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Supplementary Table S1: Screening of isolates.xlsx: Details of all isolates, which treatment they were obtained from
and whether they grew on the plasticizers.

Supplementary Table S2: Genomic analysis of Mycobacterium sp. DBP42 and Halomonas sp. ATBC28.xIsx: Pathways
identified in genomes, with all KEGG details and details of conserved domain searches for those identified here as
being involved in plasticizer degradation.

Supplementary Table S3: Mycobacterium sp. DBP42 peptides and protein groups.xIsx: All proteins from MaxQuant.
Supplementary Table S4: Halomonas sp. ATBC28 peptides and protein groups.xlsx: All proteins from MaxQuant.
Supplementary Table S5: Mycobacterium sp. DBP42 proteomic analysis.xlsx: Relative abundances, T-tests and details
of all proteins suggested to be involved in degradation that are mentioned in the text.

Supplementary Table S6: Halomonas sp. ATBC28 proteomic analysis.xIsx: Relative abundances, T-tests and details of
all proteins suggested to be involved in degradation that are mentioned in the text.

Supplementary Table S7: Metabolomic analyses.xlsx: Full results for targeted and untargeted metabolomics.
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Figure S1. Schematic of experimental design used in this study showing the medium used for each set of experiments, the
number of replicates, the analyses that these samples were used for and the figures that these data led to. For the enrichment,
isolation, screening and selection of isolates and characterization of two isolates, six plasticizers were used: dibutyl phthalate
(DBP), bis(2-ethyl hexyl) phthalate (DEHP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), acetyl tributyl citrate
(ATBC) and trioctyl trimellitate (TOTM; chemical structures are shown in Table 1). For the proteomic and metabolomic
characterization, a subset of three plasticizers were chosen to further characterize the mechanisms of plasticizer degradation
by these two microorganisms: DBP and DEHP, two of the most abundantly used PAE plasticizers, both with differing chain
lengths and degrees of branching, and ATBC, a new non-phthalic eco-friendly plasticizer for which no biodegradation pathway
has been described to date.
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Figure S2. Picture of plastics that the inoculum used for this study came from showing a mixture of plastics, e.g. expanded

polystyrene and crisp packet.
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Figure S3. Growth of Mycobacterium sp. DBP42 and Halomonas sp. ATBC28 on a range of different substrates (0.1% w/v in
supplemented Bushnell-Haas mineral media), as well as marine broth, over 72 hours. Measurements were taken every half an
hour. Panels 1 and 2 show biological replicates.
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Figure S4. Growth of Mycobacterium sp. DBP42 (left) and Halomonas sp. ATBC28 (right) with marine broth (top) or marine
broth with 0.1% DBP (w/v; bottom) with variable concentrations of phthalic acid (w/v): 0% (black circles), 0.02% (orange
triangles), 0.1% (green squares; no growth), 0.4% (pink stars; no growth) or 1.6% (blue downwards triangle; no growth). Points
and error bars represent the means and standard deviations, respectively, of three biological replicates.
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Figure S5. Growth of Mycobacterium sp. DBP42 (blue triangles with solid lines) and Halomonas sp. ATBC28 (orange circles with
dashed lines) on a labile substrate (0.1% w/v of glycerol and 0.1% v/v of pyruvate, respectively, as tested in Supplementary Fig.
S3) and six different plasticizers (0.1% v/v), as well as phthalate (0.02% w/v; Supplementary Fig. S4). Points and error bars
represent the means and standard deviations, respectively, of three biological replicates. Curves for labile substrates, phthalic

acid, DBP, DEHP and ATBC are as shown in Fig. 1.
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Figure S6. Catabolic pathways informed by genomic, proteomic and metabolomic analyses for DBP, DEHP and ATBC degradation
by Mycobacterium sp. DBP42. Initial plasticizer substrates are shown in grey boxes, while degradation intermediates that were
detected by metabolomics are shown with yellow or blue boxes if they were identified in the DBP or ATBC metabolomes,
respectively. Dashed black arrows show reactions inferred by metabolomics, although no enzyme catalyzing the reaction could
be confidently assigned by proteogenomics. Dashed grey arrows indicate that this substrate enters a known pathway (not
detailed here). Solid arrows indicate reactions catalyzed by enzymes that were detected either in the genomes (dark grey) or
proteomics (yellow). Enzyme ID number and fold change in each treatment (DBP, DEHP and ATBC vs control) is shown for each
reaction. All enzymes shown here were detected in the cellular proteome, aside from the isocitrate lyase 5755 (name shown in
red), which was detected in the exo-proteome. Dashed lines in chemical structures indicate uncertainty on composition.
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Figure S7. Catabolic pathways informed by genomic, proteomic and metabolomic analyses for DBP, DEHP and ATBC degradation
by Halomonas sp. ATBC28. Initial plasticizer substrates are shown in grey boxes, while degradation intermediates that were
detected by metabolomics are shown with yellow or blue boxes if they were identified in the DBP or ATBC metabolomes,
respectively. Dashed black arrows show reactions inferred by metabolomics, although no enzyme catalyzing the reaction could
be confidently assigned by proteogenomics. Dashed grey arrows indicate that this substrate enters a known pathway (not
detailed here). Solid arrows indicate reactions catalyzed by enzymes that were detected either in the genomes (dark grey) or
proteomics (yellow). Enzyme ID number and fold change in each treatment (DBP, DEHP and ATBC vs control) is shown for each
reaction for which this enzyme was found in all three biological replicates of at least one treatment. Enzymes with names shown
in black were detected in the cellular proteome while those in red were detected in the exo-proteome. Dashed lines in chemical
structures indicate uncertainty on composition. * denotes that this step is described in KEGG, but no enzyme capable of this
reaction is currently known, while ** denotes that this step can be carried out by a Cytochrome P450 that was not detected in

the genome of Halomonas sp. ATBC28.
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Figure S8. Proteins in Halomonas sp. ATBC28 that may be involved in the solubilization, hydrolysis or transport into the cell of
plasticizers and phthalate. Black outlines around the boxes indicate that this protein was detected in the exo-proteome. Boxes

show the genome position of the enzyme used for that step alongside the fold-change (when compared with the positive
control, Halomonas sp. ATBC28 grown with pyruvate) and the percentage relative abundance within the proteomes.
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