SUPPLEMENTARY INFORMATION

Managing Energy Infrastructure to Decarbonize Industrial Parks in China

Guo et al.

This file includes

Supplementary Figures 1-7,

Supplementary Tables 1-21,

Supplementary Notes 1-7,

and Supplementary References.

Supplementary Figures

Supplementary Figure 1. Energy infrastructure capacity of the 1,604 Chinese industrial parks. Source data are provided as a Source Data file.

Supplementary Figure 2. Freshwater consumption by energy infrastructure in the 1,604 Chinese industrial parks. Source data are provided as a Source Data file.

Supplementary Figure 3. SO₂ emission from energy infrastructure in the 1,604 Chinese industrial parks.

Source data are provided as a Source Data file.

Supplementary Figure 4. NO_x emission from energy infrastructure in the 1,604 Chinese industrial parks.

Source data are provided as a Source Data file.

Supplementary Figure 5. Timeline of the baseline, M1-M5, and integrated scenarios.

Supplementary Figure 6. Flow chart of the conversion from fuel input to energy outputs.

Supplementary Figure 7. Energy-water-material nexus based on a life-cycle thinking.

Supplementary Tables

Fuel	Default	Minimum	Maximum	Reference
Coal / coal gangue	0.85	0.8	0.9	General Administration of Quality Supervision,
Natural gas / coal gas	0.92	0.9	0.94	Administration Regulation on Energy Conservation
Diesel	0.91	0.88	0.94	Technology for Boner (15000002-2010).
MSW / biomass	0.725	0.6	0.85	Astrup, T., Møller, J., Fruergaard, T. Incineration and Co-combustion of Waste: Accounting of Greenhouse Gases and Global Warming Contributions. <i>Waste</i> <i>Management & Research.</i> 2009. 27(8), 789-799.
Ratio of mixed coal to total fuel input (in calorific value)	0.1	0	0.2	Ministry of Environmental Protection, 2006. Strengthening the Management of Environmental Impact Assessment of Biomass Power Generation Project. <u>http://law.npc.gov.cn/FLFG/flfgByID.action?txtid=4&f</u> <u>lfgID=230988&showDetailType=QW</u> (Accessed Jan 1, 2019).
Waste heat	0.8	0.75	0.85	Walker, M., Lv, Z., Masanet, E. Industrial Steam Systems and the Energy-Water Nexus. <i>Environmental</i> <i>Science & Technology</i> . 2013. 47(22), 13060-13067.

Supplementary Table 1. Boiler efficiencies of energy infrastructure categorized by fuel

Supplementary Table 2. Heat-to-electric ratios of energy infrastructure categorized by capacity

Unit capacity	Default (median)	Minimum	Maximum
≥600MW	0.022	0.0003	0.744
300≤ <600	0.229	0.0017	1.669
100≤ <300MW	0.469	0.0532	3.480
<100MW	4.321	0.4838	14.964

Note: The heat-to-electric ratios in this table are statistical values based on our database.

		Effective electrical			Annual working			Self-use electricity		
Fuel	Capacity and technology	e	fficiency	.a	h	ours (h/a	a)	1	rate (%))
		Def ^b	Min ^b	Max ^b	Def	Min	Max	Def	Min	Max
	PC ^c , <100	0.286	0.130	0.433	3731	117	8859	10.5	0.1	65.4
	PC, 100≤ <300	0.352	0.296	0.431	4315	535	7226	8.7	3.9	12.8
	PC, 300≤ <600	0.378	0.334	0.442	4754	2045	8352	6.1	1.8	11.7
	PC, ≥600	0.399	0.346	0.460	4795	1237	7323	5.1	1.5	11.2
Coal	EC ^c , <100	0.368	0.121	0.793	4118	140	9875	8.8	0.1	46.4
	EC, 100≤<300	0.380	0.271	0.585	5057	1223	9111	8.0	1.3	21.7
	EC, 300≤ <600	0.388	0.253	0.532				6.1	1.4	16.1
	EC, ≥600	0.403	0.375	0.434	5149	3556	7128	4.9	2.7	7.6
	BP ^c	0.494	0.228	0.884	4414	355	8760	7.6	1.6	33.4
National and	NGCC ^c	0.481	0.302	0.690	3049	232	7633	3.4	0.8	35.5
Natural gas	PC/EC	0.436	0.352	0.654				4.4	0.5	7.7
	CGCC ^c	0.371	0.308	0.436	5491	2347	7329	8.2	6.2	10.5
Coal gas	PC	0.386	0.162	0.621	4737	416	9029	11.5	1.1	35.5
	EC	0.318	0.202	0.414				12.6	7.7	19.7
Coal gas Coal gangue	PC	0.307	0.218	0.398	4185	189	8765	9.6	5.1	14.7
Coal gangue	EC	0.313	0.186	0.385	4977	584	7786	11.3	0.8	22.3
Discul	PC	0.275	0.104	0.377	2433	727	6044	14.9	3.4	33.2
Diesei	EC	0.355	0.228	0.459	3058	1441	4661	7.5	1.6	13.2
MONU	PC	0.231	0.137	0.378	5518	858	8766	16.6	5	34.4
MSW	EC	0.344	0.156	0.679	5658	610	9223	13.9	4.4	29.3
	PC	0.272	0.216	0.354	5992	77	8478	8.1	0.7	19.5
Biomass	EC	0.290	0.201	0.572	5702	272	9125	10.6	4	31.6
	BP	0.541	0.369	0.698	3645	1197	5033	11.1	4.9	21.7
	EC	0.335	0.271	0.383	6422	4846	9070	6.0	2.7	7.9
Sludage	BP	0.467	0.414	0.521	2753	2275	3230	5.5	3.5	7.4
	PC	0.355	0.207	0.621	4970	416	9029	8.2	0.6	76
Waste heat	EC	0.342	0.235	0.516	4118	565	8647	11.6	4	23
	BP	0.595	0.396	0.793	5147	2056	9029	4.3	3.6	4.9

Supplementary Table 3. Effective electrical efficiencies, annual working hours, and self-use electricity rates of energy infrastructure categorized by fuel, capacity, and technology

Note:

- a) Effective electrical efficiency (EEE) is a more useful than overall energy efficiency for fuel saving evaluation. According to combined heat and power (CHP) guidelines³, *EEE* is calculated assuming the heat output from CHP systems would otherwise be generated by industrial boilers driven by the same fuel as CHP plants.
- b) Def = default (taking average value), Min = minimum, and Max = maximum.

c) PC = pure condensing, EC = extraction condensing, BP = back pressure, NGCC = natural gas combined cycle, and CGCC = coal gas combined cycle.

Supplementary Table 4. Uncertainty analysis of reduction rates in GHG emission, freshwater consumption, SO2 emission, and NOx emission

Valuation	Scenario	GHG	Water	SO ₂	NO _x
	M1	-0.68%	0.27%	-2.52%	-1.64%
	M2	-2.71%	2.49%	-6.55%	0.84%
Original results	M3	-4.99%	-30.94%	-8.45%	-5.92%
for GHG mitigation rates	M4	-2.60%	-12.95%	-18.44%	-8.17%
	M5	-2.61%	-3.84%	-6.72%	-3.24%
	Integrated	-10.15%	-37.93%	-26.09%	-10.63%
	M1	-0.44%	0.26%	-2.00%	-1.13%
	M2	-1.15%	2.77%	-3.22%	0.62%
Minimum results	M3	-4.44%	-31.82%	-8.68%	-5.36%
for GHG mitigation rates	M4	-1.38%	-13.71%	-14.38%	-4.27%
	M5	-2.63%	-4.08%	-8.02%	-3.32%
	Integrated	-8.04%	-39.20%	-23.76%	-9.68%
	M1	-1.03%	0.25%	-2.93%	-2.26%
	M2	-5.62%	1.45%	-11.00%	0.67%
Maximum results	M3	-7.06%	-27.28%	-9.73%	-8.26%
for GHG mitigation rates	M4	-5.77%	-11.11%	-25.48%	-15.18%
	M5	-2.42%	-3.22%	-4.61%	-2.90%
	Integrated	-15.93%	-33.65%	-30.59%	-13.77%

Variable/parameter	Definition
Num_i	Number of units belonging to the i th plant, $i=12,127$
Cap_{ij}	Capacity of the j th unit of the i th plant (MW), $j=1Num_i$
EO_i	Annual electricity output of the i th plant (GJ)
HO _i	Annual heat output of the i th plant (GJ)
SFB _i	Steam from boiler of the i th plant (GJ)
FFF	Fuel for electricity of the i th plant (GJ) based on a low calorific value (see
$\Gamma \Gamma L_{i}$	Supplementary Table 6)
FFU	Fuel for heat of the ith plant (GJ) based on a low calorific value (see Supplementary
ΓΓΠί	Table 6)
EE_i	Energy efficiency of the i th plant
EEE_i	Effective electrical efficiency of the i th plant
BE_i	Boiler efficiency of the i th plant
$(H/E)_i$	Heat-to-electric ratio of the i th plant
WorkTime _i	Annual working time of the i th plant (hours)
SelfUseRate _i	Self-use electricity rate of the i th plant
RemLif e _{ij}	Remaining serviceable lifetime of the j th unit of the i th plant (a)
Fuel _{ij}	Fuel category of the j th unit of the i th plant
$TurTech_{ij}$	Turbine technology of the j th unit of the i th plant
CoolTech _{ij}	Cooling technology of the j th unit of the i th plant
$Prov_i$	Province the i th plant is located in
GHGFac	GHG emission factor (tCO ₂ eq./GJ, see Supplementary Table 7)
WatEacElo	Freshwater consumption factor for electricity generation (m ³ /GJ, see Supplementary
W ULF ULLIE	Table 8)
WatFacHeat	Freshwater consumption factor for heat generation (m ³ /GJ, see Supplementary Table 9)
SO2Fac	SO ₂ emission factor (t/GJ, see Supplementary Table 10)
NOxFac	NO _x emission factor (t/GJ, see Supplementary Table 10)
MixRate	Mixed rate of coal to total fuel input into incinerators based on a low calorific value
GHGEmi	GHG emissions of all units (t CO ₂ eq.)
WaterCon	Freshwater consumption of all the units (m ³)
SO2Emi	SO ₂ emissions of all units (t)
NOxEmi	NO _x emissions of all units (t)
GHGMit	GHG emission mitigation of all units (t CO ₂ eq.)
WaterSav	Freshwater consumption saving of all the units (m ³)
SO2Red	SO ₂ emission reductions of all units (t)
NOxRed	NO _x emission reductions of all units (t)
BA/IN	Baseline or integrated scenario (superscript of relevant variables)
D/I	Direct or indirect environmental impact (subscript of relevant variables)

Supplementary Table 5. Key variables and parameters in the vintage stock model

Category	Unit	Lower calorific value based on standard coal
		equivalent
Coal		0.7143
Diesel		1.4571
Coal gangue	kgce/kg	0.2857
Municipal solid waste/sludge		0.2714
Biomass	Unit Lower calorific value based on steequivalent equivalent 0.7143 0.7143 1.4571 kgce/kg 0.2857 0.2714 0.5714 0.5 1.33 kgce/m ³ 0.5714 0.7143 0.714	0.5
Natural gas		1.33
Coke oven gas	lago /m ³	0.5714
Blast furnace gas	kgce/m	0.1286
Biogas		0.714

Supplementary Table 6. Lower calorific value of each energy category

Note: kgce is short for *kg standard coal equivalent*. 1 kgce=29.27 MJ. The data on lower calorific value is sourced from National Guideline for Energy Consumption Accounting of China (GB/T2589-2008), and 2017 Guideline for Energy Consumption Accounting of Shanghai City (<u>http://www.stats-sh.gov.cn/html/tjfw/201801/1001456.html</u>).

Fuel	tCO ₂ /GJ	gCH ₄ /GJ	g N ₂ O/GJ	tCO2 eq./GJ
Coal	0.0948	1.0000	1.5000	0.0952
NG	0.0555	1.0000	0.1000	0.0556
Diesel	0.0726	3.0002	0.6000	0.0728
MSW/sludge	0.0330	-	-	0.0330
Coal gangue	0.0946	-	-	0.0946
Biomass/biogas	-	30.0376	4.0048	0.0019
Coke oven gas	0.0493	1.0001	0.1000	0.0494
Blast furnace gas	0.2599	1.0012	0.1001	0.2600

Supplementary Table 7. GHG emission factors of each energy category

Note: All the values in this table refers to mineral emission, excluding biogenic emission. CO₂, CH₄, and N₂O emission factors are cited from GHG Protocol Tool for Energy Consumption in China (V2.1) issued by World Resources Institute. CO₂, CH₄, and N₂O are converted into CO₂ equivalent according to 100-year global warming potential with the ratios of 1, 28, and 265, issued by IPCC Working Group I in *Climate Change 2013: The Physical Science Basis*.

Catagory	Freshwater	r consumption factor (m	³ /MWh)
Category	Once through	Recirculating	Dry
Coal-fired, 1000 MW	0.228 ^a	1.688 ^b	0.31ª
Coal-fired, 600 MW	0.28 ^a	1.65 ^b	0.334ª
Coal-fired, 300 MW	0.343 ^a	1.89 ^b	0.417 ^a
Coal-fired, 100~225 MW	0.556 ^a	2.16 ^b	0.59ª
Coal-fired, <100 MW	0.556 ^b	2.47 ^b	0.59 ^a
Natural gas-fired, steam cycle	-	2.76 ^c	-
Natural gas-fired, combined cycle	0.379 ^c	0.795 ^c	-
Coal gas-fired, steam cycle	-	3.22 ^b	-
Coal gas-fired, combined cycle	-	1.68 ^b	-
Biomass	-	3.63 ^b	-
Municipal solid waste	-	6.36 ^b	-
Waste heat	-	9.61 ^b	-

Supplementary Table 8. Freshwater consumption factors of electricity generation

Note: Freshwater consumption factors of electricity generation include that for cooling and other processes, e.g., boiler water makeup, slag removal, and flue gas desulfurization. The factors of part units were collected from basic information tables for the thermal power-generating units issued by China Electricity Council (Refs 53-55 in the main text), project reports, and official websites of power plants. The factors of the other units were supplemented by the default values in this table.

Sources:

^aChina Electricity Council. Basic Information Tables for Thermal Power Generating Units (2011). *China Electricity Council: Beijing*. 2012.

^bZhang, C., Zhong, L., Fu, X., Wang, J., Wu, Z. Revealing water stress by the thermal power industry in China based on a high spatial resolution water withdrawal and consumption inventory. *Environmental Science & Technology*. 2016, 50(4), 1642-1652.

^cMeldrum, J., Nettles-Anderson, S., Heath, G., Macknick, J. Life cycle water use for electricity generation: a review and harmonization of literature estimates. *Environmental Research Letters*. 2013, 8, 015031.

Provincial-level	Freshwater consumption	Provincial-level	Freshwater consumption
administrative region	factor (m ³ /GJ)	administrative region	factor (m ³ /GJ)
Beijing	0.0178	Henan	0.0825
Tianjin	0.0646	Hubei	0.0532
Hebei	0.0869	Hunan	0.0390
Shanxi	0.1156	Guangdong	0.0336
Inner Mongolia	0.1496	Guangxi	0.0287
Liaoning	0.1167	Hainan	0.0253
Jilin	0.1112	Chongqing	0.0490
Heilongjiang	0.0589	Sichuan	0.0404
Shanghai	0.0246	Guizhou	0.0517
Jiangsu	0.0756	Yunnan	0.0603
Zhejiang	0.0490	Shaanxi	0.0896
Anhui	0.0850	Gansu	0.1079
Fujian	0.0471	Qinghai	0.0728
Jiangxi	0.0542	Ningxia	0.1239
Shandong	0.1022	Xinjiang	0.1089

Supplementary Table 9. Freshwater consumption factors of heat generation

Source: Zhang, C., Anadon, L. Life Cycle Water Use of Energy Production and Its Environmental Impacts in China. *Environmental Science & Technology*. 2013, 47(24), 14459-14467.

Supplementary	Table 1	0. SO ₂	emission	and NO _x	emission	factors o	f energy	infrastructure	units
---------------	---------	--------------------	----------	---------------------	----------	-----------	----------	----------------	-------

Linit actor com	SO ₂ emission factor		NO _x emission factor	
Unit category	Technology	kg/t	Technology	kg/t
Coal fined >750MW	Limestone-plaster	1.809	Low-nitrogen combustion, flue	2.13
Coal-lifed, ≥750MW			gas denitrification	
	Limestone-plaster	1.790	Low-nitrogen combustion, flue	2.12
Coal-fired,			gas denitrification	
450~749MW	Seawater desulfurization	2.028	Low-nitrogen combustion,	4.25
			SNCR ^b , emitting directly	
	Limestone-plaster	1.443	Low-nitrogen combustion, flue	2.04
			gas denitrification	
Coal-fired,	Seawater desulfurization	1.572	Low-nitrogen combustion,	4.07
250~449MW			SNCR, emitting directly	
	Flue gas CFB ^a desulfurization	1.572		
	CFB boiler, emitting directly	2.361		
	Limestone-plaster	1.290	Low-nitrogen combustion, flue	1.96
			gas denitrification	
Coal-fired,	Seawater desulfurization	1.384	Low-nitrogen combustion,	3.93
150~249MW			SNCR, emitting directly	
	Flue gas CFB desulfurization	3.460		
	CFB boiler, emitting directly	4.153		

Unit astagory	SO ₂ emission factor		NO _x emission factor	
	Technology	kg/t	Technology	kg/t
	Limestone-plaster	1.288	Low-nitrogen combustion, flue	1.92
	Integration of wet dust removal	4,145	Low-nitrogen combustion.	3.84
Coal-fired,	and desulfurization		SNCR, emitting directly	0101
75~149MW	Seawater desulfurization	1.382		
	Flue gas CFB desulfurization	3.452		
	CFB boiler, emitting directly	4.145		
	Limestone-plaster	1.273	Ammonia desulphurization, emitting directly	5.85
	Ammonia desulphurization	0.685	Ammonia desulphurization, low-nitrogen combustion	3.51
~	Integration of wet dust removal	4.104		
Coal-fired, 35~74MW	and desulfurization			
	Flue gas CFB desulfurization	4.104		
	Spray drying / simple wet limestone-plaster	4.104		
	CFB boiler, emitting directly	4.790		
	Integration of wet dust removal	4.142	Ammonia desulphurization,	5.55
Construction Construction 4.790 Integration of wet dust removal and desulfurization 4.142 Ammonia desulphr emitting directly Flue gas CFB desulfurization 4.142 Ammonia desulphr low-nitrogen combust Ammonia desulphurization 0.689 Spray drying / simple wet 4.143	and desulfurization		emitting directly	
	Flue gas CFB desulfurization	4.142	Ammonia desulphurization,	3.33
	low-nitrogen combustion			
Coal-Illed, 20~54101 w	Ammonia desulphurization	0.689		
	Spray drying / simple wet	4.143		
	limestone-plaster			
	CFB boiler, emitting directly	4.840		
	Pulverized coal furnace,	4.039	Pulverized coal furnace,	4.37
	integration of wet dust removal		ammonia desulphurization,	
	and desulfurization		emitting directly	
	Pulverized coal furnace,	0.677	Pulverized coal furnace,	2.62
Coal-fired, 9~19MW	ammonia desulphurization		ammonia desulphurization,	
	CED hailan amitting dimeder	4 709	low-nitrogen combustion	4 20
	CFB boller, emitting directly	4.708	Grate furnace, emitting directly	4.38
	dust removal and desulfurization	2.742	CFB boner, emitting directly	5.05
	Grate furnace integration of wet	2 742	Grate furnace, emitting directly	1 35
	dust removal and desulfurization	2.742	Grate runace, emitting unectry	4.55
	Pulverized coal furnace	4 162	Pulverized coal furnace	5.04
Coal-fired, 75-149MW Integration of wet dust removal and desulfurization 4.145 Low-nitrogen combu SNCR, emitting directly Flue gas CFB desulfurization 1.382	emitting directly	5.01		
	and desulfurization			
	CFB boiler, emitting directly	3.672	CFB boiler, emitting directly	3.63
	CFB boiler, integration of wet	1.102		
	dust removal and desulfurization			

Unit optagory	SO ₂ emission factor	NO _x emission factor		
	Technology	kg/t	Technology	kg/t
Coal gangue-fired	In-furnace desulphurization	2.84	Emitting directly	0.95
Diesel-fired	Emitting directly	4.21	Low-nitrogen combustion	3.41
Municipal solid waste-	Semi-dry absorber	0.526	Low-nitrogen combustion	1.52
incinerated mixed				
with coal				
Biomass	Emitting directly	1.7	Emitting directly	1.02
Unit actoromy	SO ₂ emission factor		NO _x emission factor	
	Technology	NOx emission factor kg/t Technology 2.84 Emitting directly 4.21 Low-nitrogen combustion 0.526 Low-nitrogen combustion 1.7 Emitting directly NOx emission factor g/m ³ Technology 0.0707 Low-nitrogen combustion 0.4 Emitting directly	g/m ³	
Natural gas-fired	Emitting directly	0.0707	Low-nitrogen combustion	1.66
Coal gas-fired	Emitting directly	0.4	Emitting directly	0.86

Note: a) CFB = circulating fluidized bed; b) SNCR = selective non-catalytic reduction. Some emission factors are calculated by parameters in Supplementary Table 11. For the units without available desulfurization technology information, the average SO₂ emission factor of corresponding capacity-level units are valued for them.

Source: Ministry of Environmental Protection of China (Now renamed as Ministry of Ecology and Environment of China). Manual of Industrial Pollution Source Coefficients (Revised in 2010). 2010.

Supplementary Table 11. Volatile content and sulfur content of coal

Capacity level of coal-fired unit	Coal volatile content (%)	Coal sulfur content (%)
≥600MW	26.58	1.19
300MW	26.32	0.926
100-225MW	25.11	0.816

Source:

China Electricity Council. Basic Information Tables for Thermal Power Generating Units at Capacity Level of 100-225 MW, 300 MW and ≥600 MW. 2014. (The values in the table are taking the average of each capacity-level units.)

				Clien	t			Detailed	
Scenario	Measure	Fuel shift	Unit capacity	Energy output	Technology Total retrofitted capacity		Additional requirement	description	
	M1	Coal to NG	≤120 MW	Electricity	PC	36,949 t/h (boiler)	NG consumption quota	Sup. Note 4.1	
	M2	Coal to MSW	3~30 MW	СНР	EC or BP	74,661 t/h (boiler)	MSW consumption quota and unit vintage	Sup. Note 4.2	
Single-	M3	Coal	≤200 MW	Electricity or	PC or EC	98,241 MW (turbine)	-	Sup. Note 4.3	
measure	M4	(unchanged)	<300 MW	CHP	PC, EC or BP	65,242 MW (unit)	Geographic proximity and low energy efficiency	Sup. Note 4.4	
	M5	Coal to NG	≤200 MW	Electricity	PC	14,889 MW (unit)	Geographic proximity	Sup. Note 4.5	
	M1&M3	Coal to NG	≤120 MW	Electricity	PC	12,552 t/h (boiler) + 5,919 MW (turbine)	NG consumption quota		
	M2	Coal to			EC or BP	25,952 t/h (boiler)	MSW consumption quota		
Integrated	M2&M3 MSW		3~30 MW	СНР	EC	44,269 t/h (boiler) + 4,634 MW (turbine)	and unit vintage	Sup. Note 4.6	
	M3	Coal	≤200 MW	Flectricity or	PC or EC	60,352 MW (turbine)	-		
	M4	(unchanged)	<300 MW	CHP	PC, EC or BP	24,780 MW (unit)	Geographic proximity and low energy efficiency		
	M5	Coal to NG	≤200 MW	Electricity	PC	14,779 MW (unit)	Geographic proximity		

Supplementary Table 12. Summary of the GHG mitigation measures and their clients

Note: CHP = Combined heat and power; PC = Pure condensing; EC = Extraction condensing; BP = Back pressure; "&" refers to the combination of coupled measures.

Scenario	Parameter/Variable	Value	Unit
	Coal-based electricity price	0.419 ^a	
All	NG-based electricity price	0.758ª	CNY/kWh
	MSW-based electricity price	0.65 ^b	
M1	Cumulative added NG-based electricity during the remaining	567 792 554	
I VI 1	lifetime of the stocks / Cumulative reduced coal-based electricity	302,783,334	
MO	Cumulative added MSW-based electricity / Cumulative reduced	760 176 060	
IVIZ	coal-based electricity	700,170,909	
M5	Cumulative added NG-based electricity / Cumulative reduced	1 071 055 621	MWh
IVI3	coal-based electricity	1,971,033,021	
Integrated	Cumulative reduced coal-based electricity	3,052,217,916	
	Cumulative added NG-based electricity	2,292,040,946	
	Cumulative added MSW-based electricity	760,176,969	

Supplementary Table 13. Indicators of electricity benefit variation accounting

Source:

a) National Energy Administration of China. Price report on electricity industry in China (2013-

2014). 2015. http://zfxxgk.nea.gov.cn/auto92/201509/t20150902_1959.htm.

b) National Development and Reform Commission of China. Municipal solid waste-based electricity

price. 2012. http://www.ndrc.gov.cn/zcfb/zcfbtz/201204/t20120410_472395.html.

Su	n	olementary	Table	14.	Technology	v structure	of	energy	in	frastructure	in	the	parks
~~~	$\mathbf{P}$	/ childricki j	I GOIO		reennores	, bu accare	· · ·	oners,		II GOUL GOUGIO			partio
					<i>U</i> .			0,					1

Taskaslasy	Capa	acity	Quantity		
Technology	Value (MW)	Share (%)	Value	Share (%)	
Pure condensing (PC)	247,251	48.1	1,471	32.4	
Extraction condensing (EC)	209,945	40.8	2,157	47.5	
Back pressure (BP)	7,364	1.4	475	10.5	
Natural gas combined cycle (NGCC)	40,614	7.9	177	3.9	
Coal gas combined cycle (CGCC)	1,215	0.2	7	0.2	
Integrated gasification combined cycle (IGCC)	265	0.1	1	0.0	
Heat generating only (no turbine)	7,878	1.5	254	5.6	
Total in-use units	514,533	100	4,542	100	

Note: There are 164 units (9,013 MW) retired among all the 4706 units (523,546 MW).

Unit capacity (MW)	Electricity supply efficiency (g standard coal equivalent/kWh)	Electricity supply efficiency (%)
≥1000	287	42.8
600≤ <1000	309	39.8
$300 \le < 600$	305	40.3
$200 \le < 300$	324	37.9
$100 \le < 200$	327	37.6
6≤ <100	355	34.6

Supplementary Table 15. Efficiencies of electricity supply for different capacity-level units for M4

Source: China Electricity Council. Statistical Data of Chinese Electricity Industry (2015). *China Electricity Council: Beijing*. 2016.

Scenario	Parameter/Variable	Value	Unit
	Unit cost of retrofitting coal-fired boilers to NG-fired boilers	176,683ª	CNY/(t/h)
	Unit cost of newly built MSW-driven boilers	798,851 ^b	CNY/(t/h)
All	Unit cost of retrofitting extraction-condensing/pure-condensing	73,000 ^c	CNY/MW
	turbines to back-pressure turbines		
	Unit cost of newly built 350 MW-level coal-fired units	3,281,000 ^d	CNY/MW
	Unit cost of newly built 660 MW-level coal-fired units	2,912,000 ^d	CNY/MW
	Unit cost of newly built 1000 MW-level coal-fired units	2,904,000 ^d	CNY/MW
	Unit cost of newly built 180 MW-level NGCC units	2,874,000 ^d	CNY/MW
	Unit cost of newly built 300 MW-level NGCC units	2,407,000 ^d	CNY/MW
N/1	Added annual NG consumption	445,364,391	GJ
IVI I	Total capacity of coal-fired boilers retrofitted to NG-fired boilers	36,949	t/h
	Added annual MSW consumption	1,027,781,836	GJ
M2	Added annual coal consumption to mix with MSW	114,197,982	GJ
1012	Total capacity of newly built MSW incinerators	74,661	t/h
M2	Total capacity of extraction-condensing and pure-condensing	98,421	MW
M13	turbines retrofitted to back-pressure turbines		
M4	Total capacity of original units to be replaced	65,242	MW
	Total capacity of newly built 350 MW-level coal-fired units	22,820	MW
	Total capacity of newly built 660 MW-level coal-fired units	39,930	MW
	Total capacity of newly built 1000 MW-level coal-fired units	13,060	MW
	Total capacity of original units to be replaced	14,889	MW
M5	Total capacity of newly built 180 MW-level NGCC units	9,780	MW
	Total capacity of newly built 300 MW-level NGCC units	7,200	MW
	Total capacity of coal-fired boilers retrofitted to NG-fired boilers	12,552	t/h
	Total capacity of newly built MSW incinerators	70,220	t/h
	Total capacity of extraction-condensing and pure-condensing	70,905	MW
	turbines retrofitted to back-pressure turbines		
	Total capacity of original units to be replaced by large-capacity	24,780	MW
	coal-fired units		
Integrated	Total capacity of newly built 350 MW-level coal-fired units	7,860	MW
	Total capacity of newly built 660 MW-level coal-fired units	17,580	MW
	Total capacity of newly built 1000 MW-level coal-fired units	4,060	MW
	Total capacity of original units to be replaced by large-capacity	14,779	MW
	NGCC units		
	Total capacity of newly built 180 MW-level NGCC units	8,100	MW
	Total capacity of newly built 300 MW-level NGCC units	8,700	MW

Supplementary Table 16. Indicators of equipment cost accounting

Note:

1 t/h=0.65 MW¹⁶, 1 MWh=3.6 GJ. The national average annual working time for thermal power plants in 2014 was 4,739 hours/a²⁰. The added annual NG consumption in the M1 scenario and the added annual MSW consumption in the M2 scenario were determined first (see Supplementary Note 4); then,

the capacity (t/h) of boilers to be retrofitted or newly built was derived as Added annual fuel consumption (GJ) × Boiler efficiency (BE)  $\div 3.6 \div 4,739 \div 0.65$ . Source:

- a) Tang, G., Yang, Y., Chang, Z. Economic comparison of gas-fired boiler with new coal-fired boiler (in Chinese). *Large Scale Nitrogenous Fertilizer Industry*. 2014, 37(6), 408-412.
- b) Chinese Nonferrous Engineering Design and Research Institute of China. Feasibility report of Huilian combined heat and power project in Wuxi City (in Chinese). 2004. <u>https://wenku.baidu.com/view/ddc48fdbb1717fd5360cba1aa8114431b90d8ee4.html</u>.
- c) Chang, X., Wang, F. Feasibility of retrofitting extraction-condensing turbine to back-pressure turbine (in Chinese). *Chemical Fertilizer Design*. 2014, 52(4), 35-37.
- d) Electric Power Planning and Design Institute of China. Cost reference for thermal power engineering design 2015 (in Chinese). *China Electricity Council: Beijing*. 2016.

Scenario	Parameter/Variable	Value	Unit
	Coal price	1,082ª	
	NG price	1,887 ^b	
	MSW subsidy	368°	
	Diesel price	4,366 ^d	
All	Blast furnace gas price	1,555 ^e	CNY/tce
	Coke oven gas price	1,400 ^e	
	Coal gangue price	210 ^f	
	Biomass price	1,700 ^g	
	Biogas price	1,401 ^h	
	Cumulative added NG consumption during the remaining lifetime	6,359,921,780	
M1	of the stocks		
_	Cumulative reduced coal consumption	6,883,680,044	
MO	Cumulative added MSW consumption	23,341,061,961	
IVI2	Cumulative net reduced coal consumption	19,527,162,948	
	Cumulative reduced coal consumption	17,474,564,123	
	Cumulative reduced NG consumption	175,008,433	
	Cumulative reduced diesel consumption	71,483,490	
M2	Cumulative reduced blast furnace gas consumption	730,707,859	
M13	Cumulative reduced coke oven gas consumption	128,417,935	
	Cumulative reduced coal gangue consumption	1,816,639,137	
	Cumulative reduced biomass consumption	4,968,683,587	
	Cumulative reduced biogas consumption	3,267,532	GJ
M4	Cumulative reduced coal consumption	11,658,912,288	
N/5	Cumulative added NG consumption	14,743,756,761	
MIS	Cumulative reduced coal consumption	20,559,645,693	
	Cumulative reduced coal consumption	57,834,456,424	
	Cumulative added NG consumption	16,789,178,381	
	Cumulative added MSW consumption	21,977,994,492	
	Cumulative reduced diesel consumption	71,483,490	
Integrated	Cumulative reduced blast furnace gas consumption	730,707,859	
	Cumulative reduced coke oven gas consumption	128,417,935	
	Cumulative reduced coal gangue consumption	1,816,639,137	
	Cumulative reduced biomass consumption	757,530,287	
	Cumulative reduced biogas consumption	3,267,532	

### Supplementary Table 17. Indicators of fuel cost variation accounting

Note: 1 tce (tonne of standard coal equivalent) = 29.27 GJ.

Source:

a) Steam prices of heat supply enterprises in Shanghai. <u>http://fgw.sh.gov.cn/gk/cxgk/14449.htm</u>.

b) Industrial natural gas prices in Beijing. <u>http://www.bjpc.gov.cn/zwxx/tztg/201511/t9778184.htm</u>.

- c) Establishing control and accounting platform of municipal solid waste treatment in Beijing. http://law.wkinfo.com.cn/legislation/detail/MTAwMDEzOTAwNjY%3D.
- d) Diesel price. <u>https://zhidao.baidu.com/question/649478163904292685</u>.
- e) Coal gas prices. <u>https://www.zybang.com/question/d574ec65c21c9d45c9f1c7a69484062d.html</u>.
- f) Coal gangue market prices.
   https://detail.1688.com/offer/575093354600.html?spm=a261b.8768596.0.0.3a991b5cBpNV5W.
- g) Biomass market price.

http://p4pdetail.hc360.com/p4pdetail/aladindex.html?confr=8&key=%25C9%25FA%25CE%25E F%25D6%25CA%25BF%25C5%25C1%25A3%25B3%25A7%25BC%25D2&bcid=684688567.

h) Biogas market price. <u>https://zhidao.baidu.com/question/96902446.html</u>.

Itom	Unit material consumption							
Item	Unit	Concrete	Steel	Iron	Aluminum			
Constructing large-capacity coal-fired unit ^a	kg/MW	158,758	50,721	619	419			
Constructing large-capacity NGCC unit ^b	kg/MW	97,749	31,030	408	204			
Retrofitting coal-fired boiler to NG-fired ^c	kg/(t/h)	-	75.5	-	-			
Constructing MSW incinerator ^d	kg/(t/h)	-	1591.8	-	-			
Upgrading extraction-condensing / pure- condensing turbine to back-pressure ^e	kg/MW	-	5052.7	-	-			
condensing turbine to back-pressure ^e	kg/MW	-	5052.7	-	-			

Supplementary Table 18. Material consumption factors for retrofitting or constructing units

Source:

- a) U.S. National Renewable Energy Laboratory. Life Cycle Assessment of Coal-fired Power Production. 1999. <u>https://www.nrel.gov/docs/fy99osti/25119.pdf</u>.
- b) U.S. National Renewable Energy Laboratory. Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation System. 2000. <u>https://digital.library.unt.edu/ark:/67531/metadc724566/?q=life%20cycle%20assessment%20.</u>
- c) Retrofitting coal-fired steam boiler to natural gas-fired steam boiler. https://wenku.baidu.com/view/d4944dda4afe04a1b171de0a.html.
- d) Ao, Y., Cui, W. Installation technology of municipal solid waste incinerator (in Chinese). *Installation*. 2008, 5, 23-25.
- e) Li, F. Retrofitting 3000 kW extraction-condensing units to back-pressure units (in Chinese). *District Heating*. 2015, 6, 85-89.

Scenario	Parameter/Variable	Value	Unit
M1	Total capacity of coal-fired boilers retrofitted to NG-fired boilers	36,949	t/h
M2	Total capacity of newly built MSW incinerators	74,661	t/h
M2	Total capacity of extraction-condensing and pure-condensing	98,241	MW
IVI3	turbines retrofitted to back-pressure turbines		
M4	Total capacity of newly built large-capacity coal-fired units	75,810	MW
M5	Total capacity of newly built large-capacity NGCC units	16,980	MW
	Total capacity of coal-fired boilers retrofitted to NG-fired	12,552	t/h
	Total capacity of newly built MSW incinerators	70,220	t/h
Into onoto d	Total capacity of extraction-condensing and pure-condensing	70,905	MW
Integrated	turbines retrofitted to back-pressure turbines		
	Total capacity of newly built large-capacity coal-fired units	29,500	MW
	Total capacity of newly built large-capacity NGCC units	16,800	MW

Supplementary Table 19. Indicators of material consumption

Supplementary Table 20. Life-cycle factors for the upstream processes of fuels, water, and materials

Upstream process		Life-cycle GHG emission factor		Life-cycle freshwater consumption factor		Life-cycle SO ₂ emission factor		Life-cycle NO _x emission factor	
		Value	Unit	Value	Unit	Value	Unit	Value	Unit
	Coal	0.179	kg/kg	0.349	m ³ /t	2.38E-04	kg/kg	3.62E-04	kg/kg
	Natural gas	0.278	kg/m ³	0.801	kg/m ³	5.30E-04	kg/m ³	3.71E-04	kg/m ³
	Diesel	0.801	kg/kg	7.328	m ³ /t	2.67E-03	kg/kg	1.71E-03	kg/kg
Fuel	Blast furnace gas	0.234	kg/m ³	2.306	kg/m ³	5.63E-04	kg/m ³	5.02E-04	kg/m ³
	Coke oven gas	0.298	kg/m ³	2.527	kg/m ³	8.24E-04	kg/m ³	6.67E-04	kg/m ³
Water	Industrial tap water	0.190	kg/m ³	1.02	m ³ /m ³	5.82E-04	kg/m ³	4.86E-04	kg/m ³
	Concrete	0.147	kg/kg	0.310	m ³ /t	1.20E-04	kg/kg	3.75E-04	kg/kg
Matarial	Steel	2.314	kg/kg	16.55	m ³ /t	5.47E-03	kg/kg	4.60E-03	kg/kg
waterial	Iron	1.819	kg/kg	14.00	m ³ /t	4.67E-03	kg/kg	3.84E-03	kg/kg
	Aluminum	21.66	kg/kg	99.18	m ³ /t	6.84E-02	kg/kg	5.23E-02	kg/kg

Note: The factors are cited from a professional LCA database, Chinese Life Cycle Database (CLCD)²³. The CLCD is a localized database for China, and has been increasingly employed in the studies related to Chinese issues²⁴. The upstream processes include production and transportation/transmission.

Scenario	Parameter/Variable	Value	Unit
M1	Cumulative added NG consumption during the remaining	6,359,921,780	GJ
	lifetime of the stocks		
	Cumulative reduced coal consumption	6,883,680,044	GJ
	Cumulative added freshwater consumption	158,795,607	m ³
	Cumulative added steel consumption	2,788	t
M2	Cumulative net reduced coal consumption	19,527,162,948	GJ
	Cumulative added freshwater consumption	1,917,233,586	m ³
	Cumulative added steel consumption	118,845	t
M3	Cumulative reduced coal consumption	17,474,564,123	GJ
	Cumulative reduced NG consumption	175,008,433	GJ
	Cumulative reduced diesel consumption	71,483,490	GJ
	Cumulative reduced blast furnace gas consumption	730,707,859	GJ
	Cumulative reduced coke oven gas consumption	128,417,935	GJ
	Cumulative reduced freshwater consumption	19,085,748,472	m ³
	Cumulative added steel consumption	496,377	t
M4	Cumulative reduced coal consumption	11,658,912,288	GJ
	Cumulative reduced freshwater consumption	8,184,385,056	m ³
	Cumulative added concrete consumption	12,035,444	t
	Cumulative added steel consumption	3,845,159	t
	Cumulative added iron consumption	46,926	t
	Cumulative added aluminum consumption	31,764	t
M5	Cumulative added NG consumption	14,743,756,761	GJ
	Cumulative reduced coal consumption	20,559,645,693	GJ
	Cumulative reduced freshwater consumption	2,428,920,050	m ³
	Cumulative added concrete consumption	1,659,778	t
	Cumulative added steel consumption	526,889	t
	Cumulative added iron consumption	6,928	t
	Cumulative added aluminum consumption	3,464	t
Integrated	Cumulative reduced coal consumption	57,834,456,424	GJ
	Cumulative added NG consumption	16,789,178,381	GJ
	Cumulative reduced diesel consumption	71,483,490	GJ
	Cumulative reduced blast furnace gas consumption	730,707,859	GJ
	Cumulative reduced coke oven gas consumption	128,417,935	GJ
	Cumulative reduced freshwater consumption	23,283,824,323	m ³
	Cumulative added concrete consumption	6,325,544	t
	Cumulative added steel consumption	2,488,558	t
	Cumulative added iron consumption	25,115	t
	Cumulative added aluminum consumption	15,788	t

Supplementary Table 21. Direct fuel, water and material consumption variations in M1-M5 and integrated scenarios

### Supplementary Notes

### Supplementary Note 1 Scenario timeline

Based on related national guidelines, all the stocks of energy infrastructure in the parks were set to have a 30-year service lifetime¹. M1-M5 were only applicable to their tailored clients, and the stocks appropriate for retrofitting were matched with the most suitable mitigation measure among M1-M5. The measure-unit matchmaking is detailed in Supplementary Note 4. Supplementary Figure 5 shows the timeline of unit lifetime and the effective working period of different measures. In the baseline scenario, all stocks will retire normally, while in the M1-M5 and integrated scenarios, an overnight retrofitting at  $T^0$  was assumed before the stocks retire.  $T^0$  represents the time when each measure begins for the appropriate clients, which was 2015 in this study. Therefore, the effective working period of M1, M2, and M3 was  $[T^0, v_{ij} + 30]$ , while that of M4 and M5 was  $[T^0, T^0 + 30]$ . All the measures were incorporated in the integrated scenario, and "&" refers to the combination of coupled measures. All the variables and parameters of the vintage stock model were defined as Supplementary Table 5, and the parameters were valued as Supplementary Tables 6-11.

### Supplementary Note 2 Energy efficiency assessment of energy infrastructure

The energy efficiency assessment of the in-use energy infrastructure stocks in ~100 Chinese ecoindustrial parks can be found in previous work². In this study, we used a similar method to assess the efficiencies of all the in-use energy infrastructure stocks in the 1,604 parks. The method is presented as follows.

Energy infrastructure basically generates electricity, heat or both. There were 2,127 energy infrastructure plants in our database. The plants generally included several units, and plant-level technical data were available. Considering the working mechanism of the combined heat and power (CHP) system (see Supplementary Figure 6), we used the steam from boiler (*SFB*) metric to incorporate the steam consumed for both electricity generation and industrial processes. The *SFB* refers to the steam that is generated from boilers and then passes into turbines. The turbines allocate the *SFB* energy to generate electricity and heat, which fluctuates with the steam loading of users. Thus, the energy efficiency (*EE*) can be derived by dividing the total fuel input with the total energy output, as

shown in equation 1. The electricity output (*EO*) and heat output (*HO*) were calculated by equations 2 and 3, respectively.

For further assessing the performance of energy infrastructure, determining the effective electrical efficiency (*EEE*) is more useful than measuring the overall *EE* for fuel-saving evaluations. According to CHP guidelines³, the *EEE* is calculated assuming that the *HO* from CHP systems would otherwise be generated by industrial boilers driven by the same fuel. Then, the total fuel input can be divided into the fuel for *EO* and the fuel for *HO*; see equations 4 and 5, respectively. For CHP plants, equation 1 can be transformed by dividing the numerator and denominator by the *EO*, as in equation 6. For electricity-generating plants, the *HO* and fuel for heat (*FFH*) are both zero, so *EE* = *EEE*. For heat-generating plants, the *EO* and fuel for electricity (*FFE*) are zero, and the *HO* is equal to *SFB* value, so EE=boiler efficiency (BE). Thus, the *EE* of energy infrastructure can be summarized, as shown in equation 6. For some data-unavailable units, their *EEE*, *BE*, and heat-to-electric ratio (*H/E*) take the default values of data-available units in our database (see Supplementary Tables 1-3).

$$Energy \ Efficiency \ (EE) = \frac{Electricity \ Output \ (EO) + Heat \ Output \ (HO)}{Fuel \ for \ Electricity \ (FFE) + Fuel \ for \ Heat \ (FFH)}$$
(1)

$$EO_i = \sum_j (Cap_{ij} \times WorkTime_i \times (1-SelfUseRate_j))$$
⁽²⁾

$$HO_{i} = \sum_{j} (Cap_{ij} \times WorkTime_{i} \times (H/E)_{i})$$
(3)

$$BE_i = SFB_i / (FFE_i + FFH_i) = HO_i / FFH_i$$
(4)

$$EEE_i = EO_i / FFE_i \tag{5}$$

$$EE_{i} = \begin{cases} \frac{1 + (H/E)_{i}}{1/EEE_{i} + (H/E)_{i}/BE_{i}} & CHP \ plant\\ EEE_{i} & electricity-generating \ plant\\ BE_{i} & heat-generating \ plant \end{cases}$$
(6)

# Supplementary Note 3 Direct environmental impact accounting in 2014 and the baseline scenario

In 2014, the GHG emissions, freshwater consumption, SO₂ emissions, and NO_x emissions of all the energy infrastructure stocks in the 1,604 parks were accounted by equations 7-10. The national GHG emissions, national industrial freshwater consumption, national SO₂ emissions and national NO_x emissions were 13.12 Gt CO₂ eq., 74.11 Gm³, 2.35 Mt, and 3.07 Mt, respectively^{4, 5, 6}. Thus, the

percentages of the stocks to the whole country were then calculated. The GHG emissions considered in this study included CO₂, CH₄, and N₂O, which were converted to CO₂ equivalent according to the 100-year global warming potential (see Supplementary Table 7).

$$GHGEmi^{2014} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} ((EO_{ij} + HO_{ij}) \div EE_i^{BA} \times GHGFac(Fuel_{ij}))$$

$$WaterCon^{2014} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} (EO_{ij} / (1 - SelfUseRate_i) \times WatFacEle(CoolTech_{ij}, Fuel_{ij}, Cap_{ij})$$

$$(7)$$

$$+HO_{ij} \times WatFacHeat(Prov_i)) \tag{8}$$

$$SO2Emi^{2014} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} \left( (EO_{ij} + HO_{ij}) \div EE_i^{BA} \times SO2Fac(Fuel_{ij}) \right)$$

$$\tag{9}$$

$$NOxEmi^{2014} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} \left( (EO_{ij} + HO_{ij}) \div EE_i^{BA} \times NOxFac(Fuel_{ij}) \right)$$
(10)

In the baseline scenario, the energy infrastructure stocks work until they retire normally, and the technical attributes of the stocks (i.e., fuel and technology) during their remaining lifetime period  $[T^0, v_{ij}+30]$  remain the same as those in 2014. All the units had data on individual capacity, fuel type, turbine technology, cooling technology, and vintage, but unit-level operational data, such as annual working time and energy efficiency, were unavailable for some units. Thus, plant-level operational data were used for the units belonging to each plant. Thus, the environmental impacts of the stocks during their remaining lifetimes were accounted in equations 11-14.

$$GHGEmi^{BA} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} ((EO_{ij} + HO_{ij}) \div EE_i^{BA} \times RemLife_{ij} \times GHGFac(Fuel_{ij}))$$
(11)

$$WaterCon^{BA} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} (EO_{ij} / (1 - SelfUseRate_i) \times WatFacEle (CoolTech_{ij}, Fuel_{ij}, Cap_{ij}) + HO_{ij} \times WatFacHeat(Prov_i)) \times RemLife_{ij})$$
(12)

$$SO2Emi^{BA} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} \left( (EO_{ij} + HO_{ij}) \div EE_i^{BA} \times RemLife_{ij} \times SO2Fac \left( Fuel_{ij}, Cap_{ij} \right) \right)$$
(13)

$$NOxEmi^{BA} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} ((EO_{ij} + HO_{ij}) \div EE_i^{BA} \times RemLife_{ij} \times NOxFac \left(Fuel_{ij}, Cap_{ij}\right))$$
(14)

# Supplementary Note 4 Direct environmental benefits in the M1-M5 and integrated scenarios

Measure-unit matchmaking considers the attributes of units (such as capacity, fuel, technology, and efficiency) and additional requirements (such as vintage, geographic proximity, and fuel consumption

quota). The GHG mitigation measures and their clients are summarized in Supplementary Table 12, and detailed descriptions are presented as follows.

### M1 scenario: retrofitting coal-fired boilers to natural gas-fired boilers

The energy infrastructure stocks in the parks are heavily dependent on coal, as 87% of the total capacity is coal-fired units. Natural gas (NG) is a strategic energy option for China and should be optimally used under limited quotas. Large-capacity (300 MW or more) coal-fired units are highly efficient⁷, and have been retrofitted to ultralow emission units that can meet the emission standard of NG-fired units after intensified dust removal, desulfurization, and denitrification⁸. Additionally, NG-based electricity has a higher feed-in tariff than coal-based electricity⁹ (see Supplementary Table 13), which will lead to more revenue from selling electricity. Thus, in the M1 scenario, coal-fired electricity units with a capacity of no more than 120 MW are retrofitted from coal-fired boilers to NG-fired boilers. The new boilers will generate the same quantity of steam as the original boilers.

The added NG consumption in the M1 scenario will be 11.4 Gm³ per year. The NG consumption for electricity and heat generation in China increased from 21.1 Gm³ in 2010 to 37.4 Gm³ in 2015^{10, 11}. The effective period of M1 is averagely from 2015-2029 (M1 clients have an average remaining lifetime of 15 years), and therefore, it is reasonable that the added annual NG associated with M1 should not exceed the growth from 2011-2015 (16 Gm³). In addition, water consumption and air pollutant emissions will also change along with the retrofit. Such a carbon-water-pollutant nexus should be considered. The GHG mitigation potentials, freshwater savings, and SO₂ and NO_x emission reductions were quantified in equations 15-18. "PC" refers to a unit having a pure-condensing turbine, meaning that the energy infrastructure is an electricity-generating plant.

$$GHGMit_{D}^{MI} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (GHGEmi_{ij}^{BA} \times (1 - \frac{BE_{ij}}{BE^{NG}} \times \frac{GHGFac(NG)}{GHGFac(Coal)})|_{Fuel_{ij}} = Coal and Cap_{ij} \le 120 MW and TurTech_{ij} = PC$$

$$WatSav_{D}^{MI} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (EO_{ij}/(1 - SelfUseRate_{i}) \times RemLife_{ij} \times (WatFacEle(CoolTech_{ij}, Coal, Cap_{ij}))$$

$$-WatFacEle(CoolTech_{ij}, NG))|_{Fuel_{ij}} = Coal and Cap_{ij} \le 120 MW and TurTech_{ij} = PC$$

$$SO2Red_{D}^{MI} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (SO2Emi_{ij}^{BA} - (EO_{ij} + HO_{ij}) \div EE_{i}^{BA} \times RemLife_{ij} \times \frac{BE_{ij}}{BE^{NG}}$$

$$(15)$$

$$\times SO2Fac(NG))|_{Fuel_{ij}=Coal and Cap_{ij} \le 120 MW and TurTech_{ij}=PC}$$

$$NOxRed_D^{M1} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} (NOxEmi_{ij}^{BA} - (EO_{ij} + HO_{ij}) \div EE_i^{BA} \times RemLife_{ij} \times \frac{BE_{ij}}{BE^{NG}}$$

$$\times NOxFac(NG))|_{Fuel_{ij}=Coal and Cap_{ij} \le 120 MW and TurTech_{ij}=PC}$$
(17)
(17)

### M2 scenario: replacing coal-fired boilers with MSW incinerators

Municipal solid waste (MSW) is mostly treated by landfilling in China, which leads to land scarcity and heavy pollution¹². As a result, MSW incineration (MSWI) has been promoted by the Chinese government in the 13th Five-year Plan¹³. Moreover, MSWI is widely practiced in Chinese industrial parks with a total capacity of 2.4 GW, accounting for 55% of the total MSWI capacity in China¹⁴. A previous study showed that MSWI facilities have an individual capacity of 3~30 MW, and that improved environmental performance can be achieved by using MSWI units to generate both electricity and heat¹⁴. Besides, the lifetime of MSWI facilities is at least 20 years according to national design guidelines¹⁵. Thus, in the M2 scenario, MSW incinerators are used to partly replace the boilers of coal-fired CHP units.

The MSWI capacity in 2014 was 4.3 GW in China, and the national target in 2020 is 7.5 GW¹³. Along with this annual growth rate, the MSWI capacity in 2030 will reach 18.9 GW. We assume that the ratio of MSWI capacity in the industrial parks to that of the whole country will remain at approximately 50%, and therefore, the in-use MSWI facilities in the parks by 2030 will be 9.4 GW in China. Thus, the added MSWI capacity will be approximately 7 GW from 2015-2030, which is the total capacity of the retrofitted coal-fired CHP units in the M2 scenario. Therefore, the client units of M2 were determined by the following steps. (1) Coal-fired CHP units with a capacity of 3 ~ 30 MW and a remaining lifetime of 20 years or longer were defined as the units to be retrofitted. (2) Then, the GHG emission mitigation potentials of the units were calculated using equation 19. The units to be retrofitted were ranked from largest to smallest by GHG mitigation potential per MW. (3) The preferential units in the list with an aggregated capacity of 7 GW were identified as the M2 clients, and their boilers were targeted to be replaced by MSW incinerators. Generally, MSW needs to be mixed with coal for stable combustion, and the mix rate of coal to the total fuel input is referred to Supplementary Table 1. Thus, the environmental benefits of M2 are quantified, as calculated by equations 19-22.

$$GHGMit_{D}^{M2} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (GHGEmi_{ij}^{BA} \times (1 - \frac{BE_{ij}}{BE^{MSW}} \times \frac{(1 - MixRate) \times GHGFac(MSW) + MixRate \times GHGFac(Coal)}{GHGFac(Coal)})|_{M2 \ client}$$
(19)  

$$WatSav_{D}^{M2} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (EO_{ij}/(1 - SelfUseRate_{i}) \times RemLife_{ij} \times (WatFacEle(CoolTech_{ij}, Coal, Cap_{ij}) - WatFacEle(CoolTech_{ij}, MSW))|_{M2 \ client}$$
(20)  

$$SO2Red_{D}^{M2} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (SO2Emi_{ij}^{BS} - (EO_{ij} + HO_{ij}) \div EE_{i}^{BA} \times RemLife_{ij} \times \frac{BE_{ij}}{BE^{MSW}} \times SO2Fac(MSW))|_{M2 \ client}$$
(21)  

$$NOxRed_{D}^{M2} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (NOxEmi_{ij}^{BS} - (EO_{ij} + HO_{ij}) \div EE_{i}^{BA} \times RemLife_{ij} \times \frac{BE_{ij}}{BE^{MSW}} \times NOxFac(NG))|_{M2 \ client}$$
(22)

## M3 scenario: retrofitting extraction-condensing or pure-condensing turbines to back-pressure turbines

The M3 scenario is related to CHP technology upgrades. Recent national energy strategies have requested that extraction-condensing or pure-condensing units with a capacity of 200 MW or less should be upgraded to back-pressure units by retrofitting their turbines⁷. Back-pressure units work under the principle of preferentially generating heat, while electricity generation is supplementary. These units generally have a higher energy efficiency than other CHP units³. Among all the stocks, extraction-condensing and pure-condensing units accounted for 48% and 41% of the total capacity, respectively; back-pressure units only take a share of 1.4% by 2014 (see Supplementary Table 14). The average *EEE* of back-pressure units is 12.4% and 19.2% higher than that of extraction-condensing units and pure-condensing units (200 MW or smaller), respectively. Efficiency improvements through turbine retrofit ( $\Delta EEE$ ) were set. Then, the environmental benefits of M3 were quantified by equations 23-26. "EC" refers to an extraction-condensing unit, and "PC" refers to a pure-condensing unit.

$$GHGMit_{D}^{M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (GHGEmi_{ij}^{BA} \times (1-EE_{ij})$$

$$\div \frac{1+(H/E)_{i}}{1/(EEE_{ij} + \Delta EEE_{ij}) + (H/E)_{i}/BE_{ij}})|_{(TurTech_{ij} = EC \text{ or } PC) \text{ and } Cap_{ij} \leq 200MW}$$

$$WatSav_{D}^{M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (EO_{ij}/(1-SelfUseRate_{i}) \times RemLife_{ij} \times (WatFacEle(CoolTech_{ij}, Fuel_{ij}, Cap_{ij}))$$

$$WatSav_{D}^{M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (EO_{ij}/(1-SelfUseRate_{i}) \times RemLife_{ij} \times (WatFacEle(CoolTech_{ij}, Fuel_{ij}, Cap_{ij}))$$

$$-WatFacEle\left(CoolTech^{M3}, Fuel_{ij}, Cap_{ij}\right)\right|_{(TurTech_{ij}=EC \text{ or } PC) \text{ and } Cap_{ij} \le 200MW}$$

$$SO2Red_D^{M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} (SO2Emi_{ij}^{BA} \times (1-EE_{ij}))$$

$$\frac{1+(H/E)_i}{2} = \sum_{i=1}^{1+(H/E)_i} \sum_{j=1}^{Num_i} (SO2Emi_{ij}^{BA} \times (1-EE_{ij}))$$

$$(25)$$

$$\frac{1}{(EEE_{ij} + \Delta EEE_{ij}) + (H/E)_{i}/BE_{ij}} \int \int (TurTech_{ij} = EC \text{ or } PC) \text{ and } Cap_{ij} \leq 200MW$$

$$NO_{V} \mathbf{P} = M^{3} \sum_{i} \sum_{j=1}^{Num_{i}} (NO_{V} \mathbf{F} = i \frac{BA}{A} \times (1 - FE)$$

$$(25)$$

$$NOxRed_D^{IIII} = \sum_{i=1}^{2} \sum_{j=1}^{2} (NOxEmt_{ij}^{IIII} \times (I-EE_{ij})) + (H/E)_i \times (I-EE_{ij})$$

$$+ \frac{1 + (H/E)_i}{1/(EEE_{ij} + \Delta EEE_{ij}) + (H/E)_i / BE_{ij}}) |_{(TurTech_{ij} = EC \text{ or } PC) \text{ and } Cap_{ij} \le 200MW}$$

$$(26)$$

### M4 scenario: replacing small-capacity coal-fired units with large-capacity coal-fired units

Among all the energy infrastructure stocks in the parks, 81% of the total quantity had a capacity below 300 MW. According to China's energy strategies, small-capacity coal-fired units are required to be phased out, and newly added coal-fired units should be 300 MW or larger⁷. Some parks have implemented this measure¹⁶, but there are still many parks that need to be improved. In light of technical feasibility and cost effectiveness, the small-capacity coal-fired units to be replaced were identified by the following two criteria: (1) coal-fired units with a capacity below 300 MW and an EEE below 40.3% (which is the national average *EEE* of 300 MW coal-fired units¹⁷); (2) the units meeting criteria (1) within an industrial park have a total capacity of at least 180 MW (the national guideline requests that the total capacity of the small units to be shut down should be at least 60% of the total capacity of the new units¹⁸). The capacity of alternatives for the M3 clients in an industrial park obeyed the following function: min {x MW |  $x \ge$  total capacity of replaced units,  $x \in$  {300, 330, 350, 600, 630, 660, 1000, and their linear combinations  $\}$ . The newly established units have an  $EEE^{M4}$  based on their capacity levels (see Supplementary Table 15) and the same BE as the replaced units. The new units will generate the same energy output as the collection of replaced units and have a serviceable lifetime of 30 years according to the related guidelines¹. Then, equations 27-30 accounted for the environmental improvements of M4.

$$GHGMit_{D}^{M4} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (GHGEmi_{ij}^{BA} \times \frac{30}{RemLife_{ij}} \times (1-EE_{ij} \div \frac{1+(H/E)_{i}}{1/EEE_{ij}^{M4}+(H/E)_{i}/BE_{ij}})|_{M4 \ client}$$

$$WatSav_{D}^{M4} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (EO_{ij}/(1-SelfUseRate_{i}) \times 30 \times (WatFacEle\left(CoolTech_{ij}, Coal, Cap_{ij}\right))|_{M4 \ client}$$

$$-WatFacEle\left(CoolTech_{ij}, Coal, Cap_{ij}^{M4}\right)|_{M4 \ client}$$

$$(27)$$

$$SO2Red_{D}^{M4} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} ((SO2Emi_{ij}^{BA} \div RemLife_{ij} - (EO_{ij} + HO_{ij}) \div \frac{1 + (H/E)_{i}}{1/EEE_{ij}^{M4} + (H/E)_{i}/BE_{ij}} \times SO2Fac \left(Coal, Cap_{ij}^{M4}\right)) \times 30)|_{M4 \ client}$$

$$NOxRed_{D}^{M4} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} ((NOxEmi_{ij}^{BA} \div RemLife_{ij} - (EO_{ij} + HO_{ij}) \div \frac{1 + (H/E)_{i}}{1/EEE_{ij}^{M4} + (H/E)_{i}/BE_{ij}} \times NOxFac \left(Coal, Cap_{ij}^{M4}\right)) \times 30)|_{M4 \ client}$$

$$(29)$$

### M5 scenario: replacing small-capacity coal-fired units with large-capacity NGCC units

In the M5 scenario, small-capacity coal-fired units will be replaced with large-capacity NGCC units. Similar to M4, considering technical feasibility and cost effectiveness, the small-capacity coal-fired units to be replaced were identified by the following two criteria: (1) coal-fired electricity units with a capacity no greater than 200 MW; (2) the units meeting criteria (1) within an industrial park have a total capacity of at least 108 MW (the national guideline requires that the total capacity of the small units to be shut down is at least 60% of the total capacity of the new units¹⁸). The capacity of alternatives for the M5 clients in an industrial park obeyed the following function: min {x MW |  $x \ge$  total capacity of replaced units,  $x \in$  {180, 300, and their linear combinations}}. The new NGCC units will generate the same energy output as the collection of replaced units and have a serviceable lifetime of 30 years according to the related guidelines¹. The new NGCC electricity-generating units have an  $EEE^{M5}$  of 48.1% (equal to  $EE^{M5}$  due to  $(H/E)^{M5} = 0$ ), which is the average *EEE* of the existing NGCC units in the parks according to our database. The added NG consumption in the M5 scenario was 12.6 Gm³ per year, which is also reasonable, as discussed in the M1 scenario. Then, the environmental impacts of M5 were quantified using equations 31-34.

$$GHGMit_{D}^{M5} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (GHGEmi_{ij}^{BA} \times \frac{30}{RemLife_{ij}} \times (1-EE_{ij} \div EE^{M5})|_{M5 \ client}$$
(31)  
$$WatSav_{D}^{M5} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (EO_{ij} / (1-SelfUseRate_{i}) \times 30 \times (WatFacEle(CoolTech_{ij}, Coal, Cap_{ij}))$$

$$WatFacEle(CoolTech_{ij}, NG))|_{M5\ client}$$
(32)

$$SO2Red_D^{M5} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} \left( \left( SO2Emi_{ij}^{BA} \div RemLife_{ij} - EO_{ij} \div EE^{M5} \times SO2Fac(NG) \right) \times 30 \right) \Big|_{M5 \ client}$$
(33)

$$NOxRed_D^{M5} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} \left( (NOxEmi_{ij}^{BA} \div RemLife_{ij} - EO_{ij} \div EE^{M5} \times NOxFac(NG)) \times 30 \right) |_{M5 \ client}$$
(34)

#### Integrated scenario

M1-M5 can be integrated in practice. Each unit of the energy infrastructure stocks is mainly made of boilers and turbines. M1 and M2 retrofit boilers, M3 retrofits turbines, and M4 and M5 replace whole units. Based on technical feasibility, M1 and M2 were coupled with M3, called "M1&M3" and "M2&M3", respectively. M1&M3 refers to retrofitting coal-fired boilers to NG-fired boilers, and upgrading extraction-condensing or pure-condensing turbines to back-pressure turbines simultaneously. M2&M3 refers to replacing coal-fired boilers with MSW incinerators, and meanwhile retrofitting extraction-condensing or pure-condensing turbines to back-pressure turbines. Thus, the environmental impacts of these combined measures were presented in equations 35-42.

$$GHGMit_{D}^{M1\&M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (GHGEmi_{ij}^{BA} - EO_{ij} \times RemLife_{ij} \div (\frac{BE^{NG}}{BE_{ij}} \times (EEE_{ij} + \Delta EEE_{ij})) \times GHGFac(NG))|_{Fuel_{ij}=Coal and Cap_{ij} \le 120 MW and TurTech_{ij}=PC}$$
(35)  
$$WatSav_{D}^{M1\&M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (EO_{ij}/(1 - SelfUseRate_{i}) \times RemLife_{ij} \times (WatFacEle(CoolTech_{ij}, Coal, Cap_{ij}) - WatFacEle(CoolTech_{ij}^{M1\&M3}, NG))|_{Fuel_{ij}=Coal and Cap_{ij} \le 120 MW and TurTech_{ij}=PC}$$
(36)

$$SO2Red_D^{M1\&M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} (SO2Emi_{ij}^{BA} - EO_{ij} \times RemLife_{ij} \div (\frac{BE^{NG}}{BE_{ij}} \times (EEE_{ij} + \Delta EEE_{ij})) \times SO2Fac(NG))|_{Fuel_{ij}=Coal and Cap_{ij} \le 120 MW and TurTech_{ij}=PC}$$
(37)

$$NOxRed_D^{M1\&M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} (NOxEmi_{ij}^{BA} - EO_{ij} \times RemLife_{ij} \div (\frac{BE^{NG}}{BE_{ij}} \times (EEE_{ij} + \Delta EEE_{ij}))$$

$$\times NOxFac(NG))|_{Fuel_{ij}=Coal and Cap_{ij} \le 120 MW and TurTech_{ij}=PC}$$
(38)

$$GHGMit_D^{M2\&M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} (GHGEmi_{ij}^{BA} - (EO_{ij} + HO_{ij}) \times RemLife_{ij} \div \frac{1 + (H/E)_i}{1/(\frac{BE^{MSW}}{BE_{ij}} \times (EEE_{ij} + \Delta EEE_{ij})) + (H/E)_i/BE^{MSW}}$$

$$\times ((1-MixRate) \times GHGFac(MSW) + MixRate \times GHGFac(Coal)))|_{M2 \text{ client and } TurTech_{ij} = EC}$$
(39)

$$WatSav_{D}^{M2\&M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_{i}} (EO_{ij} / (1 - SelfUseRate_{i}) \times RemLife_{ij} \times (WatFacEle(CoolTech_{ij}, Coal, Cap_{ij})) - WatFacEle(CoolTech_{ij}^{M2\&M3}, MSW))|_{M2\ client\ and\ TurTech_{ij} = EC}$$
(40)

$$SO2Red_D^{M2\&M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} (SO2Emi_{ij}^{BA} - (EO_{ij} + HO_{ij}) \times RemLife_{ij} \div \frac{1 + (H/E)_i}{1/(\frac{BE^{MSW}}{BE_{ij}} \times (EEE_{ij} + \Delta EEE_{ij})) + (H/E)_i/BE^{MSW}}$$

$$\times SO2Fac(MSW))|_{M2 \ client \ and \ TurTech_{ij}=EC}$$

$$\tag{41}$$

$$NOxRed_D^{M2\&M3} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} (NOxEmi_{ij}^{BA} - (EO_{ij} + HO_{ij}) \times RemLife_{ij} \div \frac{1 + (H/E)_i}{1/(\frac{BE^{MSW}}{BE_{ij}} \times (EEE_{ij} + \Delta EEE_{ij})) + (H/E)_i/BE^{MSW}}$$

$$\times NOxFac(MSW))|_{M2 \ client \ and \ TurTech_{ii}=EC}$$

$$\tag{42}$$

Based on the above, in the integrated scenario, each unit of the energy infrastructure stocks will be changed by the measure that can achieve the maximum GHG mitigation potential among its appropriate measures (M1-M5, M1&M3 and M2&M3). Then, the environmental benefits in the integrated scenario could be quantified with equations 43-46. If a unit was not the client of any measure, the GHG mitigation potential and other environmental benefits for applying the measure to this unit would be zero. "X" refers to one of the M1-M5, M1&M3, and M2&M3.

$$GHGMit_D^{IN} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} Max \left( GHGMit_{ij}^X \mid X \in \{M1-M5, M1\&M3, M2\&M3\} \right)$$
(43)

$$WatSav_D^{IN} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} WatSav_{ij}^X$$
(44)

$$SO2Red_D^{IN} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} SO2Red_{ij}^X$$
(45)

$$NOxRed_D^{IN} = \sum_{i=1}^{2127} \sum_{j=1}^{Num_i} NOxRed_{ij}^X$$
(46)

## Supplementary Note 5 Cost-benefit analysis of the M1-M5 and integrated

### scenarios

The cost-benefit analysis included variations in equipment costs, fuel costs, electricity benefits, and heat benefits, by considering the differences between the GHG mitigation scenarios (the M1-M5 and integrated scenarios) and the baseline scenario. The net cost was quantified with equation 47. The " $\Delta$ " symbol refers to the variation in a certain indicator of the GHG mitigation scenarios compared with that of the baseline scenario.

Net 
$$Cost = \Delta Equipment \ Cost + \Delta Fuel \ Cost + \Delta Electricity \ Benefit + \Delta Heat \ Benefit$$
  

$$= \sum (Retrofitted \ or \ constructed \ capacity \times Unit \ cost) + \sum (\Delta Fuel \ input \times Fuel \ price)$$

$$+ \sum (\Delta Electricity \ output \times Electricity \ price) + \sum (\Delta Heat \ output \times Heat \ price)$$
(47)

The energy outputs of the stocks in the GHG mitigation scenarios kept the same as those in the baseline scenario. However, the energy efficiencies of the client stocks of M1, M3, M4 and M5 were improved, and fuel alternatives were also implemented by M1, M2, and M5. Thus, the fuel inputs and the structure of energy outputs in the GHG mitigation scenarios changed compared with the baseline scenario. Specifically, the GHG mitigation scenarios involved unit retrofitting or construction, shifting coal to NG or MSW, energy efficiency improvements, coal-based electricity reductions, and incremental NG-based or MSW-based electricity.

Moreover, the price indexes of equipment, fuel, and energy fluctuate during the remaining lifetime of the stocks. According to the methods in related studies¹⁹, this study assumed that the inflation rate of the present-value prices for equipment, fuel, and energy in each year were equal to the social discount rate. Therefore, the discount rate could be offset by the inflation rate when summing the present-value costs and benefits of each year during the remaining lifetime of the stocks. The GHG mitigation costs derived by equation 47 were at the constant price of 2015, and the unit cost was the ratio of the total cost to the direct GHG emission reduction for each scenario. The equipment costs, fuel costs, electricity benefits, and heat benefits in the GHG mitigation scenarios are illustrated as follows.

### Equipment cost

The total capacity of units to be retrofitted or constructed was determined for each GHG mitigation scenario. Then, based on the unit costs of different facilities, the equipment cost for each scenario were derived as  $\sum$  (*Retrofitted or constructed capacity* × *Unit cost*). The related indicators are presented in Supplementary Table 16. The equipment costs included the costs of equipment purchase, installation work, construction engineering, and other expenses (such as land occupancy and clearing).

### Fuel cost variation

In the GHG mitigation scenarios, the energy outputs of all changed units remained the same as those in the baseline scenario. However, the GHG mitigation measures changed the energy efficiencies of client units, through retrofitting or replacing the units and the fuel alternatives. Thus, the fuel input structure was changed, and the fuel cost variation for each scenario could be quantified by  $\sum (\Delta Fuel input \times Fuel price)$ . In particular, the subsidies from local government for MSW treatment is widely implemented in China, so the MSW subsidies were also considered in fuel costs. The indicators of fuel cost variation accounting were presented in Supplementary Table 17.

### Electricity benefit variation

The fuel alternatives in M1, M2, M5 and integrated scenarios will lead to changes in the electricity output structure. Therefore, the electricity benefit variation for each scenario was derived as  $\sum (\Delta Electricity \ output \times Electricity \ price)$ . The indicators for accounting the variations in electricity benefits were presented in Supplementary Table 13.

### Heat benefit variation

Among the GHG mitigation measures, the fuel shifting-related measures were M1, M2, and M5. M1 and M5 only worked on electricity units, and heat outputs were not changed; M2 retrofits the CHP units, but the heat price from MSW incineration was the same as that from coal firing. Therefore, the heat outputs from each fuel combustion remained unchanged when comparing M1-M5 and integrated scenarios with the baseline scenario. Thus, the heat benefit variation was zero.

# Supplementary Note 6 Material consumption in the M1-M5 and integrated scenarios

The GHG mitigation measures will consume materials for retrofitting and constructing units. To assess each measure systematically, the indirect environmental impacts embodied in material consumption should be included. Our model considered four categories of bulk materials: concrete, steel, iron, and aluminum. The production and transportation processes for these four materials contributed the majority of the indirect environmental impacts of unit retrofitting or construction^{21, 22}. Each material consumption was derived by equation 48. Through literature review and calculations, the material consumption factors and amounts were listed in Supplementary Tables 18 and 19.

 $Material \ Consumption = \sum (Retrofitted \ or \ constructed \ capacity \times Unit \ consumption)$ (48)

# Supplementary Note 7 Indirect and total environmental benefits of the M1-M5 and integrated scenarios

Fuel consumption, water consumption, and material consumption of the client stocks will be altered with GHG mitigation measures due to changes in capacity, technology, fuel type, etc. Such an energy-water-material nexus should be considered for a more systematic assessment. Furthermore, from a life-cycle perspective, the GHG mitigation measures will lead to indirect environmental impacts through directly changing fuel consumption, freshwater consumption, and material consumption. The upstream processes (including production and transportation/transmission processes) of fuels, water, and materials were considered in this model, as presented in Supplementary Figure 7.

Thus, the indirect environmental benefits embodied in the direct reduced sections of fuels, water, and materials were presented in equations 49-52. "X" refers to one of the M1-M5 and integrated scenarios.

$GHGMit_I^X = \sum (Fuel Reduction \times GHGFac(Fuel Production))$	
+Water Reduction×GHGFac(Water Production)	
+ $\Sigma$ (Material Reduction×GHGFac (Material Production))	(49)
$WatSav_I^X = \sum (Fuel Reduction \times WatFac(Fuel Production))$	
+Water Reduction×WatFac(Water Production)	
$+ \sum$ (Material Reduction × WatFac (Material Production))	(50)
$SO2Red_I^X = \sum (Fuel Reduction \times SO2Fac(Fuel Production))$	
+Water Reduction×SO2Fac(Water Production)	
+ $\Sigma$ (Material Reduction×SO2Fac(Material Production))	(51)
$NOxRed_I^X = \sum (Fuel Reduction \times NOxFac(Fuel Production))$	
+Water Reduction×NOxFac(Water Production)	

+  $\sum$  (Material Reduction × NOxFac (Material Production)) (52)

The life-cycle factors for the upstream processes of fuels, water, and materials were presented in Supplementary Table 20. The direct variations in fuel, water, and material consumption were listed in Supplementary Table 21.

Based on accounting the indirect environmental impacts, the total environmental benefits in GHG mitigation scenarios included both direct and indirect sections led by unit retrofitting or construction, fuel substitution and saving, and variations in freshwater and material consumption, as calculated in equations 53-56. "X" refers to one of the M1-M5 and integrated scenarios.

$$GHGMit^{X} = GHGMit^{X}_{D} + GHGMit^{X}_{I}$$
(53)

$$WatSav_{D}^{X} = WatSav_{D}^{X} + WatSav_{I}^{X}$$
(54)

$$SO2Red^{X} = SO2Red^{X}_{D} + SO2Red^{X}_{I}$$
(55)

(56)

 $NOxRed^{X} = NOxRed_{D}^{X} + NOxRed_{I}^{X}$ 

### Supplementary References

- 1. Ministry of Housing and Urban-Rural Development of China. Code for design of thermal power plant (GB50660-2011). (2011).
- 2. Guo, Y., Tian, J., Chertow, M. & Chen, L. Greenhouse gas mitigation in Chinese eco-industrial parks by targeting energy infrastructure: A vintage stock model. *Environmental Science & Technology* **50**, 11403-11413 (2016).
- 3. U.S. Environmental Protection Agency. Catalog of CHP technologies. (2015). http://www.epa.gov/sites/production/files/2015-07/documents/catalog_of_chp_technologies.pdf.
- PBL Netherlands Environmental Assessment Agency. Trends in global CO₂ and total greenhouse gas emissions: 2017 report. (2017). <u>https://www.pbl.nl/en/publications/trends-in-global-co2-and-total-greenhouse-gasemissions-2017-report</u>.
- National Bureau of Statistics of China. 2015 Chinese Statistical Yearbook. (2015). http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm.
- 6. Ministry of Water Resources of China. 2014 Water Resource Bulletin. (2014). http://www.mwr.gov.cn/sj/tjgb/szygb/201612/t20161222_776054.html.
- National Development and Reform Committee of China. Action plan for energy saving, emission reduction, upgrading and alteration of coal-fired electricity generation (2014-2020). (2014). http://www.zhb.gov.cn/gkml/hbb/gwy/201409/W020140925407622627853.pdf.
- Ministry of Environmental Protection of China. Notice on the implementation of ultra-low-emission and energy-saving retrofitting of coal-fired power plants. (2015). <u>http://www.mep.gov.cn/gkml/hbb/bwj/201512/t20151215_319170.htm</u>.
- National Energy Administration of China. Price report on electricity industry in China (2013-2014). (2015). http://zfxxgk.nea.gov.cn/auto92/201509/t20150902_1959.htm.
- National Bureau of Statistics of China. 2016 Chinese Energy Statistical Yearbook. (China Statistics Press: Beijing, 2016).
- National Bureau of Statistics of China. 2011 Chinese Energy Statistical Yearbook. (China Statistics Press: Beijing, 2011).
- 12. Zheng, L. *et al.* Preferential policies promote municipal solid waste (MSW) to energy in China: Current status and prospects. *Renewable & Sustainable Energy Reviews* **36**, 135-148 (2014).
- 13. National Energy Administration of China. The 13th five-year plan of bioenergy development. (2017). http://ghs.ndrc.gov.cn/ghwb/gjjgh/201708/t20170809_857319.html.
- Guo, Y., Glad, T., Zhong, Z., He, R., Tian, J. & Chen, L. Environmental life-cycle assessment of municipal solid waste incineration stocks in Chinese industrial parks. *Resources, Conservation & Recycling* 139, 387-395 (2018).

- Ministry of Construction of China. Technical Code for Municipal Waste Incineration Projects (CJJ90-2009). (2009).
- 16. Guo, Y., Tian, J., Chen, L. & Chertow, M. Exploring greenhouse gas-mitigation strategies in Chinese ecoindustrial parks by targeting energy infrastructure stocks. *Journal of Industrial Ecology* **22(1)** 106-120 (2018).
- 17. China Electricity Council. Statistical Data of Electricity Industry Development (2015). (China Electricity Council: Beijing, 2016).
- State Council of China. Notice on advancing shutting down small-capacity thermal power units. (2007). <u>http://www.gov.cn/zwgk/2007-01/26/content_509911.htm</u>.
- 19. Jiao, S. Cost Accounting methodology of electricity generation in power plants [in Chinese]. *Gas Turbine Technology* **13(3)**, 7-10 (2000).
- 20. China Electricity Council. Statistical Data of Electricity Industry Development (2014). (China Electricity Council: Beijing, 2015).
- 21. U.S. National Renewable Energy Laboratory. Life Cycle Assessment of Coal-fired Power Production. (1999). https://www.nrel.gov/docs/fy99osti/25119.pdf.
- U.S. National Renewable Energy Laboratory. Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation System. (2000). <u>https://digital.library.unt.edu/ark:/67531/metadc724566/?q=life%20cycle%20assessment%20</u>.
- 23. IKE Environmental Technology Co., Ltd, Sichuan University. Chinese Life Cycle Database V0.8. (2014). http://www.ike-global.com/archives/1094.html.
- 24. Liu, X. *et al.* Methods and models for developing Chinese life cycle database [in Chinese]. *Acta Scientiae Circumstantiae* **30(10)**, 2136-2144 (2010).