
S6 Text. Details on estimation in linear mixed models. We briefly explain the single steps
of the model. We start with the general vector notation of the conditional Gaussian (multi-level)
mixed model from Equation (1):

yvgt | uvgt ∼ N
(
xvgtβ + Zvgtuvgt, σ

2I
)
,

where v = 1, . . . , V are the different viruses, g = 1, . . . , G are genes and t = 1, . . . , T are different
screen types. The vector yvgt consists of all readouts that have been measured for virus v, gene g

and screen type t, uvgt = (γg, δvg, ζt, ξvt)
T

is a vector of random effects, and Zvgt = 1len(yvgt)×4

(because of 4 random intercept terms) is a random effects design matrix. The random effects u,
the fixed effect β and the noise variance σ2 are random variables or unknown constants of interest
to be predicted, or estimated, respectively. When we collect the entire data set (xvgt,yvgt), i.e. all
vectors for every combination of viruses, genes and screen types, we arrive at the general mixed
model formulation which we need for estimation:

x =



x1,1,1

...
xv,g,t

...
xV,G,T

 , y =



y1,1,1

...
yv,g,t

...
yV,G,T

 , u =



u1,1,1

...
uv,g,t

...
uV,G,T


It follows that when collecting all random effect design matrices Zv,g,t we get a block diagonal

matrix:

Z = blockdiag (Z1,1,1, . . . ,Zv,g,t, . . . ,ZV,G,T )

Thus the general notation of the linear mixed model is

y | u ∼ N
(
xβ + Zu, σ2I

)
,

where

u ∼ N (0,G) ,

where G is an unknown covariance matrix to be estimated. Recent research such as [1] introduced
efficient approaches to estimation of parameters β, σ2 and G and prediction of u which go beyond
the scope of this paper. We recall here the general approach which for instance can be found in [2]:
From the formalisation above we can integrate out the random effects u which gives us the marginal
model:

y ∼ N
(
xβ, σ2I + ZGZT

)
,

We can now formalize an objective, the likelihood of the marginal model:

L(β,G, σ2) = P (y | β,G, σ2)

For restricted maximum likelihood estimation we now treat β as random variable, too, e.g. as in
an empirical Bayesian context with a flat prior, and marginalize it out:

L(G, σ2) =

∫
P (y | β,G, σ2)dβ

1



Estimation of parameters of the LMM is done in two steps: first we estimate G and σ2 by max-
imizing the likelihood above numerically, for instance using a quasi-Newton method. Second we
estimate β and u using Henderson’s mixed model equations analytically as:

β̂ =
(
xtV−1x

)−1
xTV−1y

û = RU−1V−1
(
y − xβ̂

)
where V = ZRZT + σ2I.
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