Supplementary Material to accompany article: Ren, C.C., Sylvia, K.E., Munley, K.M., Deyoe, J.E., Henderson, S.G., Vu, M.P., and Demas, G.E. Photoperiod Modulates the Gut Microbiome and Aggressive Behavior in Siberian Hamsters. Table S1. Effect of photoperiodic treatment and time on behavior of male hamsters. | | P-value for Treatment x | LD | | | | SD-R | | SD-NR | | | | |--|-------------------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|----------------|--| | Behavior | Time
Interaction | Week 3 | Week 6 | Week 9 | Week 3 | Week 6 | Week 9 | Week 3 | Week 6 | Week 9 | | | Frequency of | 0.174 | 11.33 | 8.00 | 4.78 | 9.22 | 8.56 | 15.11 | 16.25 | 6.25 | 7.50 | | | Attack | | ±3.23 | ±1.93 | ±1.39 | ±2.22 | ±1.94 | ±3.91 | ±5.61 | ±2.14 | ±3.44 | | | Duration of | 0.144 | 26.40 | 21.77 | 10.63 | 17.71 | 24.09 | 21.67 | 41.40 | 16.64 | 10.63 | | | Attack (s) | | ±9.78 | ±6.65 | ±3.49 | ±4.32 | ±8.06 | ±4.74 | ±15.28 | ±9.91 | ±5.46 | | | Frequency of | 0.340 | 0.00 | 0.11 | 0.00 | 0.11 | 0.11 | 0.44 | 0.00 | 0.25 | 0.00 | | | Chasing | | ±0.00 | ±0.11 | ±0.00 | ±0.11 | ±0.11 | ±0.24 | ±0.00 | ±0.25 | ±0.00 | | | Duration of | 0.605 | 0.00 | 0.07 | 0.00 | 0.31 | 0.16 | 0.18 | 0.00 | 0.66 | 0.00 | | | Chasing (s) | | ±0.00 | ±0.07 | ±0.00 | ±0.31 | ±0.16 | ±0.09 | ±0.00 | ±0.66 | ±0.00 | | | Latency to | 0.097 | 68.44 | 92.56 | 81.11 | 80.22 | 94.89 | 75.11 | 56.63 | 165.63 | 123.00 | | | First Attack (s) | | ±31.21 | ±32.31 | ±35.72 | ±34.44 | ±36.22 | ±22.20 | ±13.78 | ±42.41 | ±34.56 | | | Duration of
Head Neck
Sniffing (s) | <0.0001 | 26.22
±9.40 | 25.94
±8.70 | 20.91
±7.00 | 22.01
±6.31 | 18.02
±5.07 | 20.91
±7.00 | 18.48
±4.87 | 24.38
±5.08 | 14.00
±4.45 | | | Frequency of
Head Neck
Sniffing | 0.001 | 13.11
±3.74 | 15.89
±4.45 | 12.78
±3.85 | 11.67
±2.94 | 9.00
±1.88 | 7.71
±4.06 | 10.50
±2.64 | 15.00
±2.44 | 9.50
±2.40 | | | Frequency of | 0.066 | 0.56 | 0.78 | 1.33 | 2.11 | 1.11 | 3.11 | 2.11 | 1.11 | 0.25 | | | Scent Marking | | ±0.44 | ±0.66 | ±0.99 | ±0.90 | ±0.99 | ±1.84 | ±0.90 | ±0.99 | ±0.25 | | | Frequency of Grooming | 0.406 | 6.33
±0.83 | 9.67
±2.23 | 9.67
±2.40 | 9.44
±1.73 | 9.33
±1.64 | 10.56
±1.44 | 9.25
±1.98 | 8.38
±1.38 | 10.56
±2.01 | | | Duration of
Grooming
(s) | 0.821 | 10.42
±2.01 | 20.01
±6.95 | 13.93
±6.60 | 24.50
±7.16 | 23.62
±6.98 | 27.88
±.8.49 | 20.18
±11.35 | 16.95
±5.18 | 12.03
±2.93 | | Aggressive and non-aggressive social behaviors in long day males (LD), short day males that were responsive to changes in photoperiod (SD-R), and short-day males that were not responsive to changes in photoperiod (SD-NR) following 3, 6, or 9 weeks of treatment. Group means are presented as mean \pm s.e.m. (LD: N=9, SD-R: N=9, SD-NR: N=8). P-values are shown for treatment x time interactions, and boldface font indicates a significant treatment x time interaction (P<0.05, mixed model ANOVAs). Table S2. Effect of photoperiod treatment and time on behavior of female hamsters. | | <i>P</i> -value for Treatment x | LD | | | | SD-R | | SD-NR | | | | |--|---------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Behavior | Time
Interaction | Week 3 | Week 6 | Week 9 | Week 3 | Week 6 | Week 9 | Week 3 | Week 6 | Week 9 | | | Frequency of | 0.004 | 5.00 | 6.78 | 6.44 | 7.11 | 6.33 | 10.00 | 2.28 | 3.50 | 4.75 | | | Attack | | ±1.41 | ±2.10 | ±1.86 | ±2.10 | ±1.26 | ±2.63 | ±0.94 | ±1.32 | ±1.29 | | | Duration of | 0.003 | 9.74 | 12.34 | 8.47 | 7.27 | 12.80 | 22.66 | 2.80 | 4.60 | 8.25 | | | Attack (s) | | ±3.32 | ±4.48 | ±2.63 | ±2.18 | ±2.72 | ±6.33 | ±1.05 | ±1.57 | ±2.86 | | | Frequency of Chasing | 0.638 | 0.11
±0.11 | 0.00
±0.00 | 0.00
±0.00 | 0.11
±0.11 | 0.11
±0.11 | 0.00
±0.00 | 0.25
±0.25 | 0.00
±0.00 | 0.00
±0.00 | | | Duration of | 0.944 | 0.06 | 0.00 | 0.00 | 0.18 | 0.11 | 0.00 | 0.21 | 0.00 | 0.00 | | | Chasing (s) | | ±0.06 | ±0.00 | ±0.00 | ±0.18 | ±0.11 | ±0.00 | ±0.21 | ±0.00 | ±0.00 | | | Latency to | 0.273 | 31.33 | 62.89 | 72.56 | 46.22 | 47.22 | 41.67 | 62.75 | 86.50 | 114.75 | | | First Attack | | ±11.83 | ±27.53 | ±31.31 | ±14.31 | ±15.34 | ±21.26 | ±29.26 | ±33.99 | ±40.33 | | | Duration of
Head Neck
Sniffing (s) | <0.0001 | 13.36
±3.57 | 15.03
±5.41 | 11.24
±1.98 | 13.00
±4.34 | 15.27
±5.39 | 10.36
±3.53 | 14.51
±6.12 | 14.09
±3.73 | 23.91
±4.13 | | | Frequency of
Head Neck
Sniffing | 0.001 | 9.44
±2.17 | 9.67
±2.04 | 8.56
±1.21 | 7.44
±2.40 | 9.22
±2.72 | 7.78
±2.28 | 9.25
±3.27 | 8.75
±2.42 | 12.63
±2.25 | | | Frequency of | 0.052 | 1.89 | 2.33 | 4.00 | 0.00 | 0.44 | 0.89 | 0.13 | 0.00 | 0.00 | | | Scent Marking | | ±1.32 | ±1.65 | ±2.66 | ±0.00 | ±0.24 | ±0.77 | ±0.13 | ±0.00 | ±0.00 | | | Frequency of | 0.063 | 6.44 | 3.89 | 7.00 | 7.22 | 8.00 | 10.67 | 4.25 | 4.50 | 4.75 | | | Grooming | | ±1.83 | ±0.93 | ±1.99 | ±1.28 | ±2.10 | ±2.00 | ±1.58 | ±0.96 | ±1.16 | | | Duration of Grooming (s) | 0.044 | 7.96
±2.36 | 12.94
±7.65 | 15.63
±6.71 | 16.12
±7.52 | 18.38
±6.80 | 13.27
±3.08 | 4.26
±1.40 | 4.79
±1.00 | 5.80
±1.88 | | Aggressive and non-aggressive social behaviors in long day females (LD), short day females that were responsive to changes in photoperiod (SD-R), and short-day females that were not responsive to changes in photoperiod (SD-NR) following 3, 6, or 9 weeks of treatment. Group means are presented as mean \pm s.e.m. (LD: N=9, SD-R: N=9, SD-NR: N=8). P-values are shown for treatment x time interactions, and boldface font indicates a significant treatment x time interaction (P<0.05, mixed model ANOVAs). Table S3. Effect of photoperiodic treatment on the relative abundance of bacterial phyla and families in the gut microbiome of male hamsters. | | Phylum or Family | | _ | LD | | SD-R | | | SD-NR | | | | |--------|------------------------------------|------------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | | | | P | Week
3 | Week
6 | Week
9 | Week
3 | Week
6 | Week
9 | Week
3 | Week
6 | Week
9 | | | Actinobacteria | | 0.904 | 0.004
±0.002 | 0.009
±0.003 | 0.006
±0.003 | 0.007
±0.003 | 0.007
±0.005 | 0.008
±0.003 | 0.006
±0.003 | 0.006
±0.003 | 0.007
±0.003 | | | Bacteroidetes | | 0.011 | 1.053
±0.322 | 1.716
±0.361 | 2.328
±0.517 | 1.266
±0.197 | 1.806
±0.386 | 1.655
±0.310 | 0.932
±0.177 | 1.274
±0.221 | 2.344
±0.652 | | | Deferribacteres | | 0.344 | 0.022
±0.015 | 0.010
±0.009 | 0.009
±0.007 | 0.000
±0.000 | 0.001
±0.001 | 0.015
±0.009 | 0.000
±0.000 | 0.003
±0.003 | 0.009
±0.008 | | | Elusimicrobia | | 0.472 | 0.001
±0.001 | 0.012
±0.011 | 0.005
±0.004 | 0.002
±0.002 | 0.002
±0.002 | 0.011
±0.006 | 0.076
±0.073 | 0.041
±0.035 | 0.082
±0.070 | | | Cyanobacteria | o) | 0.228 | 0.054
±0.031 | 0.074
±0.022 | 0.106
±0.030 | 0.140
±0.049 | 0.123
±0.051 | 0.227
±0.069 | 0.092
±0.021 | 0.079
±0.015 | 0.159
±0.052 | | Phylum | Epsilonbacteraeota | nt x Tim | 0.228 | 0.020
±0.004 | 0.018
±0.003 | 0.044
±0.005 | 0.056
±0.018 | 0.100
±0.056 | 0.056
±0.023 | 0.031
±0.008 | 0.035
±0.007 | 0.085
±0.047 | | Phy | Euryarchaeota | Treatment x Time | 0.730 | 0.008
±0.004 | 0.002
±0.001 | 0.009
±0.005 | 0.007
±0.006 | 0.006
±0.004 | 0.009
±0.004 | 0.002
±0.001 | 0.005
±0.004 | 0.028
±0.027 | | | Firmicutes | | 0.217 | 2.715
±0.723 | 2.502
±0.400 | 4.394
±1.078 | 2.642
±0.692 | 4.039
±1.298 | 5.080
±0.702 | 1.853
±0.261 | 4.000
±1.250 | 7.776
±4.534 | | | Patescibacteria | | 0.007 | 0.023
±0.004 | 0.048
±0.014 | 0.050
±0.008 | 0.024
±0.005 | 0.034
±0.006 | 0.060
±0.019 | 0.028
±0.006 | 0.042
±0.012 | 0.073
±0.027 | | | Proteobacteria | | 0.448 | 0.135
±0.034 | 0.094
±0.017 | 0.187
±0.067 | 0.075
±0.023 | 0.110
±0.050 | 0.326
±0.164 | 0.080
±0.012 | 0.117
±0.045 | 0.289
±0.206 | | | Spirochaetes | | 0.175 | 0.017
±0.009 | 0.016
±0.002 | 0.075
±0.043 | 0.057
±0.051 | 0.066
±0.032 | 0.086
±0.051 | 0.011
±0.002 | 0.025
±0.004 | 0.267
±0.175 | | | Tenericutes | | 0.128 | 0.084
±0.035 | 0.143
±0.054 | 0.128
±0.048 | 0.148
±0.093 | 0.128
±0.054 | 0.177
±0.066 | 0.046
±0.020 | 0.024
±0.005 | 0.045
±0.014 | | | Marinifilaceae | | 0.005 | 0.028
±0.005 | 0.047
±0.009 | 0.062
±0.019 | 0.045
±0.009 | 0.065
±0.010 | 0.095
±0.031 | 0.026
±0.010 | 0.036
±0.013 | 0.062
±0.023 | | | Muribaculaceae | Time | 0.015 | 0.809
±0.277 | 1.354
±0.308 | 1.674
±0.373 | 0.959
±0.210 | 1.454
±0.397 | 1.219
±0.250 | 0.930
±0.168 | 1.122
±0.317 | 1.747
±0.486 | | | Ruminococcaceae | Treatment x Time | 0.075 | 0.459
±0.104 | 0.534
±0.095 | 0.984
±0.178 | 0.388
±0.070 | 0.779
±0.244 | 0.934
±0.205 | 0.450
±0.116 | 0.703
±0.160 | 1.817
±0.933 | | Family | Saccharimonadaceae | Treat | 0.008 | 0.023
±0.004 | 0.048
±0.014 | 0.050
±0.008 | 0.024
±0.005 | 0.034
±0.006 | 0.060
±0.019 | 0.028
±0.006 | 0.042
±0.012 | 0.073
±0.027 | | Ę | Uncultured Mollicutes
Bacterium | | 0.045 | 0.007
±0.004 | 0.033
±0.021 | 0.007
±0.004 | 0.000
±0.000 | 0.001
±0.001 | 0.000
±0.000 | 0.003
±0.003 | 0.000
±0.000 | 0.000
±0.000 | | | Uncultured Bacterium | Treatment | 0.068 | 0.035
±0.015 | 0.047
±0.017 | 0.064
±0.022 | 0.182
±0.079 | 0.138
±0.059 | 0.208
±0.073 | 0.080
±0.030 | 0.052
±0.015 | 0.071
±0.020 | | Other | | 0.028 | 0.068
±0.028 | 0.086
±0.037 | 0.131
±0.040 | 0.039
±0.009 | 0.031
±0.006 | 0.102
±0.057 | 0.046
±0.011 | 0.038
±0.013 | 0.0
±0. | |----------------------------|------|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------| | Anaeroplasmataceae | | 0.087 | 0.024
±0.009 | 0.024
±0.028 | 0.031
±0.016 | 0.003
±0.003 | 0.003
±0.002 | 0.005
±0.005 | 0.033
±0.023 | 0.033
±0.034 | 0.0
±0 | | Bacteroidaceae | | 0.058 | 0.013
±0.005 | 0.022
±0.006 | 0.015
±0.006 | 0.023
±0.013 | 0.020
±0.007 | 0.027
±0.014 | 0.011
±0.003 | 0.010
±0.004 | 0.0
±0. | | BacteroidalesRF16gro
up | | 0.051 | 0.005
±0.002 | 0.006
±0.002 | 0.011
±0.005 | 0.011
±0.006 | 0.005
±0.002 | 0.009
±0.004 | 0.006
±0.002 | 0.006
±0.002 | 0.0
±0. | | Desulfovibrionaceae | | 0.061 | 0.055
±0.023 | 0.036
±0.014 | 0.075
±0.044 | 0.014
±0.006 | 0.031
±0.016 | 0.140
±0.114 | 0.015
±0.006 | 0.030
±0.013 | 0.0
±0. | | Lachnospiraceae | | 0.038 | 2.193
±0.736 | 1.383
±0.211 | 3.160
±1.125 | 1.023
±0.164 | 3.008
±1.096 | 5.445
±3.516 | 1.663
±0.536 | 2.716
±1.070 | 3.4
±0. | | Lactobacillaceae | | 0.030 | 0.046
±0.031 | 0.050
±0.150 | 0.089
±0.034 | 0.069
±0.028 | 0.050
±0.014 | 0.062
±0.022 | 0.074
±0.048 | 0.089
±0.058 | 0. ²
±0. | | Marinifilaceae | | <0.0001 | 0.028
±0.005 | 0.047
±0.009 | 0.062
±0.019 | 0.026
±0.010 | 0.036
±0.013 | 0.062
±0.023 | 0.045
±0.009 | 0.065
±0.010 | 0.0
±0. | | Muribaculaceae | | 0.0001 | 0.809
±0.277 | 1.354
±0.308 | 1.674
±0.373 | 0.930
±0.168 | 1.122
±0.317 | 1.747
±0.486 | 0.959
±0.210 | 1.454
±0.397 | 1.2
±0. | | Mycoplasmataceae | Time | 0.099 | 0.006
±0.002 | 0.005
±0.002 | 0.008
±0.002 | 0.009
±0.004 | 0.011
±0.004 | 0.150
±0.007 | 0.011
±0.003 | 0.020
±0.009 | 0.0
±0. | | Paracaedibacteracea | | 0.011 | 0.015
±0.008 | 0.003
±0.001 | 0.034
±0.023 | 0.007
±0.004 | 0.018
±0.010 | 0.030
±0.015 | 0.004
±0.003 | 0.015
±0.010 | 0.0
±0. | | Prevotellaceae | | 0.020 | 0.126
±0.043 | 0.175
±0.050 | 0.406
±0.126 | 0.197
±0.038 | 0.188
±0.044 | 0.289
±0.124 | 0.137
±0.052 | 0.137
±0.044 | 0.′
±0. | | Rikenellaceae | | 0.010 | 0.059
±0.019 | 0.097
±0.027 | 0.131
±0.040 | 0.079
±0.030 | 0.093
±0.027 | 0.205
±0.132 | 0.097
±0.031 | 0.119
±0.025 | 0. ²
±0. | | Ruminococcaceae | | 0.005 | 0.459
±0.104 | 0.534
±0.095 | 0.984
±0.178 | 0.450
±0.116 | 0.703
±0.160 | 1.817
±0.933 | 0.388
±0.070 | 0.779
±0.244 | 0.9
±0. | | Saccharimonadaceae | | <0.0001 | 0.023
±0.004 | 0.048
±0.014 | 0.050
±0.008 | 0.028
±0.006 | 0.042
±0.012 | 0.073
±0.027 | 0.024
±0.005 | 0.034
±0.006 | 0.0
±0. | | Spirochaetaceae | | 0.040 | 0.014
±0.009 | 0.008
±0.002 | 0.066
±0.041 | 0.004
±0.002 | 0.017
±0.004 | 0.240
±0.154 | 0.055
±0.051 | 0.061
±0.033 | 0.0
±0. | | Tannerellaceae | | 0.045 | 0.003
±0.002 | 0.005
±0.002 | 0.004
±0.001 | 0.005
±0.001 | 0.004
±0.001 | 0.008
±0.001 | 0.003
±0.001 | 0.005
±0.002 | 0.0
±0. | | Uncultured | | 0.043 | 0.053
±0.013 | 0.034
±0.012 | 0.072
±0.015 | 0.047
±0.015 | 0.055
±0.014 | 0.112
±0.077 | 0.039
±0.015 | 0.056
±0.027 | 0.7
±0. | | Veillonellaceae | | 0.021 | 0.011
±0.004 | 0.007
±0.003 | 0.016
±0.006 | 0.006
±0.001 | 0.018
±0.007 | 0.025
±0.011 | 0.008
±0.004 | 0.013
±0.007 | 0.0
±0. | Relative abundance of bacterial phyla and families in long day males (LD), short day males that were responsive to changes in photoperiod (SD-R), and short day males that were not responsive to changes in photoperiod (SD-NR) following 3, 6, or 9 weeks of treatment. Group means are presented as mean \pm s.e.m. (LD: N=6, SD-R: N=6, SD-NR: N=6). P-values (P) are shown for all treatment x time interactions in phyla and treatment, time, and treatment x time interactions in families with P<0.10. Boldface font indicates a significant P-value (P<0.05, mixed model ANOVAs). Table S4. Effect of photoperiodic treatment on the relative abundance of bacterial phyla and families in the gut microbiome of female hamsters. | | Phylum or Family | | _ | LD | | | SD-R | | SD-NR | | | | |--------|--------------------|------------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | | Phylum or Family | | P | Week
3 | Week
6 | Week
9 | Week
3 | Week
6 | Week
9 | Week
3 | Week
6 | Week
9 | | | Actinobacteria | | 0.424 | 0.001
±0.001 | 0.004
±0.002 | 0.009
±0.004 | 0.000
±0.000 | 0.003
±0.003 | 0.037
±0.032 | 0.002
±0.002 | 0.003
±0.001 | 0.011
±0.010 | | | Bacteroidetes | | 0.308 | 0.895
±0.302 | 1.155
±0.343 | 1.895
±0.329 | 0.956
±0.217 | 1.040
±0.324 | 8.701
±6.933 | 0.900
±0.184 | 1.169
±0.370 | 2.198
±0.441 | | | Deferribacteres | | 0.438 | 0.022
±0.019 | 0.021
±0.200 | 0.011
±0.008 | 0.000
±0.000 | 0.000
±0.000 | 0.002
±0.002 | 0.001
±0.001 | 0.015
±0.015 | 0.003
±0.003 | | | Elusimicrobia | | 0.441 | 0.006
±0.004 | 0.009
±0.005 | 0.016
±0.009 | 0.004
±0.004 | 0.001
±0.000 | 0.024
±0.018 | 0.007
±0.006 | 0.010
±0.008 | 0.005
±0.003 | | | Cyanobacteria | ime | 0.468 | 0.006
±0.003 | 0.004
±0.002 | 0.008
±0.006 | 0.003
±0.002 | 0.003
±0.002 | 0.004
±0.002 | 0.007
±0.003 | 0.006
±0.001 | 0.016
±0.009 | | Phylum | Epsilonbacteraeota | Treatment x Time | 0.351 | 0.030
±0.008 | 0.031
±0.013 | 0.042
±0.015 | 0.029
±0.012 | 0.024
±0.008 | 0.248
±0.203 | 0.030
±0.010 | 0.026
±0.006 | 0.066
±0.029 | | • | Euryarchaeota | Treatn | 0.406 | 0.026
±0.009 | 0.018
±0.003 | 0.042
±0.018 | 0.029
±0.012 | 0.024
±0.008 | 0.248
±0.203 | 0.030
±0.010 | 0.026
±0.006 | 0.066
±0.029 | | | Firmicutes | | 0.036 | 2.531
±0.803 | 2.862
±0.510 | 3.223
±1.042 | 2.262
±0.532 | 2.609
±0.752 | 9.429
±4.592 | 2.789
±0.719 | 3.930
±0.755 | 6.691
±1.900 | | | Patescibacteria | | 0.235 | 0.015
±0.002 | 0.033
±0.013 | 0.051
±0.006 | 0.026
±0.004 | 0.030
±0.008 | 0.243
±0.177 | 0.045
±0.018 | 0.040
±0.008 | 0.060
±0.010 | | | Proteobacteria | | 0.176 | 0.179
±0.054 | 0.310
±0.172 | 0.135
±0.057 | 0.178
±0.098 | 0.163
±0.048 | 0.634
±0.395 | 0.084
±0.026 | 0.133
±0.033 | 0.260
±0.126 | | | Spirochaetes | | 0.075 | 0.017
±0.005 | 0.015
±0.004 | 0.024
±0.003 | 0.012
±0.005 | 0.033
±0.019 | 0.104
±0.056 | 0.011
±0.005 | 0.017
±0.007 | 0.110
±0.067 | | | Tenericutes | | 0.511 | 0.052
±0.043 | 0.138
±0.111 | 0.095
±0.046 | 0.061
±0.025 | 0.050
±0.016 | 0.396
±0.336 | 0.092
±0.031 | 0.062
±0.021 | 0.126
±0.028 | | | Lachnospiraceae | Э | 0.071 | 1.970
±0.600 | 1.748
±0.433 | 2.133
±0.953 | 1.585
±0.446 | 1.791
±0.626 | 3.545
±1.444 | 2.045
±0.620 | 2.854
±0.697 | 4.546
±1.625 | | | Peptococcaceae | ment x Time | 0.067 | 0.015
±0.002 | 0.033
±0.013 | 0.051
±0.006 | 0.026
±0.004 | 0.030
±0.008 | 0.243
±0.177 | 0.045
±0.018 | 0.040
±0.008 | 0.060
±0.010 | | | Ruminococcaceae | Treatme | 0.033 | 0.470
±0.090 | 0.481
±0.092 | 0.717
±0.232 | 0.521
±0.120 | 0.582
±0.132 | 2.584
±1.442 | 0.551
±0.148 | 0.754
±0.129 | 1.724
±0.507 | | Family | Spirochaetaceae | | 0.081 | 0.018
±0.005 | 0.012
±0.004 | 0.019
±0.004 | 0.007
±0.004 | 0.031
±0.020 | 0.091
±0.046 | 0.010
±0.006 | 0.015
±0.007 | 0.095
±0.062 | | Fan | Anaeroplasmataceae | Treatment | 0.007 | 0.004
±0.004 | 0.002
±0.002 | 0.002
±0.002 | 0.039
±0.022 | 0.022
±0.009 | 0.020
±0.007 | 0.002
±0.001 | 0.005
±0.002 | 0.009
±0.008 | | | Other | Time | 0.065 | 0.033
±0.011 | 0.041
±0.007 | 0.074
±0.020 | 0.042
±0.016 | 0.021
±0.007 | 0.255
±0.204 | 0.019
±0.005 | 0.022
±0.004 | 0.080
±0.024 | | | Bacteroidaceae | Tir | 0.081 | 0.019
±0.011 | 0.025
±0.010 | 0.028
±0.011 | 0.006
±0.002 | 0.007
±0.005 | 0.076
±0.062 | 0.018
±0.006 | 0.024
±0.016 | 0.039
±0.019 | | Lachnospiraceae | 0.009 | 1.970
±0.600 | 1.748
±0.433 | 2.133
±0.953 | 1.585
±0.446 | 1.791
±0.626 | 3.545
±1.444 | 2.045
±0.620 | 2.854
±0.697 | 4.546
±1.625 | |--------------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Lactobacillaceae | 0.002 | 0.032
±0.018 | 0.034
±0.020 | 0.103
±0.028 | 0.045
±0.028 | 0.020
±0.007 | 0.150
±0.094 | 0.049
±0.022 | 0.041
±0.018 | 0.148
±0.065 | | Marinifilaceae | 0.074 | 0.030
±0.007 | 0.071
±0.026 | 0.076
±0.035 | 0.042
±0.013 | 0.037
±0.015 | 0.093
±0.049 | 0.018
±0.010 | 0.023
±0.007 | 0.050
±0.027 | | Peptococcaceae | 0.006 | 0.011
±0.003 | 0.010
±0.004 | 0.011
±0.005 | 0.009
±0.002 | 0.012
±0.003 | 0.022
±0.009 | 0.009
±0.002 | 0.017
±0.003 | 0.026
±0.012 | | Ruminococcaceae | 0.003 | 0.470
±0.090 | 0.481
±0.092 | 0.717
±0.232 | 0.521
±0.120 | 0.582
±0.132 | 2.584
±1.442 | 0.551
±0.148 | 0.754
±0.129 | 1.724
±0.507 | | Saccharimonadaceae | 0.092 | 0.015
±0.002 | 0.033
±0.013 | 0.051
±0.006 | 0.026
±0.004 | 0.030
±0.008 | 0.060
±0.177 | 0.044
±0.018 | 0.040
±0.008 | 0.060
±0.010 | | Spirochaetaceae | 0.008 | 0.018
±0.005 | 0.012
±0.004 | 0.019
±0.004 | 0.007
±0.004 | 0.031
±0.020 | 0.091
±0.046 | 0.010
±0.006 | 0.015
±0.007 | 0.095
±0.062 | Relative abundance of bacterial phyla and families in long day females (LD), short day females that were responsive to changes in photoperiod (SD-R), and short day females that were not responsive to changes in photoperiod (SD-NR) following 3, 6, or 9 weeks of treatment. Group means are presented as mean \pm s.e.m. (LD: N=6, SD-R: N=6, SD-NR: N=6). P-values (P) are shown for all treatment x time interactions in phyla and treatment, time, and treatment x time interactions in families with P<0.10. Boldface font indicates a significant P-value (P<0.05, mixed model ANOVAs). Table S5. Serum DHEA levels of male and female hamsters following 9 weeks of treatment. | Sex | D | Serum DHEA Concentration at Week 9 (ng mL ⁻¹) | | | | | | | |--------|-------|---|---------------|-------------------|--|--|--|--| | Sex | r | LD | SD-R | SD-NR | | | | | | Male | 0.692 | 3.637 ± 0.609 | 4.789 ± 1.052 | 4.402 ± 1.252 | | | | | | Female | 0.463 | 2.419 ± 0.697 | 4.417 ± 1.257 | 3.393 ± 0.876 | | | | | Serum dehydroepiandrosterone (DHEA) levels in long day males (LD), short day males that were responsive to changes in photoperiod (SD-R), short day males that were not responsive to changes in photoperiod (SD-NR), LD females, SD-R females, and SD-NR females following 9 weeks of treatment. Group means are presented as mean \pm s.e.m. (LD males: N=7, SD-R males: N=9, SD-NR males: N=5, LD females: N=8, SD-R females: N=8, SD-NR females: N=5). P-values (P) are shown for statistical comparisons across treatment groups for each sex (one-way ANOVAs). Table S6. Correlations between serum DHEA levels, the gut microbiome, and behavior of male and female hamsters. | Ве | havior or gut bacteria
phylum or family | Correlation coefficient with serum DHEA (r _s) | N | P | |---------|--|---|----|-------| | | Number of Attacks | 0.796 | 14 | 0.001 | | Males | Attack Duration | 0.733 | 14 | 0.003 | | Ma | Patescibacteria | 0.506 | 14 | 0.065 | | | Marinifilaceae | 0.125 | 14 | 0.125 | | | Number of Attacks | -0.120 | 13 | 0.697 | | Se | Attack Duration | -0.115 | 13 | 0.710 | | Females | Anaeroplasmataceae | -0.011 | 13 | 0.971 | | Fe | Firmicutes | -0.187 | 13 | 0.541 | | | Ruminococcaceae | -0.093 | 13 | 0.765 | Correlations between serum dehydroepiandrosterone (DHEA) levels, the gut microbiome, and behavior in long day males (LD), short day males that were responsive to changes in photoperiod (SD-R), short day males that were not responsive to changes in photoperiod (SD-NR), LD females, SD-R females, and SD-NR females following 9 weeks of treatment. Correlations coefficients (r_s), number of animals (N), and P-values (P) are shown for each analysis, which was performed across treatment groups (LD males: N=4, SD-R males: N=6, SD-NR males: N=4, LD females: N=5, SD-R females: N=5, SD-NR females: N=3). Boldface font indicates a significant P-value (P<0.05, Spearman's rank correlations).