cells were
sorted into individual wells of a 96-well plate coated with 0.1% gelatin and containing pre-conditioned McCoy’s 5A medium with 20%
FBS. Clones were expanded and screened for loss of AMPK protein and activity by Western blotting using anti-AMPK-o and pACC
antibody normalised to total ACC detected using streptavidin. Knockout was also confirmed by genomic DNA sequencing.

Production of Cordycepin Monophosphate

CoTP (5 umol) in water was treated with 8 units of apyrase in the presence of 5 mM CaCl, for 45 min at 30°C. The reaction was termi-
nated by addition of ice-cold perchloric acid to 5% final (v/v). The mixture was neutralised, the concentration of CoMP determined by
absorbance (260 nm) and purity confirmed by capillary electrophoresis compared to the precursor, CoTP.

MTT Assays for Cell Proliferation
After treatment for the specified time, the effect of cordycepin on cell proliferation was determined using the MTT assay kit (Abcam,
ab211091) as per manufacturers’ instructions.

Clonal Survival Assays

Cells were seeded into 6-well plates at equal density and treated in triplicate at 40% to 60% confluence with vehicle or cordycepin for
the indicated time. Cells were trypsinized in 1 ml trypsin:EDTA for 5 min and diluted in 1 ml of complete medium. Cells in control wells
were counted using a hemocytometer and 1000 cells from vehicle and cordycepin-treated wells were seeded in triplicate into 10 cm
dishes containing 10 ml of medium. The dishes were incubated at 37°C for 10-15 days. On the last day, the medium was decanted,
cells fixed with ice-cold methanol for 10 min and stained with 10% v/v Giemsa stain in water for 15 min. The dishes were washed with
water and the number of colonies counted manually.

Measurement of Cellular Nucleotides by LC:MS

After treatment, cells for nucleotide analysis were lysed in 70% perchloric acid and the acid extracted as described previously (Haw-
ley et al., 2010). The levels of AMP, ADP, ATP, CoMP, CoDP and CoTP were measured using a TSQ Quantiva (with an ion Max NG
source) interfaced with an Ultimate 3000 Liquid Chromatography system (ThermoScientific). Separation of all compounds was
achieved using a porous graphitic carbon column (HyperCarb 30x1 mm ID 3 mm; Part No: C-35003-031030, Thermo-Scientific)
as described previously (Ross et al., 2017) with some modifications. Mobile phase buffer A consisted of 0.3% (v/v) formic acid
adjusted to pH 9 with ammonia prior to a 1:10 dilution. Mobile phase buffer B was 80% (v/v) acetonitrile. The column was maintained
at a controlled temperature of 40°C and equilibrated with 10% buffer B for 5 min at a constant flow rate of 0.05 mL/min. Aliquots of
1uL of each sample were loaded onto the column and compounds eluted with a linear gradient from 10% buffer B to 12% buffer B
within 1 min, then 12% B to 100% B within 2 min; the column was then washed for 4 min with 100% Buffer B. Eluents were sprayed
into the TSQ Quantiva using lon Max NG ion source with ion transfer tube temperature at 350°C and vaporizer temperature 30°C. The
TSQ Quantiva was run in negative mode with a spray voltage of 3500, sheath gas 40, aux gas 20 and sweep gas 2. Levels of ATP, ADP
and AMP were measured using multiple reactions monitoring mode (MRM) with transitions described previously (Ross et al., 2017).
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For CoMP, CoDP and CoTP, optimised collision energies and radio frequencies were determined by infusing the pure compounds.
Two transitions were used to monitor each of the three compounds, CoMP (330.22>134.01, 330.22>195.11), CoDP (410>256.67,
410>392.0) and CoTP (490>158.89, 490.11>472.11).

To assess the relative recoveries of ATP and CoTP during LC:MS, triplicate 50 uL. samples of CoTP or ATP (both 31 mM) were
added to 150 pL of 70% perchloric acid and the acid extracted as described above for cell extracts. The resulting aqueous solutions
were then adjusted to 5 mM assuming extinction coefficients of 15.4 I/mmol/cm for ATP and 14.5 I/mmol/cm for CoTP. Analysis of
these by extracts by capillary electrophoresis (Hawley et al., 2010) showed that ATP or CoTP constituted 99% or 84% of total adenine
or cordycepin nucleotides, respectively (purities estimated by LC:MS were identical). Equal volumes of CoTP and ATP were then
mixed, diluted 1000-fold and 3 pL analysed by LC:MS as described above for cell extracts. After correction for the fact that proportion
of triphosphate was lower in the CoTP samples, the peak areas were found to be 57 + 3% lower (n = 3) for CoTP versus ATP
standards.

Measurement of Cordycepin in Cell Medium

The same LC-MS system was used to detect and quantify cordycepin. LC conditions were optimized using a TSKgel Amine-80 Col-
umn (100 x 1 mm, ID 5 um, Part No.0020010, TOSOH Bioscience). Mobile phase buffer A consisted of 0.1% (v/v) formic acid and
buffer B was in 80% (v/v) acetonitrile. The column was maintained at 40°C and was equilibrated with 98% buffer B for 5 min at a con-
stant flow rate of 0.05 mL/min. Samples were diluted 1/1500 and aliquots of 4 uL of each sample loaded onto the column. Cordycepin
was eluted by decreasing buffer B from 98% to 85% within 2 min and then to 10% within 5 min. Eluents were sprayed into the TSQ
Quantiva which was run in positive mode with a spray voltage of 2700, sheath gas 40, aux gas 20, sweep gas 2. Levels of cordycepin
were measured using multiple reaction monitoring mode (MRM) with optimized collision energies and radio frequencies previously
determined by infusing pure compound. One transition (252 > 136) was used to detect and monitor cordycepin.

Measurements of Cellular Oxygen Consumption

Cellular oxygen consumption rate (OCR) was measured using a Seahorse XF24 Extracellular Flux Analyser with 50,000 cells per well,
as described previously (Hawley et al., 2010). HepG2 cells were cultured overnight in 24 well plates (50,000 cells/well) in standard
medium as above. One hour before the experiment, the medium was replaced with 675 pl of unbuffered medium, pH 7.4: 8.3 g/L
DMEM base (Sigma), 2 mM GlutaMax-1, 5 mM glucose, 32 mM NaCl, and 40 uM Phenol Red. Compounds (75 pl) were injected
into wells as specified, and OCR continuously measured as described by the manufacturers of the Analyser (Wu et al., 2007).

AMPK Assays Using ATP

AMPK (15 ng) purified from rat liver was assayed in solution using the SAMS peptide as substrate (Fyffe et al., 2018) in the presence of
AMP or CoMP (concentrations specified in Figure legends), and either 5 mM MgCl, and 200 pM [y->2P]JATP or 9.8 mM MgCl, and
5 mM [y-22P]ATP, thus maintaining a constant excess of [Mg®*] over [ATP] (Storer and Cornish-Bowden, 1976). Total assay volume
was 25 pl.

Endogenous AMPK in crude cell lysates was firstimmunoprecipitated using an equal mixture of anti-o.1 and -2 antibodies (150 nug
protein) by incubation at 4°C for 2 hr on a roller mixer. After extensive washing, the immunoprecipitates were assayed for AMPK ac-
tivity (50 pg per assay, total assay volume 50 pl) using the AMARA peptide (200 uM) as substrate in the presence of 200 uM AMP,
5 mM MgCl, and 200 uM [y-32P]JATP (Fyffe et al., 2018).

AMPK Assays Using CoTP

As 32P-labelled CoTP was not available, the experiments in Figures 3C and 3D were performed using non-radioactive CoTP and uti-
lized as co-substrate a construct of glutathione-S-transferase fused at the N-terminus of residues 60-94 of rat ACC1 (Scott et al.,
2002), which includes the Ser79 phosphorylation site. Bacterially expressed GST-ACC (0.5 pg) was incubated for 10 min in a total
volume of 25 ul with bacterially expressed human AMPK (30 ng of a2p2y1 complex, previously phosphorylated on Thr172 using
CaMKK2) with ATP or CoTP as indicated, and sufficient MgCl, to maintain a constant 4.8 mM excess of [Mg?*] over [ATP]. Phosphor-
ylation of this substrate was detected using anti-pACC antibody and quantified using a LiCor Odyssey imager.

Cell-Free Assays to Study Effects of AMP/CoMP on Thr172 Phosphorylation

These were as described previously (Fyffe et al., 2018) with some modifications. Bacterially expressed human AMPK («232y1 com-
plex, unphosphorylated on Thr172, 500 ng) was incubated for 10 min in a total volume of 25 pl with 200 uM ATP, 5 pM MgCl, with/
without the LKB1:STRAD:MO25 complex (10 ng), in the presence or absence of AMP (200 puM) or cordycepin as indicated. Aliquots
were removed for Western blotting and AMPK assays.

Cell-Free Assays to Study Effects of AMP/CoMP on Thr172 Dephosphorylation

These were as described previously (Fyffe et al., 2018) with some modifications. Rat liver AMPK (12.5 png/ml) was incubated in
a shaking incubator at 30°C for 10 min in Hepes buffer (50 mM Na Hepes pH 7.4, 150 mM NaCl, 1 mM dithiothreitol, 0.02%
(w/v) Brij-35) with MgCl, and sufficient PP2Ca to yield about 70% inactivation in the absence of added nucleotide. AMP (200 pM)
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or cordycepin were added at concentrations indicated in figures or legends. Aliquots were removed for Western blotting and AMPK
assay. Kinase assays were performed immediately after a further 100-fold dilution, which was sufficient to prevent dephosphorylation
during the assay.

Assays with AMP-Insensitive (R531G) Mutant

HepG2 cells were transiently transfected with DNAs encoding FLAG-tagged wild type AMPK-y2 or the R531G mutant, using Fugene
6 according to the manufacturers’ instructions. After transfection for 48 hr, cells were treated with various agents as described, and
cell lysates prepared (Hawley et al., 2018). FLAG-tagged AMPK was then immunoprecipitated from 150 pg total protein by incubation
at 4°C for 2 hr on a roller mixer with 9 pl of EZview Red anti-FLAG M2 affinity gel. After extensive washing, the immunoprecipitates
were assayed for AMPK activity (50 ug per assay in a total volume of 50 nl) using the AMARA peptide (200 M) as substrate in the
presence of 200 uM AMP, 5 mM MgCl, and 200 uM y-32P-ATP as described previously (Fyffe et al., 2018).

Assessment of Binding of Cordycepin to Serum Components

Cordycepin (100 uM) was incubated in water, MEM, MEM plus 0.02% BSA, or MEM plus 10% (v/v) serum for 30 min at 37°C in a
shaking incubator. The mixtures were then passed through a filter that retains molecules with a mass above = 3 kDa (Pierce™ Protein
Concentrator 3K MWCO) by centrifugation (13,000 xg; room temp; 2-5 min). The filter would retain essentially all proteins, but not free
cordycepin. The recovery of cordycepin in the filtrate was then determined using its absorbance at 260 nm after correction for values
obtained in controls lacking cordycepin.

Other Analytical Procedures

SDS-PAGE for AMPK and Raptor was performed using precast Bis-Tris 4-12% gradient polyacrylamide gels in the MOPS buffer
system (Invitrogen). SDS-PAGE for ACC was performed using precast Tris-Acetate 3-8% gradient polyacrylamide gels in
the Tris-Acetate buffer system (Invitrogen). Proteins were transferred to nitrocellulose membranes using the iBlot2 system (Invitro-
gen). Membranes were blocked for 1 hr in Li-Cor Odyssey blocking buffer. The membranes were probed with appropriate antibody
(0.1-1 pg/ml) in Li-Cor Odyssey blocking buffer, except where the blotting enhancement system was used (Thermo Scientific; as
per manufacturers’ instructions). Detection was performed using secondary antibody (1 png/ml) coupled to IR 680 or IR 800 dye,
or IR-streptavidin 800 dye, and the membranes were scanned using the Li-Cor Odyssey IR imager. Protein concentrations were
determined by Coomassie Blue binding with bovine serum albumin as standard (Bradford, 1976).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis

Numbers of replicates (“n”) are given in Figure legends. For intact cell experiments, “n” refers to biological replicates, i.e. indepen-
dent cell cultures. For cell-free assays, “n” refers to the number of independent replicates; where a two-stage assay was used (e.g.
Figures 3E and 3F), both stages were performed independently for each replicate. Statistical significances of differences (indicated
on Figures using asterisks: *P<0.05, **P<0.01, **P<0.001, ***P<0.0001) were estimated using GraphPad Prism 6 for Mac OSX, using
1-way or 2-way ANOVA as appropriate, and the Holm-Sidak multiple comparison test.

DATA AND CODE AVAILABILITY

The published article includes all datasets generated or analyzed during this study.
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Supplementary Fig. 1 (related to Fig. 1):

(A) Activation of AMPK in HepG2 cells in medium containing 10% fetal calf serum or 0.02% bovine
serum albumin. Results are mean £ SD (n = 2).

(B) Cordycepin binds to serum proteins. Results (mean + SEM, n = 3) show the recovery of cordycepin in
the protein-free filtrate when it was incubated for 30 min at 100 uM in water (open bars) or medium (MEM)
with or without bovine serum albumin (0.02%, w/v) or fetal calf serum (10% v/v). The mixture was rapidly
centrifuged through a filter that retains molecules >3 kDa, and the recovery of cordycepin in the filtrate
measured by absorbance at 260 nm. Results are expressed as percantages of the recoveries obtained in
water controls, and asterisks denote statistical significance of differences from controls.

(C) Effect of cordycepin concentration on cellular energy charge [(NTP + NDP/2)/(NTP + NDP + NMP)]
of adenine or cordycepin nucleotides. Data are from the same experiments as Figs. 1C/1D, and are
mean £ SD (n = 3). Asterisks denote statistical significance of differences from incubations without
cordycepin (adenine nucleotides) or incubations with 10 uM cordycepin (cordycepin nucleotides).

(D) Amount of cordycepin remaining in the medium of HepG2 cells at various times following its addition
to a final concentration of 100 uM. Results, derived from LC:MS analysis, are mean + SD (n = 3).
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A) Cordycepin activates AMPK in U20S cells
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Supplementary Fig. 2 (related to Fig. 2):

(A) Activation of AMPK in U20S cells by various concentrations of cordycepin, by phenformin (10 mM) or
by removal of glucose and glutamine for 1 hr. Results are shown as mean + SEM (n = 3); asterisks indicate
mean values significantly different from control by 1-way ANOVA.

(B) Validation of double AMPK-a knockout in U20S cells, made using the CRISPR-Cas9 (D10A)

system. Pictures show Western blots of duplicate cell samples, some of which had been treated with 1 mM
H,O, for 10 min to activate AMPK. Blots were probed using an AMPK-a.1-specific antibody, a pan-AMPK-a
antibody, a pACC (Ser80) antibody, or streptavidin to detect biotin-containing proteins such as ACC.
Attempts to detect AMPK-a2 in these cells by Western blotting were not successful, most likely because of
low expression. However, note that the phosphorylation of ACC in response to H,0, was completely
eliminated. In addition, we could not detect any wild type AMPK-a1 or -a.2 sequences by sequencing of
genomic DNA.
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