Supplementary Information

Structural basis for substrate specificity and catalysis of a1,6-

fucosyltransferase

Ana García-García, Laura Ceballos-Laita, et al.

Supplementary Figure 1. Activity of recombinant *Hs*FUT8 on 5-aminopentyl G0. MALDI-TOF spectrum showing the introduction of fucose on 5-aminopentyl glycan G0 by the action of recombinant *Hs*FUT8 (top). Control experiments lacking recombinant *Hs*FUT8 (middle) and without GDP-Fuc (bottom) showing the presence of unaltered 5-aminopentyl G0. These experiments were performed in duplicate.

Supplementary Figure 2. Sequence of *Hs*FUT8 depicting the different domains. Secondary structure elements are shown above the sequence (α -helices and β -strands). The secondary structure elements are colored in grey, red and orange for the coiled-coil domain, the catalytic domain and the SH3 domain, respectively. The α 3 that connects the coiled-coil domain and the catalytic domain is colored in blue. The loop β 10- β 11 (indicated as a rectangle) that connects the catalytic domain with the SH3 domain is colored in aquamarine. The C-terminal loop (indicated as a rectangle) and the β 16 are colored in black. Residues interacting by hydrogen bonds with the ligands are highlighted in green while residues interacting by hydrophobic interactions with G0 and GDP are highlighted in yellow.

Supplementary Figure 3. Superposition of the *Hs***FUT8-GDP-G0 and** *Hs***FUT8-GDP-Fuc-G0 structures.** GDP-Fuc, **G0** and glycerol are shown as orange, green and blue carbon atoms, respectively. *Hs*FUT8-GDP-Fuc-**G0** complex was derived from molecular mechanics calculations. GDP-Fuc coordinates were obtained from the crystal structure of *Ce*PoFUT1 complexed to GDP-Fuc (PDB entry: 3ZY6) and the resulting complex was further minimized as described in Methods. Note that GDP from the *Hs*FUT8-GDP-**G0** complex is not shown for illustration purposes. Only the conserved hydrogen bonds conserved between fucose/glycerol and Arg365 are shown. Hydrogen bond interactions are shown as dotted black and aquamarine lines for GDP-Fuc and Arg365, and glycerol and Arg365, respectively.

.	GL46	GlcNAcβ1-2(GlcNAcβ1-4)Manα-sp	
	GL81	GlcNAcβ1-4GlcNAcβ-sp	
	GL89	Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ-sp	SialylLeX
	GL91	Galβ1-4(Fucα1-3)GlcNAcβ-sp	LeX
-	GL93	GalNAcβ1-4GlcNAcβ-sp	LDN
	GL94	GalNAcβ1-4(Fucα1-3)GlcNAcβ-sp	
	GL95	GlcNAcβ-sp	
	GL96	GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ-sp	
•	GL97	GalNAcβ1-4Galβ1-4GlcNAcβ-sp	GG3
2	GL98	Gal ^{β1-4} Glc ^{βsp}	lactose
•••	GL99	Manα1-2Manα1-2Manα-sp	
☆	GL100	Xylβ-sp	
•	GL101	Glcβ-sp	
0	GL102	Galβ-sp	
	GL103	Fuca-sp	
<u> </u>	GL104	Gala1-3GalNAca-sp	
0-0	GL105	Gala1-2Galβ-sp	
	GL106	Gala1-3Galβ-sp	
► •	GL107	Fucα1-2Galβ-sp	
	GL108	Fucα1-3GlcNAcβ-sp	
1	GL109	Fucα1-4GlcNAcβ-sp	
	GL110	Galα1-3Galβ1-4Glcβ-sp4	
	GL111	Galα1-3Galβ1-4GlcNAcβ-sp	
	GL112	Fucα1-2Galβ1-3GlcNAcβ-sp	Le ^d (H type 1)
► ~ _	GL113	Fucα1-2Galβ1-3GalNAcα-sp	H (type 3)
► ~	GL114	Fucα1-2Galβ1-4Glcβ-sp	H (type 6)
<u>~</u>	GL115	Galβ1-3(Fucα1-4)GlcNAcβ-sp	Le ^a
	GL116	GalNAca1-3(Fuca1-2)Galβ-sp	A _{tri}
<u> </u>	GL117	Galα1-3(Fucα1-2)Galβ-sp	B _{tri}
	GL118	Neu5Aca2-3Galβ1-4Glcβ-sp	3'SL
	GL119	Neu5Aca2-3Galβ1-4GlcNAcβ-sp	3'SLN
*	GL120	Neu5Acα2-6Galβ1-4GlcNAcβ-sp	6'SL
	GL121	Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ-sp	Le ^b
	GL122	Fucα1-2Galβ1-3(Fucα1-3)GlcNAcβ-sp	Le ^y
+ ~	GL123	Neu5Aca2-3Galβ1-3(Fuca1-4)GlcNAcβ-sp	SialLe ^a
	GL124	GlcNAcβ1-4(Fucα1-6)GlcNAcβ-sp	FucGlcNAc ₂

Supplementary Table 1. Additional glycan structures included on microarrays.

Supplementary Table 2. DNA sequence of the codon optimized construct for expression of *Hs***FUT8.** Note that the nucleotides sequences for the KpnI and XhoI endonucleases are highlighted in red and blue, respectively. The stop codon nucleotides are highlighted in green.

GGTACCCGGATACCAGAAGGCCCTATTGATCAGGGGCCAGCTATAGGAAGA GTACGCGTTTTAGAAGAGCAGCTTGTTAAGGCCAAAGAACAGATTGAAAAT TACAAGAAACAGACCAGAAATGGTCTGGGGAAGGATCATGAAATCCTGAG GAGGAGGATTGAAAATGGAGCTAAAGAGCTCTGGTTTTTCCTACAGAGTGA ATTGAAGAAATTAAAGAACTTAGAAGGAAATGAACTCCAAAGACATGCAG ATGAATTTCTTTTGGATTTAGGACATCATGAAAGGTCTATAATGACGGATCT ATACTACCTCAGTCAGACAGATGGAGCAGGTGATTGGCGGGAAAAAGAGG CCAAAGATCTGACAGAACTGGTTCAGCGGAGAATAACATATCTTCAGAATC CCAAGGACTGCAGCAAAGCCAAAAAGCTGGTGTGTAATATCAACAAAGGCT GTGGCTATGGCTGTCAGCTCCATCATGTGGTCTACTGCTTCATGATTGCATA TGGCACCCAGCGAACACTCATCTTGGAATCTCAGAATTGGCGCTATGCTACT CAAGTGGTCGAGCTTCCCATTGTAGACAGTCTTCATCCCCGTCCTCCATATT TACCCTTGGCTGTACCAGAAGACCTCGCAGATCGACTTGTACGAGTGCATG GTGACCCTGCAGTGTGGTGGGTGTCTCAGTTTGTCAAATACTTGATCCGCCC ACAGCCTTGGCTAGAAAAAGAAATAGAAGAAGCCACCAAGAAGCTTGGCTT CAAACATCCAGTTATTGGAGTCCATGTCAGACGCACAGACAAAGTGGGAAC AGAAGCTGCCTTCCATCCCATTGAAGAGTACATGGTGCATGTTGAAGAACA TTTTCAGCTTCTTGCACGCAGAATGCAAGTGGACAAAAAAGAGTGTATTT GGCCACAGATGACCCTTCTTTATTAAAGGAGGCAAAAACAAAGTACCCCAA TTATGAATTTATTAGTGATAACTCTATTTCCTGGTCAGCTGGACTGCACAAT CGATACACAGAAAATTCACTTCGTGGAGTGATCCTGGATATACATTTTCTCT CTCAGGCAGACTTCCTAGTGTGTACTTTTTCATCCCAGGTCTGTCGAGTTGCT TATGAAATTATGCAAACACTACATCCTGATGCCTCTGCAAACTTCCATTCTT TAGATGACATCTACTATTTTGGGGGGCCAGAATGCCCACAATCAAATTGCCAT TTATGCTCACCAACCCCGAACTGCAGATGAAATTCCCATGGAACCTGGAGA TATCATTGGTGTGGCTGGAAATCATTGGGATGGCTATTCTAAAGGTGTCAAC AGGAAATTGGGAAGGACGGGCCTATATCCCTCCTACAAAGTTCGAGAGAAG ATAGAAACGGTCAAGTACCCCACATATCCTGAGGCTGAGAAATAACTCGAG