Science Advances NAAAS

advances.sciencemag.org/cgi/content/full/6/8/eaay3178/DC1

Supplementary Materials for

Intrinsic disorder controls two functionally distinct dimers of the master transcription factor PU.1

Suela Xhani, Sangchoon Lee, Hye Mi Kim, Siming Wang, Shingo Esaki, Van L. T. Ha, Mahtab Khanezarrin, Giselle L. Fernandez, Amanda V. Albrecht, James M. Aramini, Markus W. Germann*, Gregory M. K. Poon*

*Corresponding author. Email: gpoon@gsu.edu (G.M.K.P.); mwg@gsu.edu (M.W.G.)

Published 21 February 2020, *Sci. Adv.* **6**, eaay3178 (2020) DOI: 10.1126/sciadv.aay3178

This PDF file includes:

Table S1. DNA binding and self-association equilibrium constants of PU.1 constructs. Table S2. Primers in RT-PCR experiments.

Fig. S1. Calibration of transgenic PU.1 dosage.

Fig. S2. Characterization of a peptide-based PU.1 inhibitor.

Fig. S3. ¹H-¹⁵N HSQC-detected titration of $\Delta N117$ and $\Delta N165$ by cognate DNA.

Fig. S4. Purity of recombinant PU.1 constructs.

Fig. S5. Spectral analysis of far-UV CD of ΔN165 in 0.15 and 0.05 M NaCl.

Fig. S6. Salt-dependent line broadening of methyl protons in ΔN165.

Fig. S7 The short C-terminal IDR is required for DNA-free PU.1 dimerization.

Fig. S8. Effect of macromolecular crowding on dimerization of ΔN165 in the unbound and DNA-bound states.

Table S1. DNA binding and self-association equilibrium constants of PU.1 constructs.

DNA-binding data was fitted to titration models as detailed in *Materials and Methods*. The choice of fitting with one or two dissociation constants was made based on the magnitude of anisotropy change and statistically by the Fisher's F -test on sums of squares at $p = 0.05$. Estimates in μ M are given as means \pm SE of three or more replicate experiments. n.d., not detectable.

	$[Na^+]$, M			
K_{D1} and K_{D2} , μ M	0.15	0.10	0.05	
$\Delta N117$	0.0038 ± 0.0019 7.1 ± 3.3	0.010 ± 0.001 15 ± 5	0.19 ± 0.05	
$\Delta N165$	0.0091 ± 0.0015 1.9 ± 0.9	0.036 ± 0.003	0.13 ± 0.02	
$s\Delta N117$	0.0051 ± 0.0007 6.0 ± 1.3		0.0074 ± 0.0022 3.5 ± 1.8	
$s\Delta N165$	0.11 ± 0.03 15 ± 9		0.13 ± 0.02 32 ± 24	
$D_2 \Delta N117$	0.0056 ± 0.0008 6.7 ± 3.2			
$D_4\Delta N117$	0.013 ± 0.004 108 ± 39			
DKCDK monomer	0.013 ± 0.03 2.5 ± 0.4			
DKCDK dimer	3.1 ± 0.9 n.d.			
R232A/R235A	>0.5			

Dissociation constants of 1:1 and 2:1 complexes in the absence of osmolytes or crowders

Dissociation constants of 1:1 and 2:1 complexes in the presence of co-solutes

Two-state dissociation constants of ΔN117 and ΔN165 constructs by CD spectroscopy

Construct	K_2 , μ M	
Δ N117 (wildtype)	46 ± 20	
$s\Delta N117$	\gg 300	
$D_2 \Delta N117$	25 ± 3	
$D_4\Delta N117$	13 ± 1	
$\Delta N165$ (wildtype)	$\gg 800$ 202 ± 72 (0.05 M NaCl)	
$s\Delta N165$	n.d.	

(Affinities at 0.15 M NaCl unless otherwise indicated)

Table S2. Primers in RT-PCR experiments.

Gene	\rightleftarrows	Sequence	Amplicon, bp	$T_{\rm m}$, °C
F pu.1 R.		5'-CTC CAG TAC CCA TCC CTG TC-3'		
	5'-CGG ATC TTC TTC TTG CTG CC-3'	158	64	
F csflra R.		5'-CAG AGC CTG CTG ACT GTT GA-3'		
	5'-TTG CCC TCA TAG CTC TCG AT-3'	263	60	
F e2f1 R		5´-AAG GGA AGG AGT CTG TGT GG-3´		64
		5'-CGA AAG TGC AGT TAG AGC CC-3'	214	
F gapdh R		5'-CGG AGT CAA CGG ATT TGG TCG-3'		60
		5'-TCT CGC TCC TGG AAG ATG GTG AT-3'	225	

Fig. S1. Calibration of transgenic PU.1 dosage. a, To determine the dosage of PU.1 transgene that would yield physiologically relevant levels of PU.1, transcripts of the *pu.1/Spi1* gene were quantified in two model human myeloid cell lines, under normal proliferative conditions as well as under induction by 16 nM of phorbol 12-myristate (PMA). Consistent with the strong inducibility of PU.1 in primary tissue, PMA induced PU.1 mRNA transcripts in both cell lines. All samples were presented as means ± SE of at least 3 biological replicates relative to *gapdh*. The data establish that a maximum dose of 25 ng (per well of a 24-well plate) of the PU.1 expression plasmid in HEK293 (see *Materials and Methods* in the main text) would yield an expression level comparable to induced HL-60 and non-induced THP-1, but well below levels in that cell line under PMA induction. **b,** We then determined whether 25 ng of the PU.1-expression plasmid would yield a linear dosing range for the λB reporters following transient transfection in HEK293 cells. PU.1 expression was quantified by its co-translating PU.1 iRFP marker by flow cytometry. Cells in quadrant Q2 and Q3 represented PU.1-expressing cells. The sum of their counts were plotted against the plasmid dosage. *Line* represents a linear fit to the data. **c**, To cross-validate the flow cytometric approach, PU.1 abundance was also measured by immunoblotting transfected HEK293 lysates at 10 µg per lane. PU.1 was probed with a rabbit polyclonal antibody (Cell Signaling, #2266) followed by an HRP-coupled mouse anti-rabbit secondary antibody (Santa Cruz). β-actin (loading control) was probed with a mouse monoclonal antibody (Santa Cruz) with an HRP-coupled rabbit anti-mouse secondary antibody (Santa Cruz). Blots were visualized using an Amersham Imager 600 and quantified using ImageJ software.

Fig. S2. Characterization of a peptide-based PU.1 inhibitor. a, The synthetic dodecameric peptide nP-1 (Ac-RDYHPRDHTATW-NH₂) inhibited cognate DNA binding by PU.1 in a competitive gel-mobility shift assay using netropsin. Each netropsin-containing lane represented a 2-fold increase in concentration. In the negative control without nP-1, PU.1 was displaced by netropsin binding to the DNA minor groove adjacent to the 5'-GGAA-3' consensus. **b**, Quantification of the mobility shift data shows that nP-1 at 1 µM was highly synergistic with netropsin, reducing the apparent IC_{50} by >20 fold. **c**, Uptake of Cy3-labeled peptide by THP-1 cells at 10 μ M, imaged at 63 \times magnification.

Fig. S3. ¹H-¹⁵N HSQC-detected titration of ΔN117 and ΔN165 by cognate DNA. ΔN117 is in red, ΔN165 in blue. Conditions were essentially the same as the DOSY titration in Figure 1B (0.15 M NaCl), except uniformly ¹⁵N-labeled protein was used at 400 μ M.

Fig. S4. Purity of recombinant PU.1 constructs. a, One µg of each purified PU.1 construct was resolved in a 15% polyacrylamide gel (29:1) under standard denaturing (0.1% SDS) and reducing conditions (0.5 mM TCEP). **b**, MALDI-ToF mass spectrum of ΔN117.

Fig. S5. Spectral analysis of far-UV CD of ΔN165 in 0.15 and 0.05 M NaCl. a, Blanksubtracted, concentration-corrected spectra. Absorption by Cl limits the useable ranges of wavelengths and protein concentration in 0.15 M NaCl to those shown. **b**, Following singular value decomposition (see *Materials and Methods* for details), the two most dominant basis vectors in **U**. **c**, Progress curves of the concentration dependence as represented by the transition vectors V^T . The 0.05 M transition was fitted to a two-state dimer. The dissociation constant is 202 ± 72 µM.

Fig. S6. Salt-dependent line broadening of methyl protons in ΔN165. a, Methyl protons located at negative chemical shifts of ¹H spectra, acquired at 500 MHz, of identical concentrations (350 µM) of ΔN165 in the presence of 0.025 and 0.5 M NaCl, respectively. **b**, The linewidths, converted to $Hz = s^{-1}$, were fitted to a sum of Lorentzian peaks (red) from which the full widths at half maximum $(\Delta v_{1/2})$ were estimated by nonlinear regression. **c**, The effective T_2^* for each peak was then computed from

$$
T_2^* = \frac{1}{\pi \Delta V_{V_2}}\tag{S1}
$$

Fig. S7. The short C-terminal IDR is required for DNA-free PU.1 dimerization. a, Superposition of the 10 models in the solution NMR structure of the PU.1 monomer, 5W3G. The C-terminal IDR is colored cyan. **b**, Schematic of PU.1 constructs, sΔN117 and sΔN165, without the C-terminal 12-residue IDR. **c,** Far-UV CD spectra (left) and urea denaturation curves (right) of sΔN117 and sΔN165 at 0.15 M Na⁺. The molarity stated represents urea concentrations at 50% unfolding. **d**, Cognate DNA binding by sΔN117 and sΔN165 at 0.15 M Na⁺ . **e**, Corresponding data for s $\triangle N165$ at 0.05 M Na⁺. In contrast with $\triangle N165$ (*c.f.* Figures 5a and b), sΔN165 shows negligible propensity for dimerization without DNA but exhibits biphasic DNA binding.

Fig. S8. Effect of macromolecular crowding on dimerization of ΔN165 in the unbound and DNA-bound states. a, Charge-neutral crowding with PEG 8K on cognate DNA binding by ΔN165. Representative titrations in the presence of 10% w/v ethylene glycol (EG) showed destabilization consistent with osmotic stress as previously reported (Poon, J Biol Chem 287, 18297-18307, 2012). The presence of the same mass concentration of polymeric PEG 8K was similar. In both cases and in stark contrast with the acidic crowder BSA, the 2:1 complex was preserved. **b,** ¹⁹F NMR reveals conformational perturbations in $\Delta N165$ consistent with unbound dimer formation. The three Trp residues (190, 191, and 213) in ΔN165 were isotopically labeled with 5-fluoroindole in minimal M9 media. Chemical shifts were acquired at 0.15 M Na^+ in D₂Oreconstituted buffer and referenced against the published value for 5-fluoroindole in 90% D_2O (Sarker et al., Biochemistry 55, 3048-3059, 2016). No concentration-dependent chemical shift perturbation (CSP) was detectable at 350 and 50 µM at ΔN165, in contrast with the presence of 5% w/v BSA. Line broadening in the BSA-containing sample was expected due to increased viscosity.