A Nonpeptide Oxytocin Receptor Agonist for a Durable Relief of Inflammatory Pain

Louis Hilfiger¹, Qian Zhao², Damien Kerspern¹, Perrine Inquimbert¹, Virginie Andry¹, Yannick Goumon¹, Pascal Darbon¹, Marcel Hibert^{2#}, Alexandre Charlet^{1#*}

¹ Centre National de la Recherche Scientifique and University of Strasbourg, UPR3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France.

² Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, Illkirch, France.

[#] Equal senior author.

* Corresponding author.

Corresponding Author Alexandre Charlet, PhD CNRS UPR3112, INCI 8, Allée du Général Rouvillois 67000 Strasbourg, France Phone: + 33 (0) 6070 825 06 E-mail: acharlet@unistra.fr

Supplementary table and figures

Channel	Compound	Concentration	Normalized percentage inhibition (mean, n=2)	
Nav 1.5	LIT-001	5 mM	0.7	
	Lidocaïne	100 mM	78.0	
Cav 1.2	LIT-001	5 mM	-9.3	
	Verapamil	50 mM	57.5	
KCNQ1/minK	LIT-001	5 mM	7.1	
	Chromanol 293B	10 mM	51.7	
hERG	LIT-001	5 mM	2.1	
	Cisapride	0.1 mM	35.9	
			Normalized peak current (mean, n=2)	
GABA A	LIT-001	5 mM	110.7	
a1b2g2	Vehicle	0.33% DMSO	102.6	
	Diazepam	0.1 mM	224.8	
hnAChR	LIT-001	5 mM	2.7	
a4b2	Vehicle	0.33% DMSO	4.5	
	Acetylcholine	30 mM	66.1	

Figure S1

Figure S1. Inhibition potency of LIT-001 on ion channel blockade. Normalized percentage inhibition values for each compound assayed on each channel specified below. The compound data was normalized to vehicle control (0% inhibition) and maximal inhibition control (100% inhibition).

Figure S2

Figure S2. Ten days' time course of long-term modifications induced by CFA subcutaneous injection – contralateral hindpaw. (a) Time-course of the CFA-induced mechanical (a1) and thermal heat (a2) hyperalgesia (CFA, n = 14; NaCl, n = 18). Data are expressed as mean \pm SEM. No statistical significance were detected using two-way ANOVA followed by Tukey multiple comparisons test.

Figure S3

Figure S3. Dose-response of the analgesic properties of LIT-001 on CFA-induced inflammatory pain model – contralateral hindpaw. Effects of LIT-001 0.1 (n = 4), 1 (n = 6), 5 (n = 6), 10 (n = 8) and 15 mg/kg (n = 6) or its vehicule (n = 9) measured 1 hour after i.p. injection on CFA-contralateral hindpaw mechanical (**a**) and thermal heat (**b**) sensitivities. Data are expressed as mean ± SEM.

Figure S4. Time-course of the analgesic properties of LIT-001 on CFA-induced inflammatory pain model – contralateral hindpaw. (a) Left, time-course of the effects of i.p. LIT-001 10mg/kg (n = 7), its vehicule (n = 5) or co-injection with L-368,699 (n = 6) on CFA-contralateral hindpaw mechanical (a1) and thermal heat (a2) sensitivities. Right, relative-to-baseline AUC (%) of the effects. (b) Left, time-course of the effects of i.p. LIT-001 10mg/kg (n = 7), its vehicule (n = 5) or co-injection with L-368,699 (n = 6) on mechanical (b1) and thermal heat (b2) sensitivities of NaCl-contralateral hindpaw sensitivities. Right, relative-to-baseline AUC (%) of the effects. Data are expressed as mean \pm SEM. No statistical significance were detected using two-way ANOVA followed by Tukey's multiple comparisons test.

b HPLC gradient

Time (min)	0	3	8	11	14	15	19
B mobile phase	10	10	30	98	98	10	10

c MS ionization, selection, fragmentation and identification parameters

Compound	Polarity	Precursor (m/z)	Product (m/z)	lon product type	Collision Energy (V)	RF Lens (V)
LIT-001	Positive	532.28	159.11	Quantification	19.05	242.05
LIT-001	Positive	532.28	185.07	Qualification	19.00	242.05
LIT-001	Positive	532.28	332.11	Qualification	22.49	242.05

Figure S5

Figure S5. LC-MS/MS dose response curves of increasing concentration of LIT-001 added to brain extracts, urine, plasma or water. (a) Samples were treated as described in the material and method section. (b-c) LC and MS conditions for the purification and the detection of LIT-001. Mobile phase A corresponded to ACN 1% / H₂O 98.9% / formic acid 0.1% (v/v/v), whereas mobile phase B was ACN 99.9 % / formic acid 0.1% (v/v).