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A DESCRIPTION OF STATISTICAL AND MACHINE LEARNING METHODS
A.1 Feature standardization and mean removal21

Feature standardization and mean removal i.e., normalization, is a common practice in many machine22
learning approaches. The procedure is performed by removing the mean of the feature vector and scaling23
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it to unit variance. This procedure is then applied to each feature vector independently by computing the24
relevant statistics on the basis of samples from the training set. Mean and standard deviation are then stored25
for use on an independent test data.26

If we denote the mean value of training samples from feature f by µ(Xf ) and their standard deviation as27
σ(Xf ), then for a sample xfi (i = 1, . . . ,Mf , Mf - is a number of samples of feature f ), the described28
transformation can be calculated using the following equation:29

zfi =
xfi − µ(Xf )

σ(Xf )
(1)

In this research study f denotes the bandpower features calculated from 10 frequency bands defined in30
Sec. 2.3.3.31
A.2 Mutual Information32

Mutual Information (MI) between two random variables is a non-negative value that describes the33
dependency between these variables. MI is equal to zero if and only if two random variables are independent.34
At the same time, higher values of the MI score indicate a higher dependency. If Xf ∈ RMf denotes the35
vector of Mf samples of feature f and Y ∈ RMf is a vector of corresponding targets, then the MI of these36
two discrete variables can be defined as in Eq. 2. In this study, MIs for discrete variables were obtained37
with nonparametric methods based on entropy estimation from k-nearest neighbors distances (Kraskov38
et al., 2004; Ross, 2014).39

MI(Xf ;Y ) =
∑
y∈Y

∑
xf∈Xf

p(xf , y)log
( p(xf , y)

p(xf )p(y)

)
(2)

In Eq. 2, p(xf , y) is the joint probability function of Xf and Y , and p(xf ) and p(y) are the marginal40
probability distribution functions of Xf and Y respectively. In this study, xf is a vector of 10 bandpower41
features obtained for a single event, while y is the corresponding time of delay in reaction to that event.42

The MI criterion is known for being capable of capturing any kind of dependency between variables.43
Use of MI-based feature selection methods have been proven to yield highly satisfactory results in many44
approaches to EEG signal processing (Binias et al., 2016, 2018).45
A.3 F-regression46

F-test statistics can be used as a criterion for ranking features. This approach utilizes univariate linear47
regression for testing the individual effect of the regression variables. To extract this information, the first48
step requires that the correlation between the vector of regressors Xf ∈ RMf and the vector of targets49
Y ∈ RMf is computed, according to the following equation:50

R2
f =

(
Xf − µ(Xf ))

T (Y − µ(Y )
)

σ(Xf )σ(Y )
(3)

The R2
f is then converted to an F-score to obtain the final result. If we denote the number of observations51

as Mf and the degrees of freedom as pf , then the relation between the F-score Ff and R2
f is expressed as52

in Eq.4.53
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R2
f = 1−

(
1 + Ff

pf − 1

Mf − pf
)−1 (4)

It must be noted that the F-test expresses only a linear dependency between variables. In this study, xf is54
a vector of 10 bandpower features obtained for a single event, while y is the corresponding time of delay in55
reaction to that event.56
A.4 Least Absolute Shrinkage and Selection Operator57

Least Absolute Shrinkage and Selection Operator (LASSO) is a linear model that estimates sparse58
coefficients. Mathematically, the optimization objective for trained linear model is the L1 norm regularizer59
defined by the following equation (Friedman et al., 2010):60

L1 = min
w

1

2N
‖Xw − Y ‖22 + α‖w‖1 (5)

where:61

• X ∈ RM×N - input data (bandpower features),62

• Y ∈ RM - target (vector of reaction times),63

• ‖w‖1 - L1-norm of the parameter vector,64

• α - constant,65

• M - number of samples,66

• N - number of features (10 bandpower features were being used in this study).67

The implementation of the LASSO used in this work was taken from the Python library scikit-learn and68
uses the coordinate descent as the algorithm to fit the coefficients (Pedregosa et al., 2011).69
A.4.1 LASSO with Least-Angle Regression70

Least Absolute Shrinkage and Selection Operator with Least-Angle Regression (LASSO-LARS) is a71
LASSO model implemented using the LARS algorithm rather than the coordinate descent scikit-learn.72
LARS is a regression algorithm that is similar to the forward stepwise regression (Efron et al., 2004).73
Although its detailed description is beyond the scope of this article, some most important features of LARS74
will be listed in this section. The algorithm has numerous advantages over the classical implementation of75
LASSO. One of the most important advantages is the numeric efficiency for high-dimensional data with a76
relatively small sample size. Additionally, LARS is fast in terms of computation time and has proven to be77
more stable. On the other hand, the LARS algorithm may be particularly sensitive to noise. Since EEG data78
can be considered noisy by nature, this might have a crucial impact on the effectiveness of LASSO-LARS79
in this study.80
A.5 Ridge Regression with Radial Kernel81

Ridge Regression with Radial Kernel (KernelRidge) is a combination of a linear least squares with L282
norm regularization and kernel transformation (Robert, 2014). The L2 can be defined as presented in Eq.6.83

L2 = min
w
‖Xw − Y ‖22 + α‖w‖22 (6)

where:84
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• X ∈ RM×N - input data (bandpower features),85

• Y ∈ RM - target (vector of reaction times),86

• ‖w‖1 - L2-norm of the parameter vector,87

• α - complexity parameter that controls the amount of shrinkage,88

• M - number of samples,89

• N - number of features (10 bandpower features were being used in this study).90

In this study, a Radial Basis Function (RBF) was used for kernel transformation. The RBF for a feature91
vector Xf ∈ RM is defined as presented in Eq.7.92

RBF = exp(−γ‖Xf −X ′f‖2) (7)

A.6 Support Vector Machine with Radial Basis Function93

Support Vector Machine (SVM) is a supervised learning method that can be used for classification and94
regression problems. The mathematical formulation of SVM for regression problems can be found below95
(Smola and Schölkopf, 2004).96

Let’s denote the total number of features byN and a number of observations byM . Given training vectors97
Xi ∈ RN , i = 1, . . . ,M and a target vector Y ∈ RM , SVM solves the following regression problem:98

min
w,b,ζ,ζ∗

1

2
wTw + C

M∑
i=1

(ζi + ζ∗i )

Yi − wTφ(Xi)− b ≤ ε+ ζi,

wTφ(Xi) + b− Yi ≤ ε+ ζ∗i ,

ζi, ζ
∗
i ≥ 0, i = 1, ...,M

(8)

which is dual to:99

min
α,α∗

1

2
(α− α∗)TQ(α− α∗) + εeT (α + α∗)− Y T (α− α∗) (9)

subject to100

eT (α− α∗) = 0

0 ≤ αi, α
∗
i ≤ C, i = 1, ...,M

(10)

where:101

• e is the vector of all ones,102

• C > 0 is the upper bound,103

• Q ∈ RM×M ,104
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• Qij ≡ K(Xi, Xj) = φ(Xi)
Tφ(Xj) is the kernel function.105

The decision function, with independent term ρ is presented in following equation:106

M∑
i=1

(αi − α∗i )K(Xi, X) + ρ (11)

SVM algorithms support multiple kernel functions for input data transformation. These functions are107
particularly useful when dealing with complex problems that have many more features than observations.108
Since this is the case for the problem targeted in this study, a SVM with a RBF kernel (SVM-RBF) was109
used instead of a linear SVM. The RBF for a feature vector Xf is defined in Eq. 7.110

B HYPERPARAMETERS OF REGRESSION METHODS
This section presents the range of hyperparameters that were used to optimize performance of the selected111
machine learning algorithms. For a detailed description of each of the presented hyperparameters, please112
refer to the documentation of the scikit-learn library (Pedregosa et al., 2011).113
B.1 LASSO:114

• ε = 0.001 - length of the regularization path defined as αmin
αmax

.115

• α - the amount of penalization chosen based on minimizing cross-validated generalization error116
(method built-in to scikit-learn implementation).117

• tol = 0.0001 - the tolerance for the optimization.118

• Maximum number of iterations to perform was 1e6.119

• Coefficients were selected cyclically for the update every iteration.120

• The interception point for the model was being calculated for the computations (i.e. data was not121
expected to be centered).122

B.2 LASSO-LARS123

• ε = 2e − 16 - The machine-precision regularization in the computation of the Cholesky diagonal124
factors.125

• α - the amount of penalization chosen based on minimizing cross-validated generalization error126
(method built-in to scikit-learn implementation).127

• tol = 0.0001 - the tolerance for the optimization.128

• Maximum number of iteration to perform was 1e5.129

• The maximum number of points (α) on the path used to compute the residuals in the cross-validation130
was 1000.131

• The interception point for the model was being calculated for the computations (i.e. data was not132
expected to be centered).133

B.3 KernelRidge134

• Before training a subset of best features was selected.135

• The criteria for feature selection was either the F -score or MI . The criteria that best suited each136
dataset was treated as a tuned hyperparameter.137

• The number of best features that would be used was selected from the set {1, 2, . . . , 30}.138
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• α ∈
{
αmin + xαmax−αminNα−1 |x ∈ {0, 1, . . . , Nα − 1}, αmin = −1, αmax = 10, Nα = 100

}
-139

regularization strength term in L2 norm.140

• γ ∈
{
γmin + xγmax−γminNγ−1 |x ∈ {0, 1, . . . , Nγ − 1}, γmin = 10−3, γmax = 1, Nγ = 100

}
- gamma141

parameter for the RBF.142

B.4 SVMRBF143

• The same feature selection procedure as presented in B.3 was utilized.144

• Shrinking was always enabled during the computations.145

• C ∈
{
Cmin + xCmax−CminNC−1 |x ∈ {0, 1, . . . , NC − 1}, Cmin = 10−3, Cmax = 103, NC = 100

}
-146

penalty parameter of the error term.147

• γ = 1/Nf where Nf denotes the number of features - kernel coefficient for RBF.148
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