Implementation of High-intensity Stepping Training during Inpatient Stroke Rehabilitation Improves Functional Outcomes

Moore JL, Nordvik J, Erichsen A, Rosseland I, Bø E, Hornby TG.

SUPPLEMENTAL MATERIAL

Supplementary Table I. Total admissions and reasons excluded per site in usual care and high-intensity stepping.

	Usual Care Feb-Nov 2017		High Intensity Training Jan-Nov 2018	
	OUH	OMS	OUH	OMS
Not willing to participate	7	7	4	4
Not able to provide consent*	15	5	17	14
Uncontrolled cardiopulmonary, metabolic, infectious or psychiatric disorders*	17	7	42	21
Less than or 2 at BBS#3*	6	0	0	1
FAC 5 or primary goals not related to walking*	27	0	33	0
> 2 months since stroke*	0	2	0	8
Other reasons not stated	1	0	2	0
Total	73	21	98	48
Total excluded per phase	94		146	
Total included per phase	56		54	
Total admitted with stroke diagnosis	150		200	
*Exclusion-criteria				

Supplementary Table II. Regression equations for primary variables.

```
Equation 1: Discharge FS = 0.40*(Admission FS) + 0.058*(steps / day) / 1000 + -0.01*age + 0.16*(paretic strength) + 0.008*(LOS) + 0.51; <math>r^2 = 0.56
```

Equation 2: Change $FS = -0.60 * (Admission FS) + 0.058 * (steps / day) / 1000 - 0.01 * age + 0.16 * (paretic strength) + 0.008 * (LOS) + 0.51;; <math>r^2 = 0.45$

Equation 3: Discharge $6MWT=0.49*(Admission~6MWT)+20*(steps/day)/1000-3.6*age+1.9*(LOS)+34*(paretic strength)+216; r^2=0.69$

Equation 4: Change $6MWT = -3.6*age - 0.51*(Admission\ 6MWT) + 20*(steps\ /\ day)\ /\ 1000 + 1.9*(LOS) + 34*(paretic\ strength) + 216;\ r^2 = 0.45$

Equation 5: Discharge BBS = $0.56 * (Admission BBS) + 0.24 * (LOS) + 0.95 * (steps / day) / 1000 + 0.15; <math>r^2 = 0.65$

Equation 6: Change BBS = -0.44 * (Admission BBS) + 0.24 * (LOS) + 0.95 * (steps / day) / 1000 + 0.15: $r^2 = 0.65$