Supplementary tables for:

Title: Characterization of Arabidopsis CYP79C1 and CYP79C2 by Glucosinolate Pathway Engineering in *Nicotiana benthamiana* Shows Substrate Specificity Toward a Range of Aliphatic and Aromatic Amino Acids

Authors: Cuiwei Wang, Mads Møller Dissing, Niels Agerbirk, Christoph Crocoll and Barbara Ann Halkier1

Journal: Frontiers in Plant Science

Contents:

Supplementary Table S1. Primers in this study.

Supplementary Table S2: MRM transitions and response factors for quantification of dsGLSs.

Supplementary Table S3. The yield of GLSs produced with the aliphatic core pathway.

Supplementary Table S4. *P*-values (Student's *t*-test) used to compare the same type GLS yields between co-expression of *CYP79C1*, *CYP79C2* and no *CYP79* with the aliphatic core pathway.

Supplementary Table S5. The yield of GLSs produced with the aromatic core pathway.

Supplementary Table S6. *P*-values (Student's *t*-test) used to compare the same type GLS yields between co-expression of *CYP79C1*, *CYP79C2* and no *CYP79* with the aromatic core pathway.

Supplementary Table S7. The yield of GLSs produced with the chain elongation pathway and the aliphatic core pathway.

Supplementary Table S8. *P*-values (Student's *t*-test) used to compare the GLS yields between coexpression of *CYP79C1* and *CYP79C2* with the chain elongation pathway and the aliphatic core pathway. Supplementary Table S1. Primers in this study.

Primers	Sequences 5'-3'
CW172-CYP79C1-F	GGCTTAAUATGGATTATTATCTGAATAATGTTATCTTCTC
CW173-CYP79C1-R	GGTTTAAUTCAAGCTGGACCGGTCCAGAG
CW174-CYP79C2-F	GGCTTAAUATGACTATTATCACGAATCCATCC
CW175-CYP79C2-R	GGTTTAAUCTAGATCTGGATTTTCGGATAT
CW176-Seq-F	GAGTCGACCTGCAGGCAT
CW177-Seq-R	GTTTTCCCAGTCACGACGTT
CW404-AtCYP79F1	GGCTTAAUATGATGAGCTTTACCACATCA
CW405-AtCYP79F1	GGTTTAAUTTAAGGACGGAACTTTGGAT
CW368-CYP83A1-F	GGCTTAAUATGGAAGATATCATCATCGGCGT
CW369-CYP83A1-R	GGTTTAAUCTAATACTTGTTCACTTTCTCTGG
CW370-CYP83A1-seq-R	CTTAGGATCAAGCGTCTCATT
CW365 -CYP83B1-F	GGCTTAAUATGGATCTCTTATTGATTATAGC
CW366 -CYP83B1-R	GGTTTAAUTCAGATGTGTTTCGTTGGT
CW367-CYP83B1-seq-R	TTAGGGTCAAGAGTCTCGT
CW373-CYP79D2-F	GGCTTAAUATGGCCATGAACGTCTCCA
CW374-CYP79D2-R	GGTTTAAUTTAATTCAAGGTGAAGTGGGGT
CW376-CYP79D2-seq-R	CGTAATGCCTTGCCGCAAT
CW371-GGP1-F	GGCTTAAUATGGTGGAGCAAAAGAGA
CW372-GGP1-R	GGTTTAAUCTAGTTAGTTGGAACTCTGCCT

The primers containing uracil (U) were used for USER cloning and the primers labelled 'seq' were used for sequencing.

Analyte	Retention	Q1	Q3	СЕ
$[M+H]^+$	time [min]	[m/z]	[m/z]	[eV]
ds1ME GLS	2.02	282.1	120.0 ^{Qt}	6
		282.1	86.2	19
ds2MP GLS	2.36	296.1	134.1 ^{Qt}	7
		296.1	100.1	19
ds1MP GLS	2.50	296.1	134.1 ^{Qt}	7
		296.1	100.1	19
dsBGLS	1.94	330.0	168.0 ^{Qt}	6
		330.0	91.0	23
ds3MB GLS	2.94	310.0	148.0 ^{Qt}	7
		310.0	114.0	19
ds4MP GLS	3.46	324.0	162.0 ^{Qt}	7
		324.0	128.0	19
ds allyl GLS	1.55	280.0	118.0 ^{Qt}	5
(Internal standard)		280.0	145.0	10
		280.0	74.2	8

Supplementary Table S2: MRM transitions for quantification of selected dsGLSs.

CE = collision energy; Q = quadrupole; Qt = product ion used for quantification.

			Yield of GL	Ss (nmol/g fw)		
	1ME	2MP	1MP	BGLS	рОНВ	I3M
CYP79C2	n.d.	34.67	1.00	61.40	n.d.	0.21
	n.d.	56.48	2.44	105.65	n.d.	0.27
	n.d.	28.59	1.09	61.20	n.d.	0.09
	n.d.	4.49	0.21	29.30	n.d.	n.d.
	n.d.	42.73	1.72	84.02	n.d.	n.d.
	n.d.	56.30	1.70	78.23	n.d.	0.13
	n.d.	6.50	0.25	31.05	n.d.	0.13
	n.d.	31.42	0.96	100.71	n.d.	n.d.
	n.d.	51.16	1.54	134.13	n.d.	0.15
Mean±stddev	-	34.71±19.47	1.21±0.72	76.19±34.59	-	0.16 ± 0.07
CYP79C1	0.16	0.36	0.17	2.20	n.d.	n.d.
	0.12	0.59	0.15	2.74	n.d.	n.d.
	0.59	0.40	0.33	2.33	n.d.	n.d.
	n.d.	n.d.	n.d.	0.52	n.d.	n.d.
	0.11	0.30	0.10	1.36	n.d.	n.d.
	0.20	0.21	0.16	1.23	n.d.	n.d.
	0.11	0.12	0.13	1.03	n.d.	n.d.
	n.d.	0.93	n.d.	1.81	n.d.	n.d.
	n.d.	1.64	0.31	4.41	n.d.	n.d.
Mean±stddev	0.14±0.19	0.57±0.50	0.15±0.11	1.96±1.15	-	-
CYP79D2	36.05	0.24	16.90	n.d.	n.d.	n.d.
	68.93	1.47	39.40	n.d.	n.d.	n.d.
	72.93	0.62	29.70	n.d.	n.d.	n.d.
	51.83	1.04	30.14	n.d.	n.d.	n.d.
	17.78	0.38	11.59	n.d.	n.d.	n.d.
	54.31	0.77	31.96	n.d.	n.d.	n.d.
	31.47	0.47	19.54	n.d.	n.d.	n.d.
	64.54	1.59	38.91	n.d.	n.d.	n.d.
	87.00	1.26	36.40	n.d.	n.d.	n.d.
Mean±stddev	53.87±22.16	0.87 ± 0.49	28.28 ± 10.04	-	-	-
No CYP79	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	0.90	n.d.	n.d.
	n.d.	n.d.	n.d.	0.69	n.d.	n.d.
	n.d.	n.d.	n.d.	0.35	n.d.	n.d.
	n.d.	n.d.	n.d.	0.48	n.d.	n.d.
	n.d.	n.d.	n.d.	0.30	n.d.	n.d.
	n.d.	n.d.	n.d.	1.25	n.d.	n.d.
	n.d.	n.d.	n.d.	0.83	n.d.	n.d.
	n.d.	n.d.	n.d.	1.25	n.d.	n.d.
Mean+stddev	-	-	-	0.76 ± 0.37	-	-

Supplementary Table S3. The yield of GLSs produced with the aliphatic core pathway.

n.d. = not detected, In some cases the detection of very low levels of dsGLS by LC-MS was close to the detection limit. However, the presence of all presented dsGLSs was confirmed by repeated analysis by LC-MS.

			Yield of G	LSs (nmol/g fw)		
	1ME	2MP	1MP	BGLS	рОНВ	I3M
CYP79C2	n.d.	93.62	1.77	136.87	0.62	0.13
	n.d.	175.87	3.83	183.49	1.17	0.22
	n.d.	101.93	2.06	191.37	0.77	0.20
	n.d.	79.34	2.33	83.46	0.64	0.14
	n.d.	246.58	5.15	250.77	1.72	0.31
	n.d.	328.72	n.d.	179.17	n.d.	0.40
	n.d.	145.24	2.32	150.16	0.84	0.22
	n.d.	295.02	6.52	206.90	1.03	0.33
	n.d.	154.91	3.96	139.21	0.95	0.19
Mean±stddev	-	180.14±90.36	3.49 ± 1.69	169.04±48.13	0.97±0.36	0.24±0.09
CYP79C1	n.d.	4.11	0.82	4.90	n.d.	n.d.
	n.d.	14.93	1.47	3.01	n.d.	n.d.
	n.d.	6.99	1.17	2.50	n.d.	n.d.
	n.d.	2.38	0.48	2.45	n.d.	n.d.
	n.d.	10.08	1.33	2.95	n.d.	n.d.
	n.d.	17.38	1.51	4.84	n.d.	n.d.
	n.d.	2.33	0.28	2.79	n.d.	n.d.
	n.d.	3.83	0.84	3.11	n.d.	n.d.
	n.d.	5.64	1.07	2.80	n.d.	n.d.
Mean±stddev	-	7.52 ± 5.49	1.00 ± 0.43	3.26 ± 0.94	-	-
CYP79A2	n.d.	n.d.	n.d.	231.35	0.18	n.d.
	n.d.	n.d.	n.d.	651.49	0.66	n.d.
	n.d.	n.d.	n.d.	321.57	1.11	n.d.
	n.d.	n.d.	n.d.	346.06	0.31	n.d.
	n.d.	n.d.	n.d.	393.63	0.57	n.d.
	n.d.	n.d.	n.d.	727.56	1.47	n.d.
	n.d.	n.d.	n.d.	256.81	0.32	n.d.
	n.d.	n.d.	n.d.	615.04	1.40	n.d.
	n.d.	n.d.	n.d.	773.88	0.87	n.d.
Mean±stddev	-	-	-	479.71±211.37	0.77 ± 0.48	-
No CYP79	n.d.	0.86	n.d.	1.31	n.d.	n.d.
	n.d.	0.52	n.d.	0.95	n.d.	n.d.
	n.d.	0.29	n.d.	0.93	n.d.	n.d.
	n.d.	0.20	n.d.	0.79	n.d.	n.d.
	n.d.	0.81	n.d.	1.34	n.d.	n.d.
	n.d.	0.74	n.d.	0.90	n.d.	n.d.
	n.d.	1.04	n.d.	2.08	n.d.	n.d.
	n.d.	0.83	n.d.	1.53	n.d.	n.d.
	n.d.	1.08	n.d.	1.25	n.d.	n.d.
Mean±stddev	-	0.71±0.31	-	1.23±0.40	-	-

Supplementary Table S5. The yield of GLSs produced with the aromatic core pathway.

n.d. = not detected In some cases the detection of very low levels of dsGLS by LC-MS was close to the detection limit. However, the presence of all presented dsGLSs was confirmed by repeated analysis by LC-MS. **Supplementary Table S7.** The yield of GLSs produced with the chain elongation pathway and the aliphatic core pathway.

			Viold of shoin	alamaatad CI	Sa (nmal/a fm)		
	21/10	1MD		4MD	58 (IIIII01/g IW)	ANATD	AMCD
CVD70C2	2.WIF 1.12		JIVID				
C1P/9C2	1.15	0.00	n.d.	n.d.	n.u.	n.d.	n.d.
	0.88	0.00	1.0.	n.a.	II.U.	n.a.	n.a.
	/.30	0.55	1.85	n.d.	n.a.	n.d.	n.d.
	4.00	0.38	1.94	0.45	n.d.	n.d.	n.d.
	10.10	0.70	3.75	1.25	n.d.	0.38	n.d.
	3.35	0.00	1.69	n.a.	n.d.	n.d.	n.d.
	3.82	0.00	1.43	0.53	n.d.	n.d.	n.d.
	1.92	0.00	1.04	n.a.	n.d.	n.d.	n.d.
	8.06	0.52	2.71	n.d.	n.d.	n.d.	n.d.
	4.00	0.00	2.42	n.a.	n.d.	n.d.	n.a.
	10.06	0.46	3.76	0.96	n.d.	n.d.	0.87
M 11	13.48	1.22	4.45	2.22	n.a.	0.79	n.d.
Mean±stddev	5.68±4.05	0.32±0.39	2.08±1.42	0.45±0.70		0.10±0.24	0.07±0.25
CYP/9C1	n.d.	n.d.	n.d.	1.11	n.d.	3.26	n.d.
	n.d.	n.d.	n.d.	1.67	n.d.	1.60	n.d.
	n.d.	n.d.	n.d.	2.35	n.d.	6.43	n.d.
	n.d.	n.d.	n.d.	2.06	n.d.	5.86	n.d.
	n.d.	n.d.	n.d.	1.86	n.d.	4.13	n.d.
	n.d.	n.d.	n.d.	1.56	n.d.	1.95	n.d.
	n.d.	n.d.	n.d.	3.55	n.d.	2.82	n.d.
	n.d.	n.d.	n.d.	2.40	n.d.	5.14	n.d.
	n.d.	n.d.	n.d.	1.08	n.d.	3.91	n.d.
	n.d.	n.d.	n.d.	1.13	n.d.	2.51	n.d.
	n.d.	n.d.	n.d.	1.41	n.d.	4.63	n.d.
	n.d.	n.d.	n.d.	0.96	n.d.	1.66	n.d.
Mean±stddev	-	-	-	1.76 ± 0.75	-	3.66±1.63	-
CYP79F1	n.d.	n.d.	33.26	74.66	11.02	42.87	2.08
	n.d.	n.d.	31.27	56.69	8.83	23.71	1.31
	n.d.	n.d.	73.74	129.75	7.50	21.87	1.36
	n.d.	n.d.	55.78	101.79	7.50	32.63	1.69
	n.d.	n.d.	69.63	138.47	13.22	52.21	2.33
	n.d.	n.d.	61.02	122.19	11.10	38.34	2.04
	n.d.	n.d.	48.16	89.70	11.59	49.78	2.27
	n.d.	n.d.	48.57	113.56	8.37	29.54	1.65
	n.d.	n.d.	64.40	97.47	9.64	28.72	1.67
	n.d.	n.d.	26.63	45.79	6.57	16.22	0.87
	n.d.	n.d.	50.87	109.35	4.10	10.62	0.94
	n.d.	n.d.	47.55	116.65	15.27	49.97	2.50
Mean±stddev	-	-	50.90±15.05	99.67±28.57	9.56±3.07	33.04±13.78	1.73±0.53
Negative control	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Only chain elongation pathway	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Mean ±stddev	-	-	-	_	-	-	-

n.d. = not detected. No other GLSs were detected, including BGLS, pOHB and I3M, In some cases the detection of very low levels of dsGLS by LC-MS was close to the detection limit. However, the presence of all presented dsGLSs was confirmed by repeated analysis by LC-MS.

Supplementary Table S4. *P*-values (Student's *t*-test) used to compare the same type GLS yields between co-expression of *CYP79C1*, *CYP79C2* and no *CYP79* with the aliphatic core pathway.

	P-values (Student's t-test) for comparison of GLS yields by expression of aliphatic core structure pathway									
	1ME		2MP		1MP		BGLS		I3M	
	CYP79C2	CYP79C1	CYP79C2	CYP79C1	CYP79C2	CYP79C1	CYP79C2	CYP79C1	CYP79C2	CYP79C1
No CYP79	-	0.05	< 0.001	0.01	< 0.001	< 0.001	< 0.001	0.01	0.01	-

Supplementary Table S6. *P*-values (Student's *t*-test) used to compare the same type GLS yields between co-expression of *CYP79C1*, *CYP79C2* and no *CYP79* with the aromatic core pathway.

	P-values (Student's t-test) for comparison of GLS yields by expression of aromatic core structure pathway									
	2MP 1MP			BGLS		рОНВ		I3M		
	CYP79C2	CYP79C1	CYP79C2	CYP79C1	CYP79C2	CYP79C1	CYP79C2	CYP79C1	CYP79C2	CYP79C1
No CYP79	< 0.001	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	-	< 0.001	-

Supplementary Table S8. *P*-values (Student's *t*-test) used to compare the GLS yields between co-expression of *CYP79C1* and *CYP79C2* with the chain elongation pathway and the aliphatic core pathway.

	P-values (Student's t-test) for comparison of GLS yields between expression of CYP79C1 or CYP79C2 with the chain elongation and aliphatic core pathways								
	2MP	1MP	3MB	4MP	3MTP	4MTB	4MSB		
P-values	< 0.001	0.02	< 0.001	< 0.001	-	< 0.001	0.34		