Supplemental Material

TIER 1	(N = 74)		TIER 2	(N = 173)	
ABCC9	MAP2K1	NDUFA1	AARS2	FASTKD2	РССА
ACTC1	МАР2К2	NDUFA11	ACAD8	FBXL4	РССВ
ACTN2	МҮВРСЗ	NDUFAF1	ACAD9	FHL1	PDGFRA
АКАР9	МҮН6	NDUFAF2	ACADS	FHL2	PGM1
ALPK3	MYH7	NDUFAF3	ACADVL	FIG4	РНҮН
ANKRD1	MYL2	NDUFAF4	ACTA1	FKRP	PIGT
BAG3	MYL3	NDUFAF5	ADCY5	FOS	PMM2
BRAF	MYLK2	NDUFB3	AGK	FOXRED1	PNPLA2
CACNA2D	1 MYOZ2	NDUFB9	AGL	FTO	POLG
CALR3	MYPN	NDUFS1	AGPAT2	GAA	POMT1
CAV3	NEBL	NDUFS2	ALG1	GBE1	PRPS1
CRYAB	NEXN	NDUFS3	ARSB	GLB1	RAB3GAP2
CSRP3	NRAS	NDUFS4	ATP5E	GMPPB	RIT1
DES	PDLIM3	NDUFS6	ATPAF2	GNAS	RMRP
DMD	РКР2	NDUFV1	BCS1L	GNPTAB	SCO2
DOLK	PLN	NDUFV2	BOLA3	GNS	SDHAF1
DTNA	PRDM16	PEX1	C10ORF2	GPC3	SEPN1
DSC2	PRKAG2	PEX10	CAV1	GSN	SGCA
DSG2	PTPN11	PEX11B	CDKN1C	GYS1	SGCB
DSP	RAF1	PEX12	СНКВ	H19	SLC22A5
EMD	RBM20	PEX13	CISD2	HADH	SLC25A20
EYA4	RYR2	PEX14	COA5	HADHA	SLC25A3
FKTN	SCN5A	PEX16	COG7	HADHB	SLC2A10
FLNCA	SGCD	PEX19	COL7A1	HBB	SNAP29
FXN	SOS1	PEX2	COQ2	HCCS	SYNE2
GATA4	TAZ	PEX26	COX14	IDH2	TGFB1
GATAD1	ТСАР	PEX3	COX6B1	IDUA	TMEM70

GLA	TGFB3	PEX5	СОХ7В	KCNQ10T1	TPI1
HRAS	TMEM43	PEX6	CPT1A	LCRB	ТРМЗ
ILK	ТМРО	PEX7	CPT2	LIAS	TSFM
JPH2	TNNC1	HAMP	D2HGDH	MGME1	ΤΤΡΑ
JUP	TNNI3	HFE	DLD	MLYCD	UBR1
KRAS	TNNT2	HFE2	DNAJC19	MUT	VPS13A
LAMA4	TPM1	MTND1	DPM3	МҮОТ	WFS1
LAMP2	TTN	MTND5	ELAC2	NAGA	ХК
LDB3	TTR	MTND6	EPG5	NEU1	YARS2
LMNA	VCL	MTTD	ERBB3	NSD1	
			ERCC4	NUBPL	

Table S2. Genes without 100% of coverage of \geq 20 reads.

Tier 1	Tier 2
ACTC1	NEBL
BAG3	ABCC9
DES	SOS1
DMD	HRAS
DSG2	EMD
DSP	SYNE1
LAMP2	RAF1
LMNA	ACTN2
МҮВРС3	LAMA2
MYH7	DTNA
RBM20	АКАР9
SCN5A	PDLIM3
TAZ	MYH6
VCL	MYLK2
TTN	MYPN
LDB3	SDHA
	DOLK
	SYNM
	SGCD
	РКР2
	JUP
	NRAS
	CAV3
	RYR2
	ТСАР
	GATA4
	JPH2
	PRDM16

ALPK3
GATAD1

 Table S3. ACMG criteria used to guide classifying likely pathogenic and pathogenic variants.

Subject, gene variant	Classification	Variant information	ACMG criteria
2, NM_001001432.2(<i>TNNT</i> 2):c.517C>T	Ρ	Heterozygous missense major aa change, very high conservation in silico - consistently pathogenic Absent in population databases Previously described as P/LP in multiple cases with cardiomyopathy Shown to segregate with disease in multiple families Functional studies show abnormal protein function	 PS3 Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product PM2 Absent from controls (or at extremely low frequency if recessive) (table 6) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.) PP1 Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease PP5 Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation
4, NM_003319.4(<i>TTN</i>):c.6 9855dupA	LP	heterozygous duplication NMD predicted absent in population numerous TV in region associated with DCM classified - LP	 PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium

6, NM_003319.4(TTN):c.2 1991G>T	LP	Heterozygous nonsense - NMD predicted absent in population databases Segregates with disease within family Classified - LP	 PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium PP1 Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease
8, NM_003319.4(TTN):c.4 4430_44449del	LP	heterozygous deletion NMD predicited absent in population databases	 PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium PP1 Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease
9, NM_133378.4(TTN):c.1 0361-3042T>A	LP	Heterozygous nonsense - NMD predicted Loss of substantial amount of protein absent in population databases Segregates with disease within family	 PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium PP1 Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease

1, NM_004415.2(<i>DSP</i>):c.26 38dupG	LP	Heterozygous frameshift - predicted Absent in population databases Numerous truncating variants downstream reported as pathogenic	 PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium PP1 Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease
3, NM_001035.2(<i>RYR2</i>):c.1 4570T>A	LP	Heterozygous missense major aa change, very high conservation in silico consistently pathogenic absent from population database confirmed de novo Classified - LP	 PM2 Absent from controls (or at extremely low frequency if recessive) (table 6) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.) PM6 Assumed de novo, but without confirmation of paternity and maternity
5, NM_170707.3(<i>LMNA</i>):c. 1608+1G>A	LP	heterozygous splice site (cononical) Nucleotide conserved absent from population database previously reported in patient with DCM and LGMD segregation with disease classified - LP	 PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.) PP1 Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease PP5 Reputable source recently reports variant as pathogenic, but the evidence

			is not available to the laboratory to perform an independent evaluation
7, NM_004281.3(BAG3):c. 108G>A	LP	Heterozygous nonsense NMD predicted absent in population databases downstream TV reported pathogenic classified - LP	 PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium
10, NM_005159.4(ACTC1):c .998C>T	LP	ACTC1 Heterozygous missense in silico consistently pathogenic absent in population databases previously desribed as pathogenic in a patient with HCM alternative change classified as pathogenic	 PM2 Absent from controls (or at extremely low frequency if recessive) (table 6) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium PP1 Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.) PP5 Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation PM5 Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before

LP = Likely pathogenic, NMD = nonsense mediated decay, P = pathogenic

Table S4. ACMG criteria used to guide classifying rare variants of unknown significance. *

Variant description	Variant information	ACMG criteria
NM_000257.3(MHY7):c.2923-1G>T	Cononical splice site variant, conserved	PVS1* null variant (nonsense, frameshift, canonical ±1 or
_	nucleotide, absent in population, in silico tools	2 splice sites, initiation codon, single or multiexon
	suggest aberrant splicing	deletion) in a gene where LOF is a known mechanism of disease
		PM2 Absent from controls (or at extremely low frequency
		if recessive) in Exome Sequencing Project, 1000 Genomes
		Project, or Exome Aggregation Consortium
		PP3 Multiple lines of computational evidence support a
		deleterious effect on the gene or gene product
		(conservation, evolutionary, splicing impact, etc.)
NM_001134363.1(RBM20):c.3316+1G>A	Cononical splice site variant, conserved	PVS1* null variant (nonsense, frameshift, canonical ±1 or
	nucleotide, absent in population, in silico tools	2 splice sites, initiation codon, single or multiexon
	suggest aberrant splicing	deletion) in a gene where LOF is a known mechanism of disease
		PM2 Absent from controls (or at extremely low frequency
		if recessive) in Exome Sequencing Project, 1000 Genomes
		Project, or Exome Aggregation Consortium
		PP3 Multiple lines of computational evidence support a
		deleterious effect on the gene or gene product
		(conservation, evolutionary, splicing impact, etc.)
NM_020778.4(ALPK3):c.4799G>C	Novel missense variant, very high conservation,	PM2 Absent from controls (or at extremely low frequency
	major amino acid change (tryptophan to	if recessive) (table 6) in Exome Sequencing Project, 1000
	serine), in silico tools suggest deleterious,	Genomes Project, or Exome Aggregation Consortium
	located in protein kinase domain. Majority of	PP3 Multiple lines of computational evidence support a
	pathogenic variants result in a premature	deleterious effect on the gene or gene product
	termination codon.	(conservation, evolutionary, splicing impact, etc.)

NM_000257.2(MYH7):c.5096G>A	Rare missense variant, very high conservation, minor amino acid change (arginine to glutamine), in silico tools suggest deleterious	PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)
NM_000256.3(MYBPC3):c.3613C>T	Rare missense variant, moderate conservation, major amino acid change (arginine to tryptophan), in silico tools suggest deleterious, located in Ig domain, previously reported in a patient with HCM	 PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.) PP5 Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation
NM_000257.2(MYH7):c.5287G>A	Rare missense variant, very high conservation, minor amino acid change (alanine to threonine), in silico tools suggest deleterious, located myosin tail domain, previously reported in patients with cardiomyopathy	 PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.) PP5 Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation
NM_001035.2(RYR2):c.10046C>T	Novel missense variant, high conservation, major amino acid change (serine to leucine), in silico tools suggest deleterious, conflicting reports of pathogenecity	 PM2 Absent from controls (or at extremely low frequency if recessive) (table 6) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)
NM_000257.3(MYH7):c.3035C>A	Rare missense variant, moderate conservation, major amino acid change (alanine to aspartic acid), in silico tools suggest deleterious, previously reported as a VUS in patients with hypertrophic cardiomyopathy, left ventricular noncompaction and myopathy	PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)

NM_001943.4(DSG2):c.3039C>A	Rare nonsense variant, predicted to truncate the protein, previously reported as likely pathogenic, other truncating variants downstream reported in patients with ARVC	 PVS1* null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease PP5 Reputable source recently reports variant as
		pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation
NM_000256.3(MYBPC3):c.604A>C (p.Lys202Gln)	Rare missense variant, very high conservation, minor amino acid change (lysine to glutamine), in silico tools suggest deleterious, located in an Ig domain, previously reported with conflicting interpretations of pathogenicity	PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)
NM_000257.3(MYH7):c.1791C>A (p.Asn597Lys)	Novel missense variant, very high conservation, moderate amino acid change(asparagine to lysine), in silico tools suggest deleterious, previously described in a patient with DCM and another with LVNC	 PM2 Absent from controls (or at extremely low frequency if recessive) (table 6) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.) PP5 Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation
NM_000256.3(MYBPC3):c.1334C>T	Rare missense variant, high conservation, moderate amino acid change (threonine to methionine), in silico tools suggest deleterious, situated in an Ig domain	PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)
NM_001458.4(FLNC):c.3125A>G	Rare missense variant, very high conservation, major amino acid change (tyrosine to cysteine),	PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)

	in silico tools suggest deleterious, situated in a Filamin repeat domain	
(NM_00494.3(DSC2):c.2125+1G>T)	Cononical splice site variant, conserved nucleotide, absent in population, in silico tools conflicting	 PVS1* null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium
NM_007078.2(LDB3):c.1675C>T	Rare missense variant, high conservation, major amino acid change (arginine to tryptophan), in silico tools suggest deleterious, situated in a LIM-Zinc domain	PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)

* Expert team consensus sought to adjust the appropriate strength level of PVS1 by addressing issues specific to each variant type (duplication, deletion, splice site, nonsense/frameshift, initiation codon) as well as recommendations for determining if loss of function is a disease mechanism for the gene of interest.

Table S5. List of genes with pathogenic or likely pathogenic variants and coverage by commercially available gene panels in Victoria, Australia (October 2018).

Gene	Number	Included on dilated cardiomyopathy panel	Included on cardiomyopathy full panel	Included on comprehensive cardiac panel
DSP	1	Ν	Y	Y
TNNT2	1	Y	Y	Y
TTN	3	Y	Y	Y
LMNA	1	Y	Y	Y
BAG3	1	Y	Y	Y
RYR2	1	Ν	Y	Y
ACTC1	1	Y	Y	Y

Y = Yes, N = Not covered