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Supplementary Figure 1. Intrinsic (signal-independent) sensor biases decrease mutual information in optimal equilibrium
sensing. We subject two sensors to bivariate Gaussian signals [Eq. (10)] and a signal-independent bias b0 such that the
net bias becomes (h1 + b0, h2 − b0). We then optimise the sensor coupling J to obtain maximum mutual information and
the corresponding noise and output entropies (a-d). We depict the effects of intrinsic biases for four combinations of signal
redundancy I(h1;h2) and sensor reliability β (see panel labels), which are representative of the cases where the optimal sensing
strategy is equilibrium (a,b) and nonequilibrium (c,d) (see also, Fig. 2b).
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Supplementary Figure 2. For highly correlated signals, the nonequilibrium improvement in the low-noise limit does not rely
on the specific Gaussian prior. (a) We assume that two sensors are driven by the same bias field h ≡ h1 = h2. (b) The mutual
information at sensor reliability of β = 3 for four different prior distributions with a zero mean and unit variance, shown in c.
For all priors considered, the optimal nonequilibrium drive t∗ is clearly finite, suggesting that the nonequilibrium enhancement
is robust for most continuous priors. The dependence of the mutual information on J and t remains qualitatively unchanged.
This means the mechanism behind the nonequilibrium enhancement is likely to be identical to the one for a Gaussian prior,
as described in the main text. (d) The maximum mutual information — I0, I∗eq and I∗ — for noninteracting, equilibrium and
nonequilibrium sensors, respectively. The nonequilibrium enhancement is visible in all cases except for the most binary-like
one (far right).
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Supplementary Figure 3. The ladder structure in Fig. 5e corresponds to the anticorrelated sensor states +− and −+. The
joint (left) and conditional (right) probability distributions of the sensor states (top) and the readout population (bottom).
Here we use, as in Fig. 5e, J=−2, t=7, δ=−0.6, ∆=1 and r0 =10.
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Supplementary Figure 4. (a) Conditional probabilities of sensor state and readout given a perfectly correlated signal (see,
(b) for legend) at J =−2 and β = 4 for t= 3, 0,−3 (top-to-bottom) and δ=−0.3, 0, 0.3 (left-to-right). A strong signal |h|�1
favours the correlated sensor states (++ and −−) and the extreme readout states (r= r0 and r= 0), a finite nonequilibrium
drive t 6= 0 lifts the degeneracy between the sensor states −+ and +− (cf. Fig. 4), and δ 6= 0 differentiates the intermediate
readout states (0<r<r0). The ladder structure in Fig. 5e requires both t and δ to be non-zero. Here we use ∆=1 and r0 =10.
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