Supplementary Material to accompany article: Ren, C.C., Sylvia, K.E., Munley, K.M., Deyoe, J.E., Henderson, S.G., Vu, M.P., and Demas, G.E. Photoperiod Modulates the Gut Microbiome and Aggressive Behavior in Siberian Hamsters.

Table S1. Effect of photoperiodic treatment and time on behavior of male hamsters.

	P-value for Treatment x	LD				SD-R		SD-NR			
Behavior	Time Interaction	Week 3	Week 6	Week 9	Week 3	Week 6	Week 9	Week 3	Week 6	Week 9	
Frequency of	0.174	11.33	8.00	4.78	9.22	8.56	15.11	16.25	6.25	7.50	
Attack		±3.23	±1.93	±1.39	±2.22	±1.94	±3.91	±5.61	±2.14	±3.44	
Duration of	0.144	26.40	21.77	10.63	17.71	24.09	21.67	41.40	16.64	10.63	
Attack (s)		±9.78	±6.65	±3.49	±4.32	±8.06	±4.74	±15.28	±9.91	±5.46	
Frequency of	0.340	0.00	0.11	0.00	0.11	0.11	0.44	0.00	0.25	0.00	
Chasing		±0.00	±0.11	±0.00	±0.11	±0.11	±0.24	±0.00	±0.25	±0.00	
Duration of	0.605	0.00	0.07	0.00	0.31	0.16	0.18	0.00	0.66	0.00	
Chasing (s)		±0.00	±0.07	±0.00	±0.31	±0.16	±0.09	±0.00	±0.66	±0.00	
Latency to	0.097	68.44	92.56	81.11	80.22	94.89	75.11	56.63	165.63	123.00	
First Attack (s)		±31.21	±32.31	±35.72	±34.44	±36.22	±22.20	±13.78	±42.41	±34.56	
Duration of Head Neck Sniffing (s)	<0.0001	26.22 ±9.40	25.94 ±8.70	20.91 ±7.00	22.01 ±6.31	18.02 ±5.07	20.91 ±7.00	18.48 ±4.87	24.38 ±5.08	14.00 ±4.45	
Frequency of Head Neck Sniffing	0.001	13.11 ±3.74	15.89 ±4.45	12.78 ±3.85	11.67 ±2.94	9.00 ±1.88	7.71 ±4.06	10.50 ±2.64	15.00 ±2.44	9.50 ±2.40	
Frequency of	0.066	0.56	0.78	1.33	2.11	1.11	3.11	2.11	1.11	0.25	
Scent Marking		±0.44	±0.66	±0.99	±0.90	±0.99	±1.84	±0.90	±0.99	±0.25	
Frequency of Grooming	0.406	6.33 ±0.83	9.67 ±2.23	9.67 ±2.40	9.44 ±1.73	9.33 ±1.64	10.56 ±1.44	9.25 ±1.98	8.38 ±1.38	10.56 ±2.01	
Duration of Grooming (s)	0.821	10.42 ±2.01	20.01 ±6.95	13.93 ±6.60	24.50 ±7.16	23.62 ±6.98	27.88 ±.8.49	20.18 ±11.35	16.95 ±5.18	12.03 ±2.93	

Aggressive and non-aggressive social behaviors in long day males (LD), short day males that were responsive to changes in photoperiod (SD-R), and short-day males that were not responsive to changes in photoperiod (SD-NR) following 3, 6, or 9 weeks of treatment. Group means are presented as mean \pm s.e.m. (LD: N=9, SD-R: N=9, SD-NR: N=8). P-values are shown for treatment x time interactions, and boldface font indicates a significant treatment x time interaction (P<0.05, mixed model ANOVAs).

Table S2. Effect of photoperiod treatment and time on behavior of female hamsters.

	<i>P</i> -value for Treatment x	LD				SD-R		SD-NR			
Behavior	Time Interaction	Week 3	Week 6	Week 9	Week 3	Week 6	Week 9	Week 3	Week 6	Week 9	
Frequency of	0.004	5.00	6.78	6.44	7.11	6.33	10.00	2.28	3.50	4.75	
Attack		±1.41	±2.10	±1.86	±2.10	±1.26	±2.63	±0.94	±1.32	±1.29	
Duration of	0.003	9.74	12.34	8.47	7.27	12.80	22.66	2.80	4.60	8.25	
Attack (s)		±3.32	±4.48	±2.63	±2.18	±2.72	±6.33	±1.05	±1.57	±2.86	
Frequency of Chasing	0.638	0.11 ±0.11	0.00 ±0.00	0.00 ±0.00	0.11 ±0.11	0.11 ±0.11	0.00 ±0.00	0.25 ±0.25	0.00 ±0.00	0.00 ±0.00	
Duration of	0.944	0.06	0.00	0.00	0.18	0.11	0.00	0.21	0.00	0.00	
Chasing (s)		±0.06	±0.00	±0.00	±0.18	±0.11	±0.00	±0.21	±0.00	±0.00	
Latency to	0.273	31.33	62.89	72.56	46.22	47.22	41.67	62.75	86.50	114.75	
First Attack		±11.83	±27.53	±31.31	±14.31	±15.34	±21.26	±29.26	±33.99	±40.33	
Duration of Head Neck Sniffing (s)	<0.0001	13.36 ±3.57	15.03 ±5.41	11.24 ±1.98	13.00 ±4.34	15.27 ±5.39	10.36 ±3.53	14.51 ±6.12	14.09 ±3.73	23.91 ±4.13	
Frequency of Head Neck Sniffing	0.001	9.44 ±2.17	9.67 ±2.04	8.56 ±1.21	7.44 ±2.40	9.22 ±2.72	7.78 ±2.28	9.25 ±3.27	8.75 ±2.42	12.63 ±2.25	
Frequency of	0.052	1.89	2.33	4.00	0.00	0.44	0.89	0.13	0.00	0.00	
Scent Marking		±1.32	±1.65	±2.66	±0.00	±0.24	±0.77	±0.13	±0.00	±0.00	
Frequency of	0.063	6.44	3.89	7.00	7.22	8.00	10.67	4.25	4.50	4.75	
Grooming		±1.83	±0.93	±1.99	±1.28	±2.10	±2.00	±1.58	±0.96	±1.16	
Duration of Grooming (s)	0.044	7.96 ±2.36	12.94 ±7.65	15.63 ±6.71	16.12 ±7.52	18.38 ±6.80	13.27 ±3.08	4.26 ±1.40	4.79 ±1.00	5.80 ±1.88	

Aggressive and non-aggressive social behaviors in long day females (LD), short day females that were responsive to changes in photoperiod (SD-R), and short-day females that were not responsive to changes in photoperiod (SD-NR) following 3, 6, or 9 weeks of treatment. Group means are presented as mean \pm s.e.m. (LD: N=9, SD-R: N=9, SD-NR: N=8). P-values are shown for treatment x time interactions, and boldface font indicates a significant treatment x time interaction (P<0.05, mixed model ANOVAs).

Table S3. Effect of photoperiodic treatment on the relative abundance of bacterial phyla and families in the gut microbiome of male hamsters.

	Phylum or Family		_	LD		SD-R			SD-NR			
			P	Week 3	Week 6	Week 9	Week 3	Week 6	Week 9	Week 3	Week 6	Week 9
	Actinobacteria		0.904	0.004 ±0.002	0.009 ±0.003	0.006 ±0.003	0.007 ±0.003	0.007 ±0.005	0.008 ±0.003	0.006 ±0.003	0.006 ±0.003	0.007 ±0.003
	Bacteroidetes		0.011	1.053 ±0.322	1.716 ±0.361	2.328 ±0.517	1.266 ±0.197	1.806 ±0.386	1.655 ±0.310	0.932 ±0.177	1.274 ±0.221	2.344 ±0.652
	Deferribacteres		0.344	0.022 ±0.015	0.010 ±0.009	0.009 ±0.007	0.000 ±0.000	0.001 ±0.001	0.015 ±0.009	0.000 ±0.000	0.003 ±0.003	0.009 ±0.008
	Elusimicrobia		0.472	0.001 ±0.001	0.012 ±0.011	0.005 ±0.004	0.002 ±0.002	0.002 ±0.002	0.011 ±0.006	0.076 ±0.073	0.041 ±0.035	0.082 ±0.070
	Cyanobacteria	o)	0.228	0.054 ±0.031	0.074 ±0.022	0.106 ±0.030	0.140 ±0.049	0.123 ±0.051	0.227 ±0.069	0.092 ±0.021	0.079 ±0.015	0.159 ±0.052
Phylum	Epsilonbacteraeota	nt x Tim	0.228	0.020 ±0.004	0.018 ±0.003	0.044 ±0.005	0.056 ±0.018	0.100 ±0.056	0.056 ±0.023	0.031 ±0.008	0.035 ±0.007	0.085 ±0.047
Phy	Euryarchaeota	Treatment x Time	0.730	0.008 ±0.004	0.002 ±0.001	0.009 ±0.005	0.007 ±0.006	0.006 ±0.004	0.009 ±0.004	0.002 ±0.001	0.005 ±0.004	0.028 ±0.027
	Firmicutes		0.217	2.715 ±0.723	2.502 ±0.400	4.394 ±1.078	2.642 ±0.692	4.039 ±1.298	5.080 ±0.702	1.853 ±0.261	4.000 ±1.250	7.776 ±4.534
	Patescibacteria		0.007	0.023 ±0.004	0.048 ±0.014	0.050 ±0.008	0.024 ±0.005	0.034 ±0.006	0.060 ±0.019	0.028 ±0.006	0.042 ±0.012	0.073 ±0.027
	Proteobacteria		0.448	0.135 ±0.034	0.094 ±0.017	0.187 ±0.067	0.075 ±0.023	0.110 ±0.050	0.326 ±0.164	0.080 ±0.012	0.117 ±0.045	0.289 ±0.206
	Spirochaetes		0.175	0.017 ±0.009	0.016 ±0.002	0.075 ±0.043	0.057 ±0.051	0.066 ±0.032	0.086 ±0.051	0.011 ±0.002	0.025 ±0.004	0.267 ±0.175
	Tenericutes		0.128	0.084 ±0.035	0.143 ±0.054	0.128 ±0.048	0.148 ±0.093	0.128 ±0.054	0.177 ±0.066	0.046 ±0.020	0.024 ±0.005	0.045 ±0.014
	Marinifilaceae		0.005	0.028 ±0.005	0.047 ±0.009	0.062 ±0.019	0.045 ±0.009	0.065 ±0.010	0.095 ±0.031	0.026 ±0.010	0.036 ±0.013	0.062 ±0.023
	Muribaculaceae	Time	0.015	0.809 ±0.277	1.354 ±0.308	1.674 ±0.373	0.959 ±0.210	1.454 ±0.397	1.219 ±0.250	0.930 ±0.168	1.122 ±0.317	1.747 ±0.486
	Ruminococcaceae	Treatment x Time	0.075	0.459 ±0.104	0.534 ±0.095	0.984 ±0.178	0.388 ±0.070	0.779 ±0.244	0.934 ±0.205	0.450 ±0.116	0.703 ±0.160	1.817 ±0.933
Family	Saccharimonadaceae	Treat	0.008	0.023 ±0.004	0.048 ±0.014	0.050 ±0.008	0.024 ±0.005	0.034 ±0.006	0.060 ±0.019	0.028 ±0.006	0.042 ±0.012	0.073 ±0.027
Ę	Uncultured Mollicutes Bacterium		0.045	0.007 ±0.004	0.033 ±0.021	0.007 ±0.004	0.000 ±0.000	0.001 ±0.001	0.000 ±0.000	0.003 ±0.003	0.000 ±0.000	0.000 ±0.000
	Uncultured Bacterium	Treatment	0.068	0.035 ±0.015	0.047 ±0.017	0.064 ±0.022	0.182 ±0.079	0.138 ±0.059	0.208 ±0.073	0.080 ±0.030	0.052 ±0.015	0.071 ±0.020

Other		0.028	0.068 ±0.028	0.086 ±0.037	0.131 ±0.040	0.039 ±0.009	0.031 ±0.006	0.102 ±0.057	0.046 ±0.011	0.038 ±0.013	0.0 ±0.
Anaeroplasmataceae		0.087	0.024 ±0.009	0.024 ±0.028	0.031 ±0.016	0.003 ±0.003	0.003 ±0.002	0.005 ±0.005	0.033 ±0.023	0.033 ±0.034	0.0 ±0
Bacteroidaceae		0.058	0.013 ±0.005	0.022 ±0.006	0.015 ±0.006	0.023 ±0.013	0.020 ±0.007	0.027 ±0.014	0.011 ±0.003	0.010 ±0.004	0.0 ±0.
BacteroidalesRF16gro up		0.051	0.005 ±0.002	0.006 ±0.002	0.011 ±0.005	0.011 ±0.006	0.005 ±0.002	0.009 ±0.004	0.006 ±0.002	0.006 ±0.002	0.0 ±0.
Desulfovibrionaceae		0.061	0.055 ±0.023	0.036 ±0.014	0.075 ±0.044	0.014 ±0.006	0.031 ±0.016	0.140 ±0.114	0.015 ±0.006	0.030 ±0.013	0.0 ±0.
Lachnospiraceae		0.038	2.193 ±0.736	1.383 ±0.211	3.160 ±1.125	1.023 ±0.164	3.008 ±1.096	5.445 ±3.516	1.663 ±0.536	2.716 ±1.070	3.4 ±0.
Lactobacillaceae		0.030	0.046 ±0.031	0.050 ±0.150	0.089 ±0.034	0.069 ±0.028	0.050 ±0.014	0.062 ±0.022	0.074 ±0.048	0.089 ±0.058	0. ² ±0.
Marinifilaceae		<0.0001	0.028 ±0.005	0.047 ±0.009	0.062 ±0.019	0.026 ±0.010	0.036 ±0.013	0.062 ±0.023	0.045 ±0.009	0.065 ±0.010	0.0 ±0.
Muribaculaceae		0.0001	0.809 ±0.277	1.354 ±0.308	1.674 ±0.373	0.930 ±0.168	1.122 ±0.317	1.747 ±0.486	0.959 ±0.210	1.454 ±0.397	1.2 ±0.
Mycoplasmataceae	Time	0.099	0.006 ±0.002	0.005 ±0.002	0.008 ±0.002	0.009 ±0.004	0.011 ±0.004	0.150 ±0.007	0.011 ±0.003	0.020 ±0.009	0.0 ±0.
Paracaedibacteracea		0.011	0.015 ±0.008	0.003 ±0.001	0.034 ±0.023	0.007 ±0.004	0.018 ±0.010	0.030 ±0.015	0.004 ±0.003	0.015 ±0.010	0.0 ±0.
Prevotellaceae		0.020	0.126 ±0.043	0.175 ±0.050	0.406 ±0.126	0.197 ±0.038	0.188 ±0.044	0.289 ±0.124	0.137 ±0.052	0.137 ±0.044	0.′ ±0.
Rikenellaceae		0.010	0.059 ±0.019	0.097 ±0.027	0.131 ±0.040	0.079 ±0.030	0.093 ±0.027	0.205 ±0.132	0.097 ±0.031	0.119 ±0.025	0. ² ±0.
Ruminococcaceae		0.005	0.459 ±0.104	0.534 ±0.095	0.984 ±0.178	0.450 ±0.116	0.703 ±0.160	1.817 ±0.933	0.388 ±0.070	0.779 ±0.244	0.9 ±0.
Saccharimonadaceae		<0.0001	0.023 ±0.004	0.048 ±0.014	0.050 ±0.008	0.028 ±0.006	0.042 ±0.012	0.073 ±0.027	0.024 ±0.005	0.034 ±0.006	0.0 ±0.
Spirochaetaceae		0.040	0.014 ±0.009	0.008 ±0.002	0.066 ±0.041	0.004 ±0.002	0.017 ±0.004	0.240 ±0.154	0.055 ±0.051	0.061 ±0.033	0.0 ±0.
Tannerellaceae		0.045	0.003 ±0.002	0.005 ±0.002	0.004 ±0.001	0.005 ±0.001	0.004 ±0.001	0.008 ±0.001	0.003 ±0.001	0.005 ±0.002	0.0 ±0.
Uncultured		0.043	0.053 ±0.013	0.034 ±0.012	0.072 ±0.015	0.047 ±0.015	0.055 ±0.014	0.112 ±0.077	0.039 ±0.015	0.056 ±0.027	0.7 ±0.
Veillonellaceae		0.021	0.011 ±0.004	0.007 ±0.003	0.016 ±0.006	0.006 ±0.001	0.018 ±0.007	0.025 ±0.011	0.008 ±0.004	0.013 ±0.007	0.0 ±0.

Relative abundance of bacterial phyla and families in long day males (LD), short day males that were responsive to changes in photoperiod (SD-R), and short day males that were not responsive to changes in photoperiod (SD-NR) following 3, 6, or 9 weeks of treatment. Group means are presented as mean \pm s.e.m. (LD: N=6, SD-R: N=6, SD-NR: N=6). P-values (P) are shown for all treatment x time interactions in phyla and treatment, time, and treatment x time interactions in families with P<0.10. Boldface font indicates a significant P-value (P<0.05, mixed model ANOVAs).

Table S4. Effect of photoperiodic treatment on the relative abundance of bacterial phyla and families in the gut microbiome of female hamsters.

	Phylum or Family		_	LD			SD-R		SD-NR			
	Phylum or Family		P	Week 3	Week 6	Week 9	Week 3	Week 6	Week 9	Week 3	Week 6	Week 9
	Actinobacteria		0.424	0.001 ±0.001	0.004 ±0.002	0.009 ±0.004	0.000 ±0.000	0.003 ±0.003	0.037 ±0.032	0.002 ±0.002	0.003 ±0.001	0.011 ±0.010
	Bacteroidetes		0.308	0.895 ±0.302	1.155 ±0.343	1.895 ±0.329	0.956 ±0.217	1.040 ±0.324	8.701 ±6.933	0.900 ±0.184	1.169 ±0.370	2.198 ±0.441
	Deferribacteres		0.438	0.022 ±0.019	0.021 ±0.200	0.011 ±0.008	0.000 ±0.000	0.000 ±0.000	0.002 ±0.002	0.001 ±0.001	0.015 ±0.015	0.003 ±0.003
	Elusimicrobia		0.441	0.006 ±0.004	0.009 ±0.005	0.016 ±0.009	0.004 ±0.004	0.001 ±0.000	0.024 ±0.018	0.007 ±0.006	0.010 ±0.008	0.005 ±0.003
	Cyanobacteria	ime	0.468	0.006 ±0.003	0.004 ±0.002	0.008 ±0.006	0.003 ±0.002	0.003 ±0.002	0.004 ±0.002	0.007 ±0.003	0.006 ±0.001	0.016 ±0.009
Phylum	Epsilonbacteraeota	Treatment x Time	0.351	0.030 ±0.008	0.031 ±0.013	0.042 ±0.015	0.029 ±0.012	0.024 ±0.008	0.248 ±0.203	0.030 ±0.010	0.026 ±0.006	0.066 ±0.029
•	Euryarchaeota	Treatn	0.406	0.026 ±0.009	0.018 ±0.003	0.042 ±0.018	0.029 ±0.012	0.024 ±0.008	0.248 ±0.203	0.030 ±0.010	0.026 ±0.006	0.066 ±0.029
	Firmicutes		0.036	2.531 ±0.803	2.862 ±0.510	3.223 ±1.042	2.262 ±0.532	2.609 ±0.752	9.429 ±4.592	2.789 ±0.719	3.930 ±0.755	6.691 ±1.900
	Patescibacteria		0.235	0.015 ±0.002	0.033 ±0.013	0.051 ±0.006	0.026 ±0.004	0.030 ±0.008	0.243 ±0.177	0.045 ±0.018	0.040 ±0.008	0.060 ±0.010
	Proteobacteria		0.176	0.179 ±0.054	0.310 ±0.172	0.135 ±0.057	0.178 ±0.098	0.163 ±0.048	0.634 ±0.395	0.084 ±0.026	0.133 ±0.033	0.260 ±0.126
	Spirochaetes		0.075	0.017 ±0.005	0.015 ±0.004	0.024 ±0.003	0.012 ±0.005	0.033 ±0.019	0.104 ±0.056	0.011 ±0.005	0.017 ±0.007	0.110 ±0.067
	Tenericutes		0.511	0.052 ±0.043	0.138 ±0.111	0.095 ±0.046	0.061 ±0.025	0.050 ±0.016	0.396 ±0.336	0.092 ±0.031	0.062 ±0.021	0.126 ±0.028
	Lachnospiraceae	Э	0.071	1.970 ±0.600	1.748 ±0.433	2.133 ±0.953	1.585 ±0.446	1.791 ±0.626	3.545 ±1.444	2.045 ±0.620	2.854 ±0.697	4.546 ±1.625
	Peptococcaceae	ment x Time	0.067	0.015 ±0.002	0.033 ±0.013	0.051 ±0.006	0.026 ±0.004	0.030 ±0.008	0.243 ±0.177	0.045 ±0.018	0.040 ±0.008	0.060 ±0.010
	Ruminococcaceae	Treatme	0.033	0.470 ±0.090	0.481 ±0.092	0.717 ±0.232	0.521 ±0.120	0.582 ±0.132	2.584 ±1.442	0.551 ±0.148	0.754 ±0.129	1.724 ±0.507
Family	Spirochaetaceae		0.081	0.018 ±0.005	0.012 ±0.004	0.019 ±0.004	0.007 ±0.004	0.031 ±0.020	0.091 ±0.046	0.010 ±0.006	0.015 ±0.007	0.095 ±0.062
Fan	Anaeroplasmataceae	Treatment	0.007	0.004 ±0.004	0.002 ±0.002	0.002 ±0.002	0.039 ±0.022	0.022 ±0.009	0.020 ±0.007	0.002 ±0.001	0.005 ±0.002	0.009 ±0.008
	Other	Time	0.065	0.033 ±0.011	0.041 ±0.007	0.074 ±0.020	0.042 ±0.016	0.021 ±0.007	0.255 ±0.204	0.019 ±0.005	0.022 ±0.004	0.080 ±0.024
	Bacteroidaceae	Tir	0.081	0.019 ±0.011	0.025 ±0.010	0.028 ±0.011	0.006 ±0.002	0.007 ±0.005	0.076 ±0.062	0.018 ±0.006	0.024 ±0.016	0.039 ±0.019

Lachnospiraceae	0.009	1.970 ±0.600	1.748 ±0.433	2.133 ±0.953	1.585 ±0.446	1.791 ±0.626	3.545 ±1.444	2.045 ±0.620	2.854 ±0.697	4.546 ±1.625
Lactobacillaceae	0.002	0.032 ±0.018	0.034 ±0.020	0.103 ±0.028	0.045 ±0.028	0.020 ±0.007	0.150 ±0.094	0.049 ±0.022	0.041 ±0.018	0.148 ±0.065
Marinifilaceae	0.074	0.030 ±0.007	0.071 ±0.026	0.076 ±0.035	0.042 ±0.013	0.037 ±0.015	0.093 ±0.049	0.018 ±0.010	0.023 ±0.007	0.050 ±0.027
Peptococcaceae	0.006	0.011 ±0.003	0.010 ±0.004	0.011 ±0.005	0.009 ±0.002	0.012 ±0.003	0.022 ±0.009	0.009 ±0.002	0.017 ±0.003	0.026 ±0.012
Ruminococcaceae	0.003	0.470 ±0.090	0.481 ±0.092	0.717 ±0.232	0.521 ±0.120	0.582 ±0.132	2.584 ±1.442	0.551 ±0.148	0.754 ±0.129	1.724 ±0.507
Saccharimonadaceae	0.092	0.015 ±0.002	0.033 ±0.013	0.051 ±0.006	0.026 ±0.004	0.030 ±0.008	0.060 ±0.177	0.044 ±0.018	0.040 ±0.008	0.060 ±0.010
Spirochaetaceae	0.008	0.018 ±0.005	0.012 ±0.004	0.019 ±0.004	0.007 ±0.004	0.031 ±0.020	0.091 ±0.046	0.010 ±0.006	0.015 ±0.007	0.095 ±0.062

Relative abundance of bacterial phyla and families in long day females (LD), short day females that were responsive to changes in photoperiod (SD-R), and short day females that were not responsive to changes in photoperiod (SD-NR) following 3, 6, or 9 weeks of treatment. Group means are presented as mean \pm s.e.m. (LD: N=6, SD-R: N=6, SD-NR: N=6). P-values (P) are shown for all treatment x time interactions in phyla and treatment, time, and treatment x time interactions in families with P<0.10. Boldface font indicates a significant P-value (P<0.05, mixed model ANOVAs).

Table S5. Serum DHEA levels of male and female hamsters following 9 weeks of treatment.

Sex	D	Serum DHEA Concentration at Week 9 (ng mL ⁻¹)						
Sex	r	LD	SD-R	SD-NR				
Male	0.692	3.637 ± 0.609	4.789 ± 1.052	4.402 ± 1.252				
Female	0.463	2.419 ± 0.697	4.417 ± 1.257	3.393 ± 0.876				

Serum dehydroepiandrosterone (DHEA) levels in long day males (LD), short day males that were responsive to changes in photoperiod (SD-R), short day males that were not responsive to changes in photoperiod (SD-NR), LD females, SD-R females, and SD-NR females following 9 weeks of treatment. Group means are presented as mean \pm s.e.m. (LD males: N=7, SD-R males: N=9, SD-NR males: N=5, LD females: N=8, SD-R females: N=8, SD-NR females: N=5). P-values (P) are shown for statistical comparisons across treatment groups for each sex (one-way ANOVAs).

Table S6. Correlations between serum DHEA levels, the gut microbiome, and behavior of male and female hamsters.

Ве	havior or gut bacteria phylum or family	Correlation coefficient with serum DHEA (r _s)	N	P
	Number of Attacks	0.796	14	0.001
Males	Attack Duration	0.733	14	0.003
Ma	Patescibacteria	0.506	14	0.065
	Marinifilaceae	0.125	14	0.125
	Number of Attacks	-0.120	13	0.697
Se	Attack Duration	-0.115	13	0.710
Females	Anaeroplasmataceae	-0.011	13	0.971
Fe	Firmicutes	-0.187	13	0.541
	Ruminococcaceae	-0.093	13	0.765

Correlations between serum dehydroepiandrosterone (DHEA) levels, the gut microbiome, and behavior in long day males (LD), short day males that were responsive to changes in photoperiod (SD-R), short day males that were not responsive to changes in photoperiod (SD-NR), LD females, SD-R females, and SD-NR females following 9 weeks of treatment. Correlations coefficients (r_s), number of animals (N), and P-values (P) are shown for each analysis, which was performed across treatment groups (LD males: N=4, SD-R males: N=6, SD-NR males: N=4, LD females: N=5, SD-R females: N=5, SD-NR females: N=3). Boldface font indicates a significant P-value (P<0.05, Spearman's rank correlations).