SUPPLEMENTAL MATERIAL

Data S1.

Supplemental Methods

The JHS is a community-based prospective cohort study designed to examine the etiology of CVD and related risk factors among blacks.¹ CARDIA is a prospective cohort study designed to examine the development, determinants, and risk factors of clinical and subclinical CVD.² The IDH study was designed to compare strategies for diagnosing hypertension among a community-based sample.³ The MHT study was designed to evaluate the prevalence, predictors, and prognosis of masked hypertension.⁴

The Jackson Heart Study (JHS)

The JHS, a population-based prospective cohort study, was designed to evaluate the etiology of cardiovascular disease among African Americans. The JHS enrolled a total of 5,301 non-institutionalized African Americans ≥ 21 years old between 2000 and 2004 from the Atherosclerosis Risk in the Community site in Jackson, Mississippi, and a representative sample of urban and rural Jackson, Mississippi metropolitan tri-county (Hinds, Madison and Rankin counties) residents, volunteers, randomly contacted individuals and secondary family members. As part of an ancillary study, 1,148 JHS participants underwent 24-hour ABPM during their baseline examination. For the current analysis, we included 1,046 JHS participants who had ≥ 10 SBP and DBP valid readings while awake and ≥ 5 SBP and DBP valid readings while asleep. The JHS protocol was approved by the institutional review boards at the University of Mississippi Medical Center, Jackson State University, and Tougaloo College.

The Coronary Artery Risk Development in Young Adults (CARDIA) study

The CARDIA study was designed to examine the development and determinants of clinical and subclinical cardiovascular disease and its risk factors. The CARDIA study recruited 5,115 white and black men and women aged 18 to 30 years at four field centers in the United States (Birmingham, AL; Chicago, IL; Minneapolis, MN; and Oakland, CA) from 1985 to 1986. Participants have completed nine study examinations including a baseline exam at year 0 and follow-up exams at 2, 5, 7, 10, 15, 20, 25 and 30 years following baseline. The details of these examinations are available on the CARDIA study website at www.cardia.dopm.uab.edu. As part of an ancillary study at the Year 30 Exam (2015-2016), 825 non-pregnant participants at the Birmingham and Chicago Field Centers underwent 24-hour ABPM. For the current analysis, we included 781 CARDIA participants who had \geq 10 SBP and DBP valid readings while awake and \geq 5 SBP and DBP valid readings while asleep. Institutional review boards at the coordinating center and each field center approved all aspects of the CARDIA study.

The Improving the Detection of Hypertension (IDH) Study

The IDH Study recruited adults, primarily from the upper Manhattan community surrounding Columbia University Medical Center, who did not have any of the following conditions: (1) clinic systolic blood pressure (SBP) \geq 160 mm Hg or diastolic blood pressure (DBP) \geq 105 mm Hg, (2) evidence of secondary hypertension, (3) current use of antihypertensive medications or other medications that are known to affect SBP or DBP (i.e. steroids, tricyclic antidepressants, etc.), (4) history of overt cardiovascular disease, chronic kidney failure, or organ transplantation, (5) current liver disease, adrenal disease, thyroid disease, rheumatologic disease, hematologic disease, or cancer (not in remission for at least 6 months), (6) currently pregnant, or (7) currently diagnosed with dementia. The IDH study recruited 408 eligible participants, all of whom underwent 24-hour ABPM twice, between March 2011 and August 2013. For consistency with the other studies, we only used ABPM data from the first 24-hour monitoring period. For the current analysis, we included 395 IDH study participants with \geq 10 SBP and DBP valid readings while awake and \geq 5 SBP and DBP valid readings while asleep. The IDH study protocol was approved by Columbia University's institutional review board.

The Masked Hypertension (MHT) Study

The MHT study recruited adults who were employed and maintained > 20 work hours per week and worked on two or more consecutive days per week. Participants were recruited from Stony Brook University, University Hospital at Stony Brook, Columbia University Medical Center, and a private hedge fund management organization. Participants with any of the following conditions were not eligible for the MHT study: (1) screening systolic blood pressure (SBP) \geq 160 mm Hg or diastolic blood pressure (DBP) \geq 105 mm Hg, (2) evidence of secondary hypertension, (3) current use of antihypertensive medications or other medications that are known to affect BP (i.e. steroids, tricyclic antidepressants, etc.), (4) a history of overt cardiovascular disease or chronic renal failure, (5) current liver disease, adrenal disease, thyroid disease, rheumatologic disease, hematologic disease, or cancer (not in remission for at least 6 months), (6) currently pregnant, (7) currently engaged in active substance abuse, or (8) currently diagnosed with a serious mental health illness. The MHT Study enrolled 1,010 eligible participants between February 2005 and July 2012, and 893 of the enrolled participants underwent 24-hour ambulatory blood pressure monitoring (ABPM). For the current analysis, we included 772 participants with ≥ 10 SBP and DBP valid readings while awake and \geq 5 SBP and DBP valid readings while asleep. The

institutional review boards at the participating research centers—Stony Brook University and Columbia University—approved the conduct of the MHT.

Candidate Modeling Algorithms

The modeling algorithms we included as candidates to create predictive equations included (1) logistic regression using forward variable selection, (2) logistic regression using backwards variable selection, (3) generalized logistic regression using forward variable selection, (4) penalized logistic regression with a lasso penalty, (5) penalized logistic regression with a ridge penalty, (6) random forests, and (7) gradient boosted decision trees.^{5,6} Generalized additive logistic regression incorporates non-linear effects into the framework of logistic regression by simultaneously fitting locally weighted smoothing curves and linear regression coefficients using a back-fitting algorithm. This algorithm is described in detail by the authors of the generalized additive model.⁶ Forward variable selection incorporates variables into a statistical model one by one and the variable added at each step is the one that optimizes some model goodness-of-fit criteria. Additionally, forward variable selection for the generalized additive logistic regression model incorporates non-linear effects for continuous variables in the model by comparing the model's goodness-of-fit with and without a non-linear effect for each continuous predictor variable. We used Akaike's information criteria to evaluate model goodness-of-fit and guide decisions to include additional terms into the predictive model. To avoid over-fitting, we implemented a maximum of 15 steps in the forward variable selection algorithms. Penalized logistic regression minimizes the usual deviance of the model, with a constraint on the sum of the absolute values (lasso penalty) or squared values (ridge penalty) of the regression coefficients. Random forests and gradient boosted decision trees are each ensemble learning

techniques based on classification and regression trees. Trees in the random forest can be fit in parallel and are de-correlated from each other, whereas gradient boosted trees are fit sequentially and each new tree attempts to correct the errors of the previous trees.

Development and internal validation of predictive equations

We applied resampling to develop and internally validate predictive equations using the derivation dataset. Optimistic estimates of generalization error occur when the same data set that is used to develop a predictive equation is also used to evaluate the accuracy of the equation. We applied the following procedure to avoid optimistic errors: (1) Using the derivation dataset, split the data randomly into a training and test set. Note that validation dataset is not used. (2) Apply each candidate modeling algorithm to the training dataset, separately, to develop one predictive equation for each candidate modeling algorithm. A modeling algorithm is the collection of steps that are applied to translate data into a predictive equation. (3) Apply each predictive equation to the test set, separately, to compute one set of predictions using each equation. (4) Evaluate each set of predicted probabilities based on their similarity to the observed outcomes in the test set by computing the calibration error, concordance error, and scaled Brier score for each set of actions. (5) Repeat steps 1-4 at least 100 times. We used 250 replications of steps 1-4 to achieve stabilized distributions of concordance error, calibration error, and scaled Brier scores.

Validation of predictive equations

It is recommended that prediction equations are validated in an external sample. Three commonly used metrics that assess different aspects of a prediction equation are calibration, discrimination, and net reclassification improvement (NRI).^{7–11} Calibration estimates the

accuracy of a prediction equation for estimating the absolute probability of the outcome while discrimination assesses whether an equation will assign higher predicted probability to those with, versus their counterparts without, the outcome.¹² An equation with good calibration but poor discrimination or good discrimination but poor calibration may not be useful. The NRI estimates how well a prediction equation classifies a population when a given probability cutpoint is applied. The NRI statistics (i.e., positive NRI and negative NRI) are each based on a comparison between a current prediction equation and a new prediction equation. Positive NRI is the proportion of people with the outcome who have a higher predicted probability using a new equation versus an existing equation. Analogously, the negative NRI is the proportion of people without the outcome who have a lower predicted probability using a new equation versus an existing equation. Overall continuous NRI is the sum of its positive and negative components. Categorical NRI statistics have similar interpretations to their continuous counterparts.

Supplemental results

Exploratory analyses

The predictive equation for non-dipping diastolic blood pressure included age, race/ethnicity, waist circumference, alcohol use, high density lipoprotein-cholesterol, and log of the albumin-tocreatinine ratio as predictors (**Table S10**). In the validation data, there was no evidence of miscalibration overall for the non-dipping diastolic blood pressure predictive equations (**Table S11**). However, Hosmer and Lemeshow's goodness of fit test indicated miscalibration for these predictive equations among participants not taking antihypertensive medication. The value of Youden's index for these predictive equations exceeded those of ambulatory blood pressure screening methods based on clinic blood pressure (**Table S12**). However, screening for ambulatory blood pressure monitoring with antihypertensive medication use provided a similar value for Youden's index in comparison to the predictive equations for non-dipping diastolic blood pressure. Categorical and continuous net reclassification indices also indicated that the predictive equation for non-dipping diastolic blood pressure improved upon screening methods based on clinic blood pressure (**Table S13**).

Table S1. Description of candidate variables in the Jackson Heart, Coronary Artery Risk Development in Young Adults, Improving the Detection of Hypertension, and Masked Hypertension studies.

Variable	Units or	Description			
	Categories	JHS	CARDIA	MHT	IDH
Age	Years	Self-reported at	Collected by	Collected I	ру
Race	Black or	baseline	questionnaire at	questionna	iire
	white	interview.	baseline and verified		
Sex	Male or		at the Year 2 exam.		
	female				
Education	Years of	-	Collected by	-	
	formal		questionnaire at		
	education		Year 30 exam.		
Family	Above or	-			
Income	below				
	\$25,000 /				
	year				
Current	Yes or no	Participants were as	sked the following ques	tions:	
Smoker		(1) Have you	(1) Have you ever	(1) Have y	ou ever
		smoked more	used any tobacco	smoked cig	garettes
		than 400	product such as	regularly f	or at
		cigarettes in your	cigarettes, cigars,	least 3 mor	nths?
		lifetime?	tobacco pipe,	By "regula	rly" we
			chewing tobacco,	mean 5 or	more

		snuff, e-cigarettes	cigarettes per
		(e.g., electronic	week
		cigarettes, vape	
		pens, e-hookahs,	
		etc.), nicotine	
		chewing gum, or a	
		nicotine patch?	
	(2) Do you now	(2) Have you ever	(2) Do you
	smoke cigarettes?	smoked cigarettes	currently smoke
		regularly for at least	cigarettes?
		three	
		months?" ("Regularl	
		y" meant at least 5	
		cigarettes per week	
		almost every week.)	
	(3) How long has	(a) Do you still	(3) When did you
	it been since you	smoke cigarettes	stop smoking
	last smoked	regularly? If	cigarettes
	cigarettes?	response was "No",	regularly?
		then participants	
		were asked about	
		time since they	
		smoked cigarettes	
	it been since you last smoked	smoke cigarettes regularly? If response was "No", then participants were asked about time since they	stop smoking cigarettes

			regularly. (b) Have	
			you started smoking	
			regularly in the last	
			three months?	
		Participants who we	ere currently smoking o	r had quit less than
		1 year ago were giv	en a value of 'Yes' for	this variable.
Antihyperten	Yes or no	Defined as Yes if	Defined as Yes if	NONE,
sive		participant's self-	participant's self-	antihypertensive
Medication		reported	reported	medication use
Use		antihypertensive	antihypertensive	was an exclusion
		medication use at	medication use	criterion
		baseline	during Year 30	
		interview.	exam.	
Alcohol	Yes or No	Participants were	Participants were	Participants were
Consumption		asked: "Did you	asked: "During the	asked "Did you
		drink any	past 12 months, on	drink any
		alcoholic	average, how many	alcoholic
		beverages in the	days per week,	beverages in the
		past year?" at	month, or year did	past year?"
		baseline interview	you drink any	
			alcoholic beverage?"	

			by questionnaire		
			• •		
			during Year 30		
			exam.		
		Participants who ine	dicated consumption of	alcohol in the past	
		year had a value of 'Yes' for this variable and 'No' otherwise.			
Sleep	Hours	Participants	Participants wore actig	graphy watches	
Duration		provided sleep	(Actiwatch, Philips-Re	espironics, Bend,	
		diaries indicating	OR) that monitored movement and		
		when they went to	indicated when participants were awake		
		sleep and when	and asleep. Sleep duration was defined		
		they woke up.	using the actigraphy data supplemented		
		Sleep duration	with self-reported sleep/wake times from		
		was defined using	a sleep diary.		
		these sleep			
		diaries.			
Clinic	mm Hg	After participants h	ad sat quietly for at	After participants	
systolic and		least 5 minutes in a	n upright position	had sat quietly for	
diastolic		with their back and	arms supported, feet	at least 5 minutes	
Blood		flat on the floor, legs uncrossed, and an in an upright		in an upright	
Pressure		appropriate-sized cuff was fitted, trained position with the		position with their	
		staff conducted bloc	od pressure	back and arms	
		measurements using	g their right arm. Cuff	supported, feet	

size was determined	d from an arm	flat on the floor,
circumference meas	surement.	legs uncrossed,
		and an
		appropriate-sized
		cuff was fitted,
		trained staff
		conducted blood
		pressure
		measurements
		using their left
		arm. Cuff size
		was determined
		from an arm
		circumference
		measurement.
One to two	Three blood pressure	One to two
minutes elapsed	measurements, each	minutes elapsed
between the	separated by at least	between the
measurements.	30 seconds, were	measurements.
Two	recorded. The	Three blood
measurements	second and third BP	pressure
were taken and	measurements were	measurements
		were obtained
averaged for	averaged for	were obtained

		analysis. A	analysis. An	using a mercury
			-	
		random-zero	automated	sphygmomanomet
		sphygmomanome	oscillometric device	er and averaged
		ter (Hawksley and	(Omron model®	for analysis.
		Sons, Ltd) was	HEM907XL) was	
		used and blood	used to conduct	
		pressure values	blood pressure	
		were later	measurements.	
		calibrated using		
		an Omron device.		
Diabetes	Yes or no	Participants with	Participants with	Participants with
		fasting (≥ 8	fasting (\geq 8 hours)	1) self-reported
		hours) glucose \geq	glucose \geq 126 mg/dL	diagnosis, 2)
		126 mg/dL or	or current use of	fasting (≥ 8 hours)
		$HbA1c \ge 6.5\%$ or	antidiabetes	glucose ≥ 126
		taking anti-	medication were	mg/dL, 3) HbA1c
		diabetes	given a value of	\geq 6.5% or 4)
		medication were	'Yes' for this	taking anti-
		given a value of	variable.	diabetes
		'Yes' for this		medication were
		variable.		given a valye of
				'Yes' for this
				variable.

Estimated	$< 60 \text{ or} \ge 60$	Calculated using the	Calculated using the Chronic Kidney Disease Epidemiology			
glomerular	ml/min/1.73	Collaboration (CKI	D-EPI) equation.			
filtration rate	m ²					
High density	mg/dL	Measured by	Measured by trained	Enzymatic		
lipoproteins		trained staff using	staff and quantified	colorimetric test		
		blood samples	by precipitation with	using cholesterol		
		after an overnight	dextran sulfate-	esterase and		
		fast. Serum	magnesium chloride	cholesterol		
		samples were sent		oxidase coupled		
		on dry ice via	with PEG on a			
		overnight express		Roche modular		
		to the testing		test or Hitachi		
		laboratory		system		
Low density	mg/dL	(Atherotech in	Measured by trained s	taff and calculated		
lipoproteins		Birmingham,	using the Friedewald e	equation.		
Total	mg/dL	AL), where they	Measured by trained	Enzymatic		
cholesterol		were kept at	staff and quantified	colorimetric test		
		-70°C until	using cholesterol in	using cholesterol		
		measurement.	lipoprotein fractions	esterase and		
			performed by in	cholesterol		
			vitro enzymatic tests	oxidase on a		
			using Roche	Roche modular		
			reagents on a Roche			

			Double Modular P	test or Hitachi
			Analytical	system
			Automated	
			Analyzer.	
Albuminuria	Urine	Urinary albumin	Measured by trained	Urinary albumin
	albumin to	and creatinine	staff using spot urine	and creatinine
	urine	were quantified	samples. Urinary	were quantified
	creatinine	from a 24-hour	albumin and	using the
	ratio >30 or	urine collection or	creatinine were	nephelometric
	\leq 30 mg/g	from a spot urine	quantified using the	immunoassay and
		sample using the	nephelometric	enzymatic
		nephelometric	immunoassay and	methods,
		immunoassay and	enzymatic methods.	respectively from
		enzymatic		an overnight urine
		methods,		collection (sleep
		respectively		onset up to and
				including first
				morning void).
Height	cm	Measured by traine	d staff using a standardi	ized protocol
Weight	kg			
Waist	cm			
Circumferen				
се				

Neck	cm	
Circumferen		
се		
Body Mass	kg/m ²	Computed as weight in kilograms divided by height in meters
Index		squared

			in current lysis	
Characteristic*	Overall (N = 5114)	No (N = 4327)	Yes (N = 787)	P-value
Age, years	54.8 (3.63)	54.8 (3.62)	54.6 (3.68)	0.251
Male	45.5	46.5	40.2	0.001
Smoking Habits				0.154
Never	62.8	62.6	63.3	
Former	23.2	23.9	21.1	
Current	14.0	13.5	15.5	
Waist circumference, cm	96.2 (16.3)	95.9 (16.6)	97.2 (15.4)	0.039
Weight, lbs	194.1 (48.3)	193.2 (49.0)	196.7 (45.7)	0.069
Height, cm	169.9 (9.41)	170.2 (9.42)	168.9 (9.32)	< 0.001
Albumin-to-creatinine ratio, mg/g	27.2 (200.0)	26.0 (201.1)	30.8 (196.7)	0.552
Albuminuria [†]	8.34	8.16	8.91	0.557
eGFR < 60 ml/min/1.73 m2	3.14	2.89	3.95	0.170
Blood glucose, mg/dL	102.6 (31.8)	101.9 (29.6)	104.9 (37.8)	0.040
Diabetes	14.3	13.4	17.3	0.006
HDL, mg/dL	59.8 (18.9)	60.0 (18.9)	59.3 (18.9)	0.415
LDL, mg/dL	110.3 (33.2)	109.8 (33.1)	111.7 (33.6)	0.168
Total cholesterol, mg/dL	191.3 (38.1)	191.0 (37.9)	192.2 (38.7)	0.420
Blood pressure, mm Hg	-			
Clinic systolic	120.8 (16.7)	120.5 (16.5)	121.8 (17.4)	0.069
Clinic diastolic	74.1 (11.1)	73.9 (11.1)	74.5 (11.0)	0.157

Table S2. Characteristics of participants in the Coronary Artery Risk Development Inyoung Adults (CARDIA) study stratified by inclusion in the current analysis.

*Table values are presented as mean (standard deviation) or percent.

†Albuminuria: urinary albumin to urinary creatinine ratio ≥ 30 mg/g.

eGFR = estimated glomerular filtration rate

	Included in current analysis			
Characteristic*	Overall (N = 5306)	No (N = 4243)	Yes (N = 1063)	P-value
Age, years	54.8 (12.9)	53.9 (13.1)	58.7 (11.0)	< 0.001
Male	36.5	37.7	32.1	< 0.001
Smoking Habits				< 0.001
Never	67.6	67.7	67.2	
Former	19.3	18.5	22.7	
Current	13.1	13.8	10.1	
Waist circumference, cm	100.7 (16.2)	100.8 (16.3)	100.2 (15.7)	0.274
Weight, lbs	199.5 (47.2)	200.8 (47.9)	194.5 (43.5)	< 0.001
Height, cm	168.9 (9.28)	169.1 (9.32)	168.2 (9.10)	0.003
Albumin-to-creatinine ratio, mg/g	12.5 (125.4)	6.07 (111.0)	31.7 (159.2)	< 0.001
Albuminuria [†]	3.48	1.26	10.1	< 0.001
eGFR < 60 ml/min/1.73 m2	6.22	6.22	6.20	> 0.999
Blood glucose, mg/dL	100.0 (33.4)	99.5 (34.1)	102.1 (30.2)	0.022
Diabetes	23.7	22.9	26.8	0.010
HDL-cholesterol, mg/dL	51.8 (14.6)	51.2 (14.5)	53.9 (15.0)	< 0.001
LDL-cholesterol, mg/dL	126.6 (36.6)	126.8 (36.8)	125.9 (35.8)	0.460
Total cholesterol, mg/dL	199.3 (40.1)	198.8 (40.2)	201.3 (39.8)	0.074
Blood pressure, mm Hg				
Clinic systolic	127.5 (16.9)	127.4 (17.2)	127.6 (15.8)	0.710
Clinic diastolic	75.7 (8.77)	76.0 (8.82)	74.3 (8.47)	< 0.001

Table S3. Characteristics of participants in the Jackson Heart Study (JHS) stratified by inclusion in the current analysis.

*Table values are presented as mean (standard deviation) or percent.

†Albuminuria: urinary albumin to urinary creatinine ratio ≥ 30 mg/g.

eGFR = estimated glomerular filtration rate; HDL = high density lipoprotein; LDL = low density lipoprotein

		Age, years			Prevale	nce, %
Study	Number of participants	Mean +/- SD	Range	% Women	NHTN	NDSBP
CARDIA	787	54.6 +/- 3.7	47.0 - 60.0	59.8	41.2	32.3
JHS	1063	58.7 +/- 11.0	21.0 - 84.0	67.9	57.1	72.8
IDH	395	41.2 +/- 13.2	18.3 - 81.8	60.0	26.8	33.7
MHT	772	45.1 +/- 10.4	21.3 - 81.3	59.3	18.7	24.7

Table S4. Age, sex, and prevalence of nocturnal blood pressure phenotypes stratified by study.

CARDIA = Coronary Artery Risk Development in Young Adults, IDH = Improving Detection of Hypertension, JHS = Jackson Heart Study, MHT = Masked Hypertension, NDSBP = nondipping systolic blood pressure, NHT = nocturnal hypertension, SD = standard deviation, % = percent Table S5. Bootstrapped means of performance metrics and overall ranks of competing modeling algorithms for prediction of nocturnal hypertension and non-dipping systolic blood pressure.

		Hosmer-			
Madalara	Concordance	Lemeshow X ²	Scaled Brier	Mean	
Modeling	Error (95% CI)	Statistic (95%	Score (95% CI)	Rank	
Algorithm		CI)			
	F	Prediction of nocturn	al hypertension		
Generalized	16.9 (16.7, 17.1)	12.2 (11.5, 12.9)	31.3 (30.8, 31.7)	1.3	
additive regression					
Forward stepwise	17.1 (16.9, 17.3)	13.7 (12.9, 14.4)	30.7 (30.3, 31.2)	3.0	
regression					
Random	17.3 (17.0, 17.5)	10.8 (10.3, 11.4)	30.2 (29.8, 30.6)	3.3	
forest					
Backward stepwise	17.2 (16.9, 17.4)	13.2 (12.5, 13.9)	30.6 (30.2, 31.1)	3.3	
regression					
Lasso penalized	17.1 (16.8, 17.3)	17.9 (17.1, 18.8)	29.7 (29.3, 30.0)	4.3	
regression					
Gradient boosted	17.4 (17.2, 17.6)	16.9 (15.1, 18.6)	29.1 (28.5, 29.6)	6.3	
decision trees					
Ridge penalized	17.3 (17.0, 17.5)	19.0 (18.2, 19.8)	29.2 (28.9, 29.6)	6.3	
regression					
	Prediction of non-dipping systolic blood pressure				

Generalized	27.3 (27.1, 27.6)	12.8 (12.0, 13.5)	15.0 (14.6, 15.3)	1.7
additive regression				
Random	27.4 (27.1, 27.6)	11.8 (11.2, 12.5)	14.7 (14.4, 15.1)	2.0
forest				
Backward stepwise	27.9 (27.6, 28.1)	13.4 (12.6, 14.1)	14.3 (13.9, 14.7)	4.0
regression				
Forward stepwise	27.9 (27.7, 28.2)	12.9 (12.1, 13.6)	14.2 (13.8, 14.6)	4.3
regression				
Ridge penalized	27.8 (27.5, 28.1)	17.7 (16.8, 18.6)	13.3 (13.1, 13.5)	5.0
regression				
Gradient boosted	27.1 (26.9, 27.4)	25.9 (23.9, 27.9)	12.2 (11.7, 12.7)	5.0
decision trees				
Lasso penalized	28.1 (27.8, 28.3)	16.7 (15.9, 17.6)	13.1 (12.9, 13.4)	6.0
regression				

Table values were computed using the derivation data.

For clarity, concordance error, Brier scores, and calibration error were multiplied by 100.

Mean ranks were determined by taking the average of the order of the modeling algorithms from best (i.e., 1st) to worst (i.e., 7th) for concordance, calibration, and scaled Brier scores, separately.

Concordance error was measured one minus the concordance (C) statistic.

For concordance error and the Hosmer-Lemeshow X^2 Statistic, lower values indicate better fit. For the scaled Brier score, higher values indicate better fit.

CI = confidence interval.

Table S6. Proportions of bootstrap replicates where candidate variables were selected for inclusion in predictive equations for nocturnal hypertension.

Variable	Nocturnal hypertension				
Included in predictive equations					
Race/ethnicity	100.0				
Clinic SBP	100.0				
Albumin-to-creatinine ratio	99.9				
Age	98.3				
Height	75.6				
Neck circumference	64.8				
Smoking status	57.0				
High density lipoprotein-cholesterol	53.1				
Clinic DBP	40.1				
Not included in predictive equations					
Blood glucose	45.9				
Sex	45.0				
eGFR	27.0				
Alcohol use	24.1				
eGFR < 60 ml/min/1.73 m2	23.4				
Low density lipoprotein-cholesterol	10.2				
High school graduate	10.0				
Body mass index	7.4				
Waist circumference	6.8				
Antihypertensive medication use	5.4				
Diabetes	5.4				
Total cholesterol	5.1				

eGFR = estimated glomerular filtration rate; DBP = diastolic blood pressure; SBP = systolic blood pressure

Table S7. Proportions of bootstrap replicates where candidate variables were selected for inclusion in predictive equations for non-dipping systolic blood pressure.

Variable	Non-dipping systolic blood pressure					
Included in predictive equations						
Race/ethnicity	100.0					
Alcohol use	98.9					
Age	91.5					
High density lipoprotein-cholesterol	89.8					
Albumin-to-creatinine ratio	86.3					
Sex	75.8					
Waist circumference	57.9					
Height	27.5					
Not included in predictive equations						
Blood glucose	32.9					
Smoking status	29.4					
Clinic DBP	28.0					
Neck circumference	25.6					
Low density lipoprotein-cholesterol	24.0					
Antihypertensive medication use	21.5					
Body mass index	20.2					
Total cholesterol	17.6					
eGFR < 60 ml/min/1.73 m2	15.8					
Clinic SBP	13.7					
Diabetes	11.1					
eGFR	11.5					
High school graduate	10.0					

eGFR = estimated glomerular filtration rate; DBP = diastolic blood pressure; SBP = systolic blood pressure

	Prevalence, %		P-value from Hosmer and Lemeshow's goodness of fit test		Concordance Statistic (95% Confidence Interval)		
	NHT	NDSBP	NHT	NDSBP	NHT	NDSBP	
Race							
Non-white, N = 318 (62.8%)	46.2	57.2	0.310	0.158	0.82 (0.78, 0.87)	0.70 (0.64, 0.75)	
White, N = 188 (37.2%)	20.2	22.9	0.143	0.560	0.81 (0.72, 0.89)	0.53 (0.43, 0.63)	
Sex							
Female, N = 315 (62.3%)	30.2	43.8	0.152	0.925	0.83 (0.78, 0.87)	0.76 (0.71, 0.82)	
Male, N = 191 (37.7%)	47.1	45.5	0.983	0.209	0.84 (0.79, 0.90)	0.69 (0.61, 0.77)	
Antihypertensive medication u	Antihypertensive medication use						
No, N = 346 (68.4%)	27.2	35.5	0.381	0.557	0.83 (0.78, 0.88)	0.66 (0.60, 0.73)	
Yes, N = 160 (31.6%)	56.9	63.7	0.799	0.307	0.79 (0.72, 0.86)	0.76 (0.68, 0.84)	
High school graduate							
Yes, N = 462 (91.3%)	34.0	42.9	0.382	0.558	0.84 (0.80, 0.88)	0.73 (0.68, 0.77)	
No, N = 44 (8.7%)	63.6	61.4	0.395	0.344	0.73 (0.58, 0.89)	0.76 (0.61, 0.91)	
All participants in validation data							
Overall, N = 506 (100.0%)	36.6	44.5	0.423	0.465	0.84 (0.80, 0.87)	0.73 (0.69, 0.78)	

Table S8. Calibration and discrimination of predictive equations for nocturnal hypertension and non-dipping systolic blood pressure overall and in sub-groups determined by race, sex, and antihypertensive medication use.

Table values were computed using the validation data.

NDSBP = non-dipping systolic blood pressure, NHT = nocturnal hypertension

pressure. Equation	Formula
Nocturnal hypertension	Linear predictor = $-33.055454 + 0.032777*(age in years) + 0.031443*(neck circumference in cm) + 1.014224*(1 if black, 0 otherwise) + 0.254249*(1 if asian, 0 otherwise) + 0.956609*(1 if other race, 0 otherwise) - 0.321403*(1 if former smoker, 0 otherwise) - 0.457890*(1 if never smoked, 0 otherwise) + 0.349868*(height in cm) - 0.000964*(height in cm)^2 - 0.118164*(clinic SBP in mm Hg) + 0.001829*(clinic SBP in mm Hg)^2 - 0.000006*(clinic SBP in mm Hg)^3 - 0.132077*(clinic DBP in mm Hg) + 0.000990*(clinic DBP in mm Hg)^2 - 0.008802*(HDL in mg/dL) + 0.321093*log(ACR + 1) Predicted probability = exp(linear predictor) / (1 + exp(linear predictor))$
Non-dipping systolic blood pressure	Linear predictor = $-13.284558 + 0.027831*(age in years) - 0.001952*(age in years)^2 + 0.000024*(age in years)^3 - 0.611072*(1 if male, 0 otherwise) + 1.099851*(1 if black, 0 otherwise) + 0.182960*(1 if asian, 0 otherwise) + 0.470218*(1 if other race, 0 otherwise) - 0.437195*(1 if drinks alcohol, 0 otherwise) + 0.145586*(height in cm) - 0.000382*(height in cm)^2 + 0.010166*(waist circumference in cm) - 0.011492*(HDL in mg/dL) - 1.061997*log(ACR + 1) + 0.346205*log(ACR + 1)^2 - 0.026371*log(ACR + 1)^3$

 Table S9. Predictive equations for nocturnal hypertension and non-dipping systolic blood pressure.

Predicted probability = exp(linear predictor) / (1 -	exp(linear predictor))
--	------------------------

exp(x) represents application of the exponential function to x.

The predictive equations shown here apply polynomials to model non-linear effects. These polynomials are approximately equal to the non-parametric smoothing functions used by the predictive equations developed in the current analysis.

ACR = albumin-to-creatinine ratio; DBP = diastolic blood pressure; HDL = high density lipoproteins; SBP = systolic blood pressure.

Variable	Non-dipping Diastolic Blood Pressure
Age, 12 years	1.48 (1.31, 1.67)
Race/ethnicity	
White	1 (ref)
Black	2.76 (2.12, 3.60)
Asian	0.23 (0.03, 1.67)
Other race	1.30 (0.76, 2.23)
Waist circumference, 16 cm	1.17 (1.04, 1.32)*
Alcohol use	0.81 (0.66, 1.01)
HDL-cholesterol, 17 mg/dL	0.82 (0.73, 0.93)
Log(1+ACR), g/24hr	1.22 (1.10, 1.35)

Table S10. Odds ratios for variables selected for inclusion in the predictive equations for non-dipping diastolic blood pressure.

Table values were computed using the derivation data.

* This is a non-linear variable in the predictive equation. The odds ratio is presented using the mean as a reference value.

The odds ratios for the following predictor variables are presented for a one standard deviation higher level of the exposure value: age, waist circumference, and high-density lipoprotein-cholesterol.

ACR = albumin-to-creatinine ratio; DBP = diastolic blood pressure; SBP = systolic blood pressure.

P-value from Hosmer and Lemeshow's goodness of fit test	Concordance Statistic (95% Confidence Interval)	
0.912	0.70 (0.63, 0.76)	
0.637	0.66 (0.53, 0.79)	
0.973	0.72 (0.65, 0.78)	
0.135	0.73 (0.64, 0.82)	
0.042	0.65 (0.56, 0.73)	
0.644	0.69 (0.60, 0.77)	
0.526	0.72 (0.66, 0.78)	
0.810	0.70 (0.53, 0.87)	
0.640	0.72 (0.67, 0.78)	
	and Lemeshow's goodness of fit test 0.912 0.912 0.637 0.0973 0.135 0.042 0.644 0.526 0.810	

Table S11. Calibration and discrimination of predictive equations for non-dipping diastolic blood pressure overall and in sub-groups determined by race, sex, and antihypertensive medication use.

Table values were computed in the validation data.

Table S12. Test characteristics of the predictive equations for non-dipping diastolic blood pressure versus alternative screening methods for identifying adults with a high probability of non-dipping diastolic blood pressure.

	Methods of identifying who should undergo 24-hour ambulatory blood pressure monitoring.							
	Predictive equation for non-dipping diastolic blood pressure probability cut- points			Systolic/Diastolic blood pressure cut-points, mm Hg			Currently using anti- hypertensive medication	
	1	2	3	4	Ι	II	III	IV
Classification cut-point	≥0.36	≥0.19	≥0.44	≥0.19	≥120/70	≥130/80	≥140/90	Yes
Percent screened	21.5	51.2	9.68	52.2	78.5	42.1	14.6	31.6
Sensitivity	0.45	0.76	0.25	0.76	0.81	0.47	0.24	0.55
Specificity	0.86	0.56	0.95	0.55	0.22	0.60	0.88	0.76
Positive Predictive Value	0.49	0.35	0.59	0.34	0.24	0.26	0.38	0.41
Negative Predictive Value	0.84	0.89	0.81	0.88	0.80	0.79	0.79	0.85
Youden's Index	1.30	1.33	1.19	1.31	1.04	1.07	1.12	1.31

Table values were computed using the validation data.

Participants with values \geq classification cut-point values are recommended to undergo 24-hour ambulatory blood pressure monitoring.

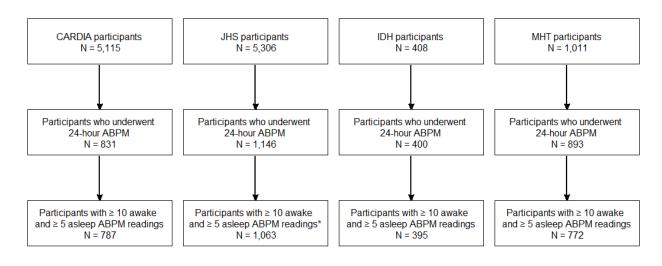
The following probability cut points of the predictive equation for non-dipping diastolic blood pressure were chosen based on the derivation data:

- 1. Closest number of predicted and observed cases with nocturnal hypertension and nondipping systolic blood pressure.
- 2. The maximum specificity with a sensitivity ≥ 0.80 ;
- 3. The maximum negative predictive value with a positive predictive value ≥ 0.60 ,
- 4. The maximum sum of sensitivity and specificity.

Notably, cut-point 3 in our main analysis was selected as the maximum negative predictive value with a positive predictive value ≥ 0.60 . However, the distribution of predicted probabilities from the predictive equations for non-dipping diastolic blood pressure could only meet the adjusted criteria used above, i.e., maximum negative predictive value with a positive predictive value ≥ 0.60 .

Table S13. Net reclassification improvement and integrated discriminative improvement using a predictive equation for non-dipping diastolic blood pressure versus screening methods based on clinic blood pressure and antihypertensive medication use.

Т

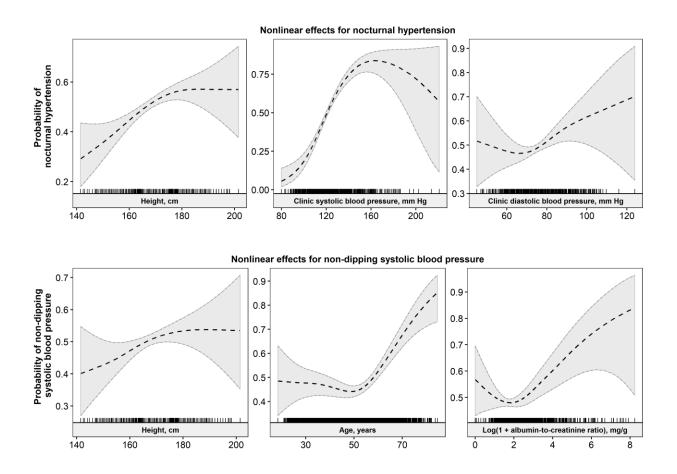

٦

Methods of identifying who should undergo 24-hour ambulatory blood pressure monitoring	Reclassification improvement using predictive equations (95% confidence interval) for non-dipping diastolic blood pressure				
Overall categorical net reclassification index*					
Clinic SBP/DBP \geq 120/70 mm Hg	0.28 (0.17, 0.40)				
Clinic SBP/DBP \geq 130/80 mm Hg	0.24 (0.12, 0.38)				
Clinic SBP/DBP \geq 140/90 mm Hg	0.20 (0.09, 0.30)				
Antihypertensive medication use	0.01 (-0.09, 0.11)				
Negative categorical net reclassification index					
Clinic SBP/DBP \geq 120/70 mm Hg	0.33 (0.27, 0.39)				
Clinic SBP/DBP \ge 130/80 mm Hg	-0.04 (-0.11, 0.02)				
Clinic SBP/DBP ≥ 140/90 mm Hg	-0.33 (-0.39, -0.28)				
Antihypertensive medication use	-0.20 (-0.25, -0.16)				
Positive categorical net reclassification index					
Clinic SBP/DBP \ge 120/70 mm Hg	-0.05 (-0.15, 0.05)				
Clinic SBP/DBP \geq 130/80 mm Hg	0.29 (0.18, 0.40)				
Clinic SBP/DBP ≥ 140/90 mm Hg	0.53 (0.42, 0.62)				
Antihypertensive medication use	0.21 (0.12, 0.30)				
Continuous net reclassification index					
Models using SBP, DBP and antihypertensive medication use ^{\dagger}	0.42 (0.21, 0.62)				
Integrated discriminative improvement index					
Models using SBP, DBP and antihypertensive medication use [†]	0.04 (0.02, 0.06)				

Table values were computed using the validation data.

* For categorical net reclassification indices, the probability cut-points maximizing Youden's index for the predictive equations (0.19) was used. This cut-point was chosen assuming that it would provide better overall classification characteristics than the other three cut-points. † Predicted probabilities were obtained from equations formed for non-dipping diastolic blood pressure using logistic regression in the derivation data set with clinic systolic and diastolic blood pressure and antihypertensive medication use as independent variables.

Figure S1. Inclusion cascade of participants from four studies that contributed data to the current analysis.


*For participants in the Jackson Heart Study who provided valid sleep diaries, we included those with ≥ 10 awake and ≥ 5 asleep blood pressure readings during self-reported awake and asleep periods. For Jackson Heart Study participants who did not provide valid sleep diaries, we included those with ≥ 10 daytime (10AM-8PM) and ≥ 5 nighttime (12AM-6AM) blood pressure readings.

ABPM = ambulatory blood pressure monitoring; CARDIA = Coronary Artery Risk

Development in Young Adults; IDH = Improving Detection of Hypertension; JHS = Jackson

Heart Study; MHT = Masked Hypertension Study

Figure S2. Predicted probability of nocturnal hypertension (top panels) and non-dipping systolic blood pressure (bottom panels) according to non-linear variables in the predictive equations.

Results are based on the derivation data.

Tick marks in the bottom of each panel indicate the distribution of observed values for a given variable.

Black curves are the predicted probability of nocturnal hypertension and non-dipping BP, relative to the given predictor variable, holding other predictors in the equation fixed.

Gray areas drawn around black curves are 95% confidence intervals for the predicted probability.

Supplemental References:

- 1. Taylor Jr HA, Wilson JG, Jones DW, Sarpong DF, Srinivasan A, Garrison RJ, Nelson C, Wyatt SB. Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study. *Ethn Dis.* 2005;15:S6–4.
- 2. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR, Liu K, Savage PJ. CARDIA: study design, recruitment, and some characteristics of the examined subjects. *Journal of clinical epidemiology*. 1988;41:1105–1116.
- 3. Booth JN, Muntner P, Diaz KM, Viera AJ, Bello NA, Schwartz JE, Shimbo D. Evaluation of criteria to detect masked hypertension. *The Journal of Clinical Hypertension*. 2016;18:1086–1094.
- 4. Schwartz JE, Burg MM, Shimbo D, Broderick JE, Stone AA, Ishikawa J, Sloan R, Yurgel T, Grossman S, Pickering TG. Clinic Blood Pressure Underestimates Ambulatory Blood Pressure in an Untreated Employer-Based US Population Clinical Perspective: Results From the Masked Hypertension Study. *Circulation*. 2016;134:1794–1807.
- 5. Harrell FE. Regression modeling strategies, with applications to linear models, survival analysis and logistic regression, Second. New York: Springer; 2001.
- 6. Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. Springer series in statistics New York; 2001.
- 7. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. *European heart journal*. 2014;35:1925–1931.
- 8. Pencina MJ, D'Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Statistics in medicine*. 2008;27:157–172.
- 9. Pencina MJ, D'Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. *Statistics in medicine*. 2011;30:11–21.
- 10. Pencina MJ, D'Agostino Sr RB, Demler OV. Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. *Statistics in medicine*. 2012;31:101–113.
- 11. Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW. Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician's guide. *Annals of internal medicine*. 2014;160:122–131.
- 12. Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. *Jama*. 1982;247:2543–2546.