Supplementary information

Purging of highly deleterious mutations through severe bottlenecks in ibex

Grossen et al.

TABLE OF CONTENTS

Supplementary Figure 1	3
Supplementary Figure 2A	3
Supplementary Figure 2B	3
Supplementary Figure 3A	4
Supplementary Figure 3B	5
Supplementary Figures 4A - 4D	6
Supplementary Figures 5A - 5D	7
Supplementary Figure 6	8
Supplementary Figure 7A	9
Supplementary Figure 7B	. 10
Supplementary Figure 7C	. 10
Supplementary Figure 7D	. 11
Supplementary Figure 8	. 12
Supplementary Figure 9	. 12
Supplementary Figure 10	. 13
Supplementary Figure 13A	. 16
Supplementary Figure 13B	. 16
Supplementary Figure 14	. 17
Supplementary Figure 15	. 18
Supplementary Figure 18	. 21
Supplementary Figure 19	. 22
Supplementary Figure 20	. 23
Supplementary Figure 21	. 24
Supplementary Figure 22:	. 25
Supplementary Figures 23 – 31	. 26
Supplementary Figures 32 - 39	. 31
Supplementary Figure 45	. 39
Supplementary Table 1A	. 40
Supplementary Table 1B	. 41
Supplementary Table 2	. 42
Supplementary Table 3	. 43
Supplementary Table 4	. 45
Supplementary Table 5	. 45
Supplementary Table 6	. 46
Supplementary Note 1	. 48
Supplementary References.	.50

SUPPLEMENTARY FIGURES

Supplementary Figure 1: Principal component analysis. All ibex species under study are included. Colors indicate different species.

Supplementary Figure 2A: Genome-wide heterozygosity per species. Heterozygosity is expressed as the number of heterozygous autosomal SNPs per kb. ib: *Capra ibex*, py: *C. pyrenaica*, fa: *C. falconeri*, nu: *C. nubiana*, si: *C. sibirica*, ae: *C. aegagrus*, hi: *C. hircus*. Box plots show the median, the 25th and 75th percentiles, Tukey whiskers (median \pm 1.5 times interquartile range), and outliers (•).

Supplementary Figure 2B: Genome-wide heterozygosity per species in coding sequences (CDS). Heterozygosity is expressed as the number of heterozygous SNPs per kb of CDS. ib: *Capra ibex*, py: *C. pyrenaica*, fa: *C. falconeri*, nu: *C. nubiana*, si: *C. sibirica*, ae: *C. aegagrus*, hi: *C. hircus*. Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 3A: Runs of homozygosity (ROH) along chromosome 1. Bcftools analysis with viterbi-training option turned off. The alternative allele frequency prior was set to 0.4. Colors represent species as in Supplementary Figures 1 and 2. Caib: *Capra ibex*, Capy: *C. pyrenaica*, Cafal: *C. falconeri*, Canu: *C. nubiana*, Casi: *C. sibirica*, Caae: *C. aegagrus*, Cahi: *C. hircus*.

Supplementary Figure 3B: Runs of homozygosity (ROH) along chromosome 1. Beftools was run with the viterbi-training option turned on. The alternative allele frequency prior was set to 0.4. Colors represent species as in Supplementary Figures 1 and 2. Caib: *Capra ibex*, Capy: *C. pyrenaica*, Cafal: *C. falconeri*, Canu: *C. nubiana*, Casi: *C. sibirica*, Caae: *C. aegagrus*, Cahi: *C. hircus*.

Supplementary Figures 4A - 4D: Runs of homozygosity (ROH) analysis with different bcftools settings. Red lines show estimated state (0 corresponds to ROH region, 1 to non-ROH region). The blue line shows heterozygosity in a sliding window (window size=100 bp, step size=1 bp) along chromosomal positions. Data is shown for the *C. ibex* individual GPR21C. The window represents chromosome 23 and positions 15-30 Mb.

Supplementary Figure 4A: Allele frequency prior (af.dtlt) set to 0.4.

Supplementary Figure 4B: Allele frequency prior (af.dtlt) set to 0.4 and viterbi-training option turned on.

Supplementary Figure 4C: Allele frequency priors were set to allele frequencies observed in the Gran Paradiso population.

Supplementary Figure 4D: Allele frequency priors were set to allele frequencies observed in the Gran Paradiso population and viterbi-training option turned on.

Supplementary Figures 5A - 5D: Runs of homozygosity (ROH) analysis with different bcftools settings. Red lines show estimated state (0 corresponds to ROH region, 1 to non-ROH region). The blue line shows heterozygosity in a sliding window (window size=100 bp, step size=1 bp) along chromosomal positions. Data is shown for the *C. ibex* individual GPV05C. The window represents chromosome 23 and positions 15-30 Mb.

Supplementary Figure 5A: Allele frequency prior (af.dtlt) set to 0.4.

Supplementary Figure 5B: Allele frequency prior (af.dtlt) set to 0.4 and viterbi-training option turned on.

Supplementary Figure 5C: Allele frequency priors were set to allele frequencies observed in the Gran Paradiso population.

Supplementary Figure 5D: Allele frequency priors were set to allele frequencies observed in the Gran Paradiso population and viterbi-training option turned on.

Supplementary Figure 6: Pipeline for SNP calling, validation and categorization of mutational impact. See Methods for details on each step.

Supplementary Figure 7A: Deleterious mutations in ibex species (SnpEff analyses). Proportion of single nucleotide polymorphisms (SNPs) polymorphic within species categorized into four impact categories according to SnpEff (high, moderate, low, modifier). Caib: *Capra ibex*, Capy: *C. pyrenaica*, Cafal: *C. falconeri*, Canu: *C. nubiana*, Casi: *C. sibirica*, Caae: *C. aegagrus*, Cahi: *C. hircus*.

Supplementary Figure 7B: Deleterious mutations in ibex species (GERP score analyses). Proportion of single nucleotide polymorphisms (SNPs) polymorphic within species categorized into GERP score ranges (>6, 4 - 6, 2 - 4, -2 - 2). Caib: *Capra ibex*, Capy: *C. pyrenaica*, Cafal: *C. falconeri*, Canu: *C. nubiana*, Casi: *C. sibirica*, Caae: *C. aegagrus*, Cahi: *C. hircus*.

Supplementary Figure 7C: Deleterious mutations in ibex species (indel analyses based on SnpEff). Proportion of indels (≤ 10 bp) polymorphic within species categorized into four impact categories according to SnpEff (high, moderate, low, modifier). Caib: *Capra ibex*, Capy: *C. pyrenaica*, Cafal: *C. falconeri*, Canu: *C. nubiana*, Casi: *C. sibirica*, Caae: *C. aegagrus*, Cahi: *C. hircus*.

Supplementary Figure 7D: Deleterious mutations in ibex species (indel analyses based on GERP scores). Proportion of variant indels (up to 10 bp long) polymorphic within species categorized into GERP score ranges (>6, 4 - 6, 2 - 4, -2 - 2). Caib: *Capra ibex*, Capy: *C. pyrenaica*, Cafal: *C. falconeri*, Canu: *C. nubiana*, Casi: *C. sibirica*, Caae: *C. aegagrus*, Cahi: *C. hircus*.

Supplementary Figure 8: Principal component analyses of Alpine and Iberian ibex. Alpine ibex: Dark green: Gran Paradiso {gp}, light green: Swiss individuals, blue: Alpi Marittime {am}. Iberian ibex: yellow: Maestrazgo {hb}, orange: Sierra Nevada {sn}, brown: Victoriae {vi}.

Supplementary Figure 9: Site-frequency spectrum (SFS) of different SnpEff categories. Indel mutations in Alpine ibex.

Supplementary Figure 10: Site-frequency spectra (SFS) in Alpine ibex. Categorization of SNPs based on A) GERP scores divided into four ranges, B) phyloP scores (conserved: > 1, not conserved: \leq 1) and C) phastCons scores (conserved: =1, not conserved: < 1). See Figure 2 for the SFS of SNPs categorized into SnpEff categories high, moderate, low and modifier. Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 11: Site frequency spectra (SFS) for different categories of SNP mutations. Categories are based on SnpEff (high, moderate and modifier categories). A) SFS downsampled to three Alpine ibex individuals based on jackknifing (100 replicates). B) SFS downsampled to three Iberian ibex individuals based on jackknifing (100 replicates). C) SFS for all Alpine ibex without grouping (see also Figure 2B). Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 12: *Rxy* **analysis.** Analyses were performed based on four additional mutation scoring methods (SIFT, Revel, CADD, VEST3). *Rxy* < 1 indicates a relative frequency deficit of the corresponding category in Alpine ibex compared to Iberian ibex (left column) or Alpi Marittime compared to other Alpine ibex (right column). *Rxy* distributions are based on jack-knifing across chromosomes. Score cut-offs used to define deleteriousness were as follows: Revel: 0.75, CADD: 20, SIFT: 0.05, VEST3: 0.91 (99%-percentile). See methods for details. Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 13A: Principal component analysis plot of Alpine ibex. All individuals are included except the individuals from the highly divergent population Alpi Marittime. Circles with black rim indicate the three populations used for all further population reintroductions of Alpine ibex. Same colors of Alpine ibex populations join founder and descendent population. bo, Bire Öschinen; gp, Gran Paradiso; al, Albris; br, Brienzer Rothorn; ob, Oberbauenstock; pl, Pleureur; rh, Rheinwald; wh, Weisshorn.

Supplementary Figure 13B: Principal component analysis plot of Alpine ibex. Excluded are the individuals from the highly divergent population Alpi Marittime. The population from Gran Paradiso was reduced to three randomly chosen individuals. bo, Bire Öschinen; gp, Gran Paradiso; al, Albris; br, Brienzer Rothorn; ob, Oberbauenstock; pl, Pleureur; rh, Rheinwald; wh, Weisshorn.

Supplementary Figure 14: Genome-wide heterozygosity per Alpine ibex population. Heterozygosity is expressed as the number of heterozygous, autosomal SNPs per kb. Colors as in Figures 3 and S11. bo, Bire Öschinen; gp, Gran Paradiso; al, Albris; br, Brienzer Rothorn; ob, Oberbauenstock; pl, Pleureur; rh, Rheinwald; wh, Weisshorn. Numbers above panels indicate the number of bottlenecks the corresponding populations underwent during the reintroductions. Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 15: Individual mutation load. Individual homozygote counts (upper panel) and allele counts (lower panel) for each Alpine ibex population. Left to right shows GERP score ranges of -2 - 2, 2 - 4, 4 - 6 and >6 of SNP mutations. Colors group Alpine ibex populations into founder and descendent population pairs (see Figure 3). Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 16: Population size changes over the course of the demographic simulations. Population size did not change between generation 1 and 2999. am: Alpi Marittime, gp: Gran Paradiso; ih: Zoo Interlaken Harder; al: Albris; bo: Bire Öschinen; br: Brienzer Rothorn; ob: Oberbauenstock; pl: Pleureur; rh: Rheinwald; wh: Weisshorn; pil: Pilatus; wpih: Wildpark Interlaken Harder; wppp: Wildpark Peter and Paul. Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 17: Realized genetic load before and after simulated bottleneck. Boxplots showing genetic load before and after the simulated species bottleneck in Alpine ibex. Genetic load was defined as mean individual fitness of females. Box plot elements as in Supplementary Figure 2A.

Before species bottleneck

After species bottleneck

Supplementary Figure 18: Site-frequency spectra before and after simulated bottleneck. Shown are SFS for different mutation categories (neutral, modifier, low, moderate, high). Deleterious mutation categories were defined based on the selection coefficient *s* as follows: Modifier: s < 0.0001, Low: $0.0001 \le s < 0.01$, Moderate: $0.01 \le s < 0.1$, High: $0.1 \le s$. The bottleneck occurred between generations 2999 and 3023.

Supplementary Figure 19: Individual genetic load per simulated population. Outcome of the demographic simulations showing individual homozygote and allele counts grouped by population. Simulated populations included all major wild parks and populations that contributed to the founding of the Alpine ibex populations under study (see also Figure 3A). Matching colours group source populations with populations that were founded from them (except for wpih, wppp, gp and am). Deleterious mutation categories were defined based on the selection coefficient s as follows: Modifier: s < 0.0001, Low: $0.0001 \le s < 0.01$, Moderate: $0.01 \le s < 0.1$, High: $0.1 \leq s$. Abbreviations: gp: Gran Paradiso. wpih: Wildpark Interlaken Harder, wppp: Wildpark Peter and Paul, br: Brienzer Rothorn, pl: Pleureur, al: Albris, bo: Bire Oeschinen, wh: Weisshorn, ob: Oberbauenstock, am: Alpi Marittime, pil: Pilatus. Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 20: Individual genetic mutation load before and after simulated bottlenecks. Outcome of the demographic simulations showing individual homozygote and allele counts before and after the species bottleneck (generations 2999 and 3023, respectively). Deleterious mutation categories were defined based on the selection coefficient *s* as follows: Modifier: s < 0.0001, Low: $0.0001 \le s < 0.01$, Moderate: $0.01 \le s < 0.1$, High: $0.1 \le s$. Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 21: Outcome of the demographic simulations at neutral sites. A) Homozygote count for derived neutral alleles before and after the species bottleneck (generations 2999 and 3023, respectively). Simulated populations included all major wild parks and populations that contributed to the founding of the Alpine ibex populations under study (see also Figure 3A). Matching colours group source populations with populations that were founded from them (except for wpih, wppp, gp and am). Abbreviations: gp: Gran Paradiso, wpih: Wildpark Interlaken Harder, wppp: Wildpark Peter and Paul, br: Brienzer Rothorn, pl: Pleureur, al: Albris, bo: Bire Oeschinen, wh: Weisshorn, ob: Oberbauenstock, am: Alpi Marittime, pil: Pilatus. B) Homozygote and heterozygote counts, and allele count per individual of derived neutral alleles before and after the species bottleneck. The category "after" includes all populations for which genomic data was generated with the exception of the wild parks and the Pilatus (pil) population. Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 22: *Rxy* analysis of Alpi Marittime versus Gran Paradiso. *Rxy* analysis contrasting the strongly bottlenecked Alpi Marittime population with the Gran Paradiso population across the spectrum of SnpEff impact categories. Box plot elements as in Supplementary Figure 2A.

Supplementary Figures 23 – 31: Visualization of SNP variant quality parameters used for filtering. The applied cut-offs are shown with a vertical line.

Supplementary Figure 23: Distribution of the AN statistic. Number of called alleles (corresponds to twice the number of samples genotyped at the locus).

Supplementary Figure 24: Distribution of the overall SNP quality (QUAL) statistic.

Supplementary Figure 25: Distribution of the QualByDepth (QD) statistic. Confidence of the variant quality (QUAL) divided by the unfiltered depth of the samples called as non-reference.

Supplementary Figure 26: Distribution of the RMSMappingQuality (MQ) statistic. Root mean square of the mapping quality calculated across all reads from all samples.

Supplementary Figure 27: Distribution of the MappingQualityRankSumTest (MQRankSum) statistic. A test for differences in mapping quality between reference versus alternate allele.

Supplementary Figure 28: Distribution of the ReadPosRankSumTest statistic. A test for the even distribution of variants along reads.

Supplementary Figure 29: Distribution of the FisherStrand (FS) statistic. A test for strand bias, i.e. if a variant is predominantly associated with one of the two read strands (forward or reverse).

Supplementary Figure 30: Distribution of the StrandOddsRatio (SOR) statistic.

Supplementary Figure 31: Summary of SNP loci filtering outcome. Candidate SNP variants filtered out by different filter combinations. See methods for individual filter settings.

Supplementary Figures 32 - 39: Visualization of indel variant quality parameters used for filtering. The applied cut-offs are shown with a vertical line.

Supplementary Figure 32: Distribution of the AN statistic (indels). Number of called alleles (corresponds to twice the number of samples genotyped at the locus).

Supplementary Figure 33: Distribution of the overall indel quality (QUAL) statistic.

Supplementary Figure 34: Distribution of the QualByDepth (QD) statistic (indels). Confidence of the variant quality (QUAL) divided by the unfiltered depth of the samples called as non-reference.

Supplementary Figure 35: Distribution of the RMSMappingQuality (MQ) statistic (indels). Root mean square of the mapping quality calculated across all reads from all samples.

Supplementary Figure 36: Distribution of the MappingQualityRankSumTest (MQRankSum) statistic (indels). A test for differences in mapping quality between reference versus alternate allele.

Supplementary Figure 37: Distribution of the ReadPosRankSumTest statistic (indels). A test for the even distribution of variants along reads.

Supplementary Figure 38: Distribution of the FisherStrand (FS) statistic (indels). A test for strand bias, i.e. if a variant is predominantly associated with one of the two read strands (forward or reverse).

Supplementary Figure 39: Distribution of the StrandOddsRatio (SOR) statistic (indels).

Supplementary Figure 40: Outcome of indel variant filtration. Candidate indel variants filtered out by different filter combinations. See methods for individual filter settings.

Proportion of genome with ROH longer than 2.5Mb

Supplementary Figure 41: Runs of homozygosity (ROH) among species evaluated using PLINK. Proportion of the genome with ROH longer than 2.5 Mb estimated using the software PLINK. Box plot elements as in Supplementary Figure 2A.

Toportion of genome with NOT longer than 2.5Mb

Supplementary Figure 42: Runs of homozygosity (ROH) in Alpine ibex evaluated using PLINK. Proportion of the genome with ROH longer than 2.5 Mb estimated using the software PLINK.

Supplementary Figure 43: Missingness across loci and populations. Boxplot showing the percentage of loci with missing data (missingness) reported by individual and grouped by population. Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 44: Individual genetic load (based on SnpEff). Individual homozygote counts (upper panel) and allele counts (lower panel) for each Alpine ibex population with no missingness allowed. Left to right shows SNP mutation category as predicted by SnpEff (modifier, low, moderate and high). Colors group Alpine ibex populations into founder and descendent population pairs (see also Figures 3 and S13A). Box plot elements as in Supplementary Figure 2A.

Supplementary Figure 45: Distribution of the selection coefficient *s* used in the simulations.

SUPPLEMENTARY TABLES

Supplementary Table 1A: **Demographic information on Alpine ibex populations.** Gran Paradiso was the only surviving population and at the source of all introduced populations. Effective founder group size differs from total released numbers if knowledge was available about mortality after population establishment. Long-term population size was calculated as the harmonic mean of census size since population founding. *) Estimated numbers based on historic record.

Alpine ibex [extant census 50'000 individuals]	Date of foundation	Males released	Females released	Total released	Effective founder group size	Long-term population size (from foundation up to 2007)	Census 2007
Population							
Gran Paradiso ^{1,2}		-	-	-	100*	n/a	n/a
Albris (al) ³	1920-34	16	26	42	42	46	1033
Alpi Marittime (am) 4,5	1920-30			25	6	20*	750
Bire Oeschinen (bo) ³	1961-62	4	9	13	13	41	68
Brienzer Rothorn (br) ³	1921-25	8	10	18	18	85	288
Oberbauenstock (ob) ³	1968-86	10	12	22	22	22	164
Pilatus (pi) ³	1961-65	8	7	(unknown sex: 2) 17	17	43	104
Pleureur (pl) ³	1928-35	6	9	15	15	73	(year 2003) 806
Weisshorn (wh) ⁶	1962-69	18	6	24	24	30*	354

Supplementary Table 1B: Demographic information on three major Iberian ibex populations.

Included are both extant subspecies of *Capra pyrenaica*. Bottleneck periods represent the most dramatic, known reductions in population size. Sierra Nevada and Maestrazgo populations experienced only recent bottlenecks (1960s).

Iberian ibex	Subspecies	Strengths of known bottlenecks periods [estimated individuals]	Population size changes over time [if available]	Current population size
Sierra Nevada (sn)	Capra pyrenaica hispanica	~600 (1960s) ⁷	n/a	16'000 ⁸
Maestrazgo (hb)	Capra pyrenaica hispanica	~30 (1960s) ⁷	450 (1966) ⁸ 700 (1970) ⁸⁻¹¹ >3000 (1977) ⁸⁻¹¹ 3800 (1979) ⁸⁻¹¹ > 5000 (1981) ⁸⁻¹¹	70007
Sierra de Gredos (vi)	Capra pyrenaica victoriae	50 (1895) ⁷ 12 (1905) ⁷ 350 (1912) ⁷ 500 (1914) ⁷ >1000 (1917) ⁷	2150 (1961)7 4000 (1976) ⁸⁻¹⁰ 9000 (1978) ⁸⁻¹⁰ 8000 (1993) ⁸⁻¹⁰	80007

Supplementary Table 2: **Overview of individual sampling.** Overview of all sequenced individuals grouped by species including the IUCN conservation status and recent demographic events. Whole-genome sequencing data, reference genome mapping and single nucleotide polymorphism (SNP) statistics are shown.

Sample	Population	Sex	Location	Coord (Swiss latitude/le	linates grid or ongitude)	nates Raw rid or sequencing ngitude) data (Gbp)		Coverage (X)	Number of SNPs genotyped	Number of heterozygote SNPs
Alpine ibex: Recent b	ottlenecks, IUCN: l	Least con	cern							
ih 666 12M am	A lai Masitimi	y. 0.0003	9 Denine			60.0	00.0	17.6	5411241909	667046
10.065.12M_am	Alpi Maritimi	maie	Kovina			60.0	99.0	17.5	50120898	00/040
10.085.12F_am	Alpi Maritimi	remaie	Matto			65.2	98.9	18.8	50120955	669730
10.225.12F_am	Aipi Maritimi	female	Barra	101400	(10(00	60.2	99.1	17.6	50120911	0201200
ib.BE0010_br	Brienzer Rothorn	female	Stelli, Hofstetten	181400	649600	64.3	99.2	19.5	56127089	938.208
ib.BE0283_br	Brienzer Kothorn	temale	Salenwang	180600	650250	69.5	99.1	21.1	56/12//180	954'605
1b.BE0309_bo	Bire Oeschinen	temale	Schwarzhorn Oeschinen	151400	624850	59.6	98.7	18.1	56126958	803'869
ib.BE0407_bo	Bire Oeschinen	male	Oeschinensee, Heuberg	150750	621800	55.5	99.1	17.2	56'126'864	753'333
ib.BE0463_bo	Bire Oeschinen	male	Oeschinensee, Underbärgli	150750	622600	59.7	99.1	18.7	56'126'974	889'571
ib.GPO03D_gp	Gran Paradiso	male	Orco, Chiapili sup	45.4684	7.1474	58.8	98.9	17.3	56'126'869	906'666
ib.GPO39B_gp	Gran Paradiso	male	Orco	45.4644	7.1588	58.3	99.0	17.2	56'126'868	958'991
ib.GPR21C_gp	Gran Paradiso	male	Rhemes	45.5637	7.1400	57.2	99.2	17.7	56'126'849	925'983
ib.GPV05C_gp	Gran Paradiso	female	Valsaveranche, Levionaz	45.5821	7.2262	60.9	99.2	18.4	56'126'978	834'684
ib.GPV09K_gp	Gran Paradiso	male	Valsaveranche, Levionaz	45.5746	7.2398	56.4	99.0	17.0	56'126'827	924'811
ib.GPV13G_gp	Gran Paradiso	male	Valsaveranche, Levionaz	45.5779	7.2333	56.8	99.0	16.6	56'126'804	900'629
ib.GPV18C_gp	Gran Paradiso	male	Valsaveranche, Levionaz	45.5779	7.2333	63.5	99.1	20.0	56'127'046	889'186
ib.GR0140_rh	Rheinwaldhorn	female	Scalutta Gem Safien	166250	741820	54.3	98.7	16.8	56'126'827	733'524
ib.GR0201_al	Albris	female	Munt Blais, Gm S-chanf	166065	799210	56.1	99.2	17.4	56'126'937	854'091
ib.GR0323_al	Albris	female	Paradies Suot, Pontresina	150740	791325	60.8	99.1	18.3	56'126'987	856'238
ib.GR0442 al	Albris	male	Val da Fain Tschüffer. Pontresina	150160	797230	60.2	99.0	18.6	56'127'038	818'724
	Oberbauerstock	male	Hoh Brisen	194450	678200	55.6	98.9	17.3	56'126'878	768'646
b.NW0061 ob	Oberbauerstock	female	Niederbauen	200200	685050	58.9	99.2	17.8	56'126'939	787'534
ib.OW0002 b-	Brienzer Rothorn	male	Eisee Giswil	182250	646077	62.9	27.2 QQ &	10.6	56'127'112	1'102'920
5 UD0036	Obarbaussatual	famal	IcanthalDäranete-k	102231	681176	61.0	70.0	19.0	56/12/113	605000
L VS0021 -	Weisshe	form	Iscittation St. Nilla	1933/1	627200	01.0	97.8	18.1	5611261939	095 986
wh we	weissnorn	remale	Jungen; St. INKIAUS	115/00	02/300	56.5	99.1	17.4	50 126 843	842'412
1b.VS0079_wh	Weisshorn	temale	Seetal, Gde. Grächen	117000	627750	62.3	99.1	20.2	56'127'095	876'610
ib.VS0081_wh	Weisshorn	female	Jungen, Gde. St. Niklaus	117000	627750	60.0	99.0	19.5	56'126'935	805'493
ib.VS0139_pl	Pleureur	male	Dixènce-Evolène	101000	595000	62.0	99.0	19.4	56'127'046	916'987
ib.VS1121_pl	Pleureur	female	Verbier	105100	586700	60.9	98.9	18.4	56'126'971	864'945
ib.VS1124_pl	Pleureur	male	Boussine	87250	592900	54.4	98.8	17.0	56'126'830	947'985
Iberian ibex: Recent	bottlenecks, IUCN:	Least co	ncern							
N=4; 4'353'580 SNPs;	nucleotide diversity	: 0.00066								
py.V53_vi			Sierra de Gredos			60.0	91.3	15.3	56'126'235	1'274'362
py.V66_vi			Sierra de Gredos			60.3	94.2	15.3	56'126'292	1'000'193
py.M518_sn	Sierra Nevada		Sierra Nevada			88.0	99.1	26.9	56'127'272	1'000'228
py.Z5_hb			Maestrazgo			56.4	99.2	17.0	56'126'788	960'783
Nubian ibex: Fragme	nted populations, I	UCN: Vu	Inerable							
N=2, 6'980'112 SNPs,	nucleotide diversity	: 0.00151								
nu.ibx20			Sinai, Egypt			102.5	98.6	17.1	56126494	3131909
nu.ibx61			Howtat, Central Saudi Arabia			46.9	98.7	18.4	56126885	2'556'433
Markhor: Fragmente N=1 1'988'577 SNPs	d populations, IUC	N: Near '	Threatened							
fal Cafal1	inderconde diversity	. 0.00077	Dacht i Ium Pacanza, Tajikietan			148.7	08.0	38.6	56'127'402	1'845'346
lai.Calali			Dasiter Julii Reserve, Tajikistan			140.7	90.9	56.0	50127405	1 845 546
ca	L.C. HICN									
N=2, 10'433'689 SNP	s, nucleotide diversit	: Least co y: 0.0022	4							
si.Casi1		male	South of Issyk lake			57.4	98.7	15.8	56'126'287	4'379'849
si.Casi2		male	Dasht-i Jum Reserve, Taiikistan			80.1	98.8	22.0	56'126'976	4'823'262
n	C HICN V I									
N=6, 15'182'016 SNP	s, nucleotide diversit	rable y: 0.0019	1							
IRCA-C3-1001		male	Marakan	45.16	38.63	37.6	99.1	11.5	56'127'088	3'212'565
IRCA-G2-5063		male	Arasbaran	47.13	39.18	36.5	98.7	11.6	56'127'115	3'610'951
IRCA-U11-0001		male	Khan Gormaz	48 20	34.60	19.1	99.0	5.9	56'126'263	2'293'061
IRCA-16 5237		male	Karnagh	49.20	27.14	24.7	22.0 00.1	11.2	56'127'11'	214021764
IRCA-10-3237		mate	Kainagi	40.05	37.10	34.0	99.1	11.3	5012/111	3402734
IRCA-K12-0005		maie	Lasngar Dar	49.05	34.21	19.7	99.0	0.3	50120445	2 524 631
IRCA-M12-0008		male	khomein	50.34	34.18	52.4	99.0	10.1	5612/049	3'9/2'538
Domestic goat			00							
N=16, 21 943 431 SN	Ps, nucleotide divers	ity: 0.001	98	0.04	16.60			10.0		2102 (1424
FRCH-AL-0002	Alpine	female		-0.36	46.69	41.5	99.2	12.8	56'127'200	3'826'421
FRCH-SA-0001	Saanen	female	•	-0.28	46.57	40.4	99.2	12.1	56'127'136	3'919'140
IRCH-B3-5031		female	Khoiy	44.94	38.65	38.0	99.2	12.0	56'127'181	4'539'659
IRCH-C5-5206		male	Nushin Shahr	45.06	37.78	39.0	99.1	12.1	56'127'214	3'170'212
IRCH-F3-5044		female	Ahar	46.85	38.52	39.4	99.2	11.6	56'127'110	4'051'773
IRCH-F4-5093		female	Vazarghan	46.61	38.30	39.6	99.2	11.9	56'127'128	3'322'150
IRCH-G5-5185		male	Sarab	47.08	37.97	35.5	99.1	11.5	56'127'172	4'358'311
ITCH-SA-0001	Saanen					46.7	98.9	13.8	56'127'216	3'999'955
ITCH-SA-0005	Saanen					44.5	98.4	13.0	56'127'156	3'983'967
MOCH-AA10-2195	landrace	male	Maaterka	-1.82	32.52	35.8	99.0	11.2	56'127'031	3'895'474
MOCH-L10-3100	landrace	male	Avir	-9.06	32.70	38.2	99.1	12.0	56'127'149	2:717:970
MOCH 015 1142	landraca	famal	Four Zauid	-7.00	20.00	20.3	27.1	12.0	56'127'140	2/1/9/0
MOCH Dr 6007	landra ::	famile	Vhmias Sah	-0.58	30.08	31.3	99.2	11.7	5012/103	2 410 000
MOCH-RS-0037	landrace	temale .	Knmiss Sahel	-6.09	35.20	35.1	99.1	10.9	56'127'117	5'544'065
MOCH-S8-2252	landrace	male	AI Hajeb	-5.67	33.81	41.1	99.1	13.0	56'127'171	2'596'402
MOCH-V5-3059	landrace	female	Beni Boufrah	-4.30	35.10	40.8	99.2	12.6	56'127'190	4'151'251
hi.PCGA06	Peacock					62.3	99.2	19.5	56'127'329	4'098'566

Supplementary Table 3: Summary of runs of homozygosity (ROH). Total length per ROH category. Note that categories are overlapping. Populations abbreviated by am: Alpi Marittime, gp: Gran Paradiso; al: Albris; bo: Bire Öschinen; br: Brienzer Rothorn; ob: Oberbauenstock; pl: Pleureur; rh: Rheinwald; wh: Weisshorn. NA: no population/breed assigned. A) Analysis settings af.dflt 0.4, M=0.0000012, run with Viterbi. B) Settings af.dflt 0.4, M=0.0000012.

Individual	100-500 Kb	>100 kb	>500 kb	>2.5 Mb	2.5-10 Mb	>10 Mb	Population/ Breed	Species
		Settings:	af.dflt 0.4, M=0.0	0000012, with V	iterbi			
ib.GR0201_al	617'316'226	1'499'036'113	881'719'887	278'054'595	278'054'595	0	al	C. ibex
ib.GR0323_al	648'739'982	1'568'056'539	919'316'557	271'420'074	271'420'074	0	al	C. ibex
ib.GR0442_al	638'635'462	1'619'373'279	980'737'817	293'579'234	293'579'234	0	al	C. ibex
ib.08S.12F_am	550'622'660	1'883'994'916	1'333'372'256	580'980'545	569'620'719	11'359'826	am	C. ibex
ib.06S.12M_am	526'257'448	1'814'566'314	1'288'308'866	531'521'579	531'521'579	0	am	C. ibex
ib.22S.12F_am	485'235'630	1'826'304'781	1'341'069'151	604'013'148	604'013'148	0	am	C. ibex
ib.BE0309_bo	624'378'681	1'625'733'750	1'001'355'069	325'649'131	314'522'057	11'127'074	bo	C. ibex
ib.BE0407_bo	529'902'205	1'628'035'706	1'098'133'501	444'950'345	444'950'345	0	bo	C. ibex
ib.BE0463_bo	714'827'140	1'586'641'537	871'814'397	233'878'805	233'878'805	0	bo	C. ibex
ib.BE0010_br	743'914'314	1'653'878'572	909'964'258	238'950'631	238'950'631	0	br	C. ibex
ib.BE0283_br	808'881'190	1'775'794'639	966'913'449	264'644'590	254'642'196	10'002'394	br	C. ibex
ib.OW0002_br	761'260'031	1'667'152'587	905'892'556	199'762'116	199'762'116	0	br	C. ibex
ib.GPR21C_gp	678'473'743	1'434'407'783	755'934'040	175'346'650	175'346'650	0	gp	C. ibex
ib.GPV05C_gp	650'121'652	1'594'127'217	944'005'565	266'705'862	266'705'862	0	gp	C. ibex
ib.GPV18C_gp	777'624'987	1'682'216'743	904'591'756	236'158'730	236'158'730	0	gp	C. ibex
ib.GPO03D_gp	664'865'678	1'520'317'013	855'451'335	227'583'908	227'583'908	0	gp	C. ibex
ib.GPO39B_gp	709'970'926	1'471'650'951	761'680'025	151'298'231	151'298'231	0	gp	C. ibex
ib.GPV09K_gp	662'015'971	1'492'528'666	830'512'695	167'263'444	167'263'444	0	gp	C. ibex
ib.GPV13G_gp	647'435'577	1'493'675'120	846'239'543	194'612'790	194'612'790	0	gp	C. ibex
ib.NW0045_ob	573'664'491	1'615'991'379	1'042'326'888	370'839'466	360'195'918	10'643'548	ob	C. ibex
ib.NW0061_ob	595'069'740	1'616'525'100	1'021'455'360	336'713'979	325'950'950	10'763'029	ob	C. ibex
ib.UR0036_ob	561'427'932	1'762'789'124	1'201'361'192	514'766'948	504'014'248	10'752'700	ob	C. ibex
ib.VS0139_pl	746'261'010	1'630'720'974	884'459'964	225'660'318	225'660'318	0	pl	C. ibex
ib.VS1121_pl	634'868'136	1'645'766'132	1'010'897'996	326'843'120	326'843'120	0	pl	C. ibex
ib.VS1124_pl	636'991'188	1'368'015'802	731'024'614	139'861'308	139'861'308	0	pl	C. ibex
ib.GR0140_rh	543'598'033	1'597'032'136	1'053'434'103	324'940'186	324'940'186	0	rh	C. ibex
ib.VS0079_wh	738'754'492	1'697'873'813	959'119'321	273'245'245	249'102'537	24'142'708	wh	C. ibex
ib.VS0081_wh	656'387'409	1'725'855'351	1'069'467'942	333'444'887	333'444'887	0	wh	C. ibex
ib.VS0031_wh	635'312'736	1'548'163'493	912'850'757	301'607'030	291'518'068	10'088'962	wh	C. ibex
nu.ibx20	355'804'025	398'512'218	42'708'193	0	0	0	NA	C. nubiana
nu.ibx61	386'976'121	803'470'296	416'494'175	130'605'348	130'605'348	0	NA	C. nubiana
py.Z5_hb	391'166'242	1'262'581'533	871'415'291	281'367'004	256'892'451	24'474'553	hb	C. pyrenaica
py.M518_sn	950'904'052	2'037'382'478	1'086'478'426	303'317'928	303'317'928	0	sn	C. pyrenaica
py.V53_vi	579'842'010	1'102'731'313	522'889'303	47'817'848	47'817'848	0	vi	C. pyrenaica
py.V66_vi	508'832'531	1'164'493'864	655'661'333	117'445'961	117'445'961	0	vi	C. pyrenaica
si.Casi1	129'673'268	265'145'849	135'472'581	42'751'180	42'751'180	0	NA	C. sibirica
si.Casi2	387'043'290	544'294'224	157'250'934	15'395'187	15'395'187	0	NA	C. sibirica
IRCA-C3-1001	116'433'824	606'632'709	490'198'885	268'128'032	256'267'102	11'860'930	NA	C. aegagrus
IRCA-G2-5063	146'599'124	364'865'275	218'266'151	65'684'795	65'684'795	0	NA	C. aegagrus
IRCA-I11-0001	82'755'412	828'874'800	746'119'388	374'898'069	363'284'902	11'613'167	NA	C. aegagrus
IRCA-I6-5237	103'888'535	592'035'177	488'146'642	199'925'786	199'925'786	0	NA	C. aegagrus
IRCA-K12-0005	89'520'127	765'249'396	675'729'269	325'751'977	325'751'977	0	NA	C. aegagrus
IRCA-M12-0008	99'873'735	310'410'173	210'536'438	36'558'518	36'558'518	0	NA	C. aegagrus
fal.Cafal1	573'621'042	2'314'024'081	1'740'403'039	549'883'291	448'500'903	101'382'388	NA	C. falconeri
FRCH-AL-0002	111'890'971	322'924'190	211'033'219	92'718'720	92'718'720	0	Alpine	C. hircus
IRCH-B3-5031	53'738'058	60'736'586	6'998'528	0	0	0	NA	C. hircus
IRCH-C5-5206	71'091'645	786'587'520	715'495'875	450'008'904	427'535'728	22'473'176	NA	C. hircus
IRCH-F3-5044	59'526'367	299'946'902	240'420'535	120'980'706	120'980'706	0	NA	C. hircus
IRCH-F4-5093	57'578'725	696'091'487	638'512'762	371'049'415	358'859'987	12'189'428	NA	C. hircus
IRCH-G5-5185	72'654'707	87'703'744	15'049'037	0	0	0	NA	C. hircus
MOCH-AA10-2195	90'182'118	271'781'073	181'598'955	107'678'451	92'861'325	14'817'126	landrace	C. hircus
MOCH-L10-3100	106'103'980	981'754'026	875'650'046	447'547'432	426'912'917	20'634'515	landrace	C. hircus
MOCH-Q15-1143	94'753'992	1'103'076'736	1'008'322'744	639'531'078	587'996'693	51'534'385	landrace	C. hircus
MOCH-R5-0037	76'703'976	484'745'657	408'041'681	245'431'572	233'806'996	11'624'576	landrace	C. hircus
MOCH-S8-2252	96'022'567	1'028'257'715	932'235'148	552'459'778	510'277'731	42'182'047	landrace	C. hircus
MOCH-V5-3059	104'574'015	171'184'148	66'610'133	13'521'240	13'521'240	0	landrace	C. hircus
hi.PCGA06	281'436'611	410'435'725	128'999'114	73'150'162	73'150'162	0	Peacock	C. hircus
FRCH-SA-0001	100'896'581	244'944'909	144'048'328	71'406'178	61'185'213	10'220'965	Saanen	C. hircus
ITCH-SA-0001	112'477'470	244'286'695	131'809'225	54'227'488	54'227'488	0	Saanen	C. hircus
ITCH-SA-0005	104'291'210	215'165'572	110'874'362	39'345'718	39'345'718	0	Saanen	C. hircus

Individual	100-500 Kb	>100 kb	>500 kb	>2.5 Mb	2.5-10 Mb	>10 Mb	Population/ Breed	Species
		Settings:	af.dflt 0.4, M=0.0	000012, withou	t Viterbi			
ib.GR0201_al	783'649'374	1'995'664'565	1'212'015'191	450'312'926	429'182'212	21'130'714	al	C. ibex
ib.GR0323_al	771'984'838	2'074'769'627	1'302'784'789	493'636'590	482'683'987	10'952'603	al	C. ibex
ib.GR0442_al	744'636'342	2'110'321'145	1'365'684'803	531'212'709	507'408'809	23'803'900	al	C. ibex
ib.08S.12F_am	506'440'668	2'215'138'383	1'708'697'715	886'398'299	757'676'854	128'721'445	am	C. ibex
ib.06S.12M_am	535'367'583	2'182'318'972	1'646'951'389	843'786'402	769'462'039	74'324'363	am	C. ibex
ib.22S.12F_am	504'894'041	2'177'064'831	1'672'170'790	924'503'363	788'231'278	136'272'085	am	C. ibex
ib.BE0309_bo	731'956'217	2'104'565'569	1'372'609'352	567'146'789	519'862'556	47'284'233	bo	C. ibex
ib.BE0407_bo	682'427'109	2'062'002'272	1'379'575'163	673'696'514	593'848'718	79'847'796	bo	C. ibex
ib.BE0463_bo	766'167'748	2'112'275'126	1'346'107'378	443'543'188	421'161'453	22'381'735	bo	C. ibex
ib.BE0010_br	746'218'372	2'155'341'482	1'409'123'110	431'098'700	420'768'536	10'330'164	br	C. ibex
ib.BE0283_br	648'107'833	2'231'657'101	1'583'549'268	543'880'783	505'040'297	38'840'486	br	C. ibex
ib.OW0002_br	725'021'312	2'177'987'516	1'452'966'204	477'831'355	454'859'576	22'971'779	br	C. ibex
ib.GPR2IC_gp	876'341'653	2'008'306'378	1131964725	363'481'599	352'8//21/	10'604'382	gp	C. ibex
ID.GPV05C_gp	772'343'629	2'102'615'900	1'330'2/2'2/1	4537/94181	441'906'799	10/022/602	gp	C. ibex
ID.GPV18C_gp	729'634'379	21/5335815	1'445'/01'436	434715929	424'685'24/	20/140/260	gp	C. ibex
ib.GPO03D_gp	20016201406	2 000 300 449	12/3989304	316'277'004	340 10/ 1/1	39 149 209	gp	C. ibex
ib.GPV09K gp	814'803'919	2 037 303 088	1/21/031/802	354'203'400	354'203'400	0	sp m	C. ibex
ib.GPV13C gp	791'183'333	2'006'827'487	1'215'644'154	342'628'909	342'628'909	0	gp op	C. ibex
ib.NW0045_ob	683'383'101	2'055'828'846	1'372'445'745	595'495'883	564'218'995	31'276'888	ob	C. ibex
ib.NW0061_ob	722'075'711	2'094'887'534	1'372'811'823	622'284'739	573'736'535	48'548'204	ob	C ibex
ib.UR0036_ob	617'068'750	2'158'114'200	1'541'045'450	767'497'546	697'638'277	69'859'269	ob	C ibex
ib.VS0139 nl	758'740'285	2'145'084'721	1'386'344'436	449'421'486	415'295'277	34'126'209	pl	C ibex
ib.VS1121 pl	731'045'337	2'127'252'036	1'396'206'699	534'826'955	469'751'317	65'075'638	pl	C. ibex
ib.VS1124 pl	873'505'705	1'924'745'798	1'051'240'093	275'850'892	275'850'892	0	pl	C. ibex
ib.GR0140_rh	669'983'274	2'001'957'025	1'331'973'751	575'091'026	550'389'677	24'701'349	rh	C. ibex
ib.VS0079_wh	734'275'706	2'152'755'412	1'418'479'706	502'302'612	454'745'847	47'556'765	wh	C. ibex
ib.VS0081_wh	685'673'558	2'142'824'732	1'457'151'174	579'985'076	541'409'137	38'575'939	wh	C. ibex
ib.VS0031_wh	759'969'197	2'029'774'334	1'269'805'137	476'045'828	428'999'287	47'046'541	wh	C. ibex
nu.ibx20	645'141'286	764'369'563	119'228'277	4'946'168	4'946'168	0	NA	C. nubiana
nu.ibx61	812'058'278	1'328'614'042	516'555'764	260'303'299	260'303'299	0	NA	C. nubiana
py.Z5_hb	815'478'576	1'896'275'992	1'080'797'416	493'413'944	408'045'097	85'368'847	hb	C. pyrenaica
py.M518_sn	332'469'317	2'347'523'839	2'015'054'522	845'012'933	831'829'914	13'183'019	sn	C. pyrenaica
py.V53_vi	819'670'708	1'640'855'629	821'184'921	186'497'356	186'497'356	0	vi	C. pyrenaica
py.V66_vi	736'060'943	1'618'831'409	882'770'466	256'608'832	227'041'412	29'567'420	vi	C. pyrenaica
si.Casi1	255'207'615	408'162'919	152'955'304	75'253'542	51'229'618	24'023'924	NA	C. sibirica
si.Casi2	1'006'207'772	1'244'095'194	237'887'422	38'624'317	38'624'317	0	NA	C. sibirica
IRCA-C3-1001	149'214'281	673'260'511	524'046'230	367'252'324	276'738'287	90'514'037	NA	C. aegagrus
IRCA-G2-5063	195'537'312	445'690'958	250'153'646	95'027'576	84'593'640	10'433'936	NA	C. aegagrus
IRCA-111-0001	68'939'368	846'990'938	778'051'570	541'984'632	454'595'429	87'389'203	NA	C. aegagrus
IRCA-16-5237	7414211070	641/820/8//	521432383	336'343'434	324'88/'694	11:455:740	NA	C. aegagrus
IRCA-K12-0005	/4/421/8/8	228/507/826	24512211076	4651/44/5	384:455:993	80718482	NA	C. aegagrus
fal Cafali	95 200 700	2201/01/052	245 551 070	9/120900	97 120 900	261/252/122	NA	C. uegugrus
FRCH_AL_0002	193'289'812	416'876'710	2 303 184 137	150'003'969	150'003'969	301 332 123	Alpine	C. juiconeri
IRCH B3 5031	102'635'552	113'614'146	10'978'594	150 005 909	150 005 909	0	NA	C. acgagrus hircus
IRCH-C5-5206	80'643'047	824'805'115	744'162'068	614'532'865	537'104'184	77'428'681	NA	C. aegagrus hircus
IRCH-F3-5044	89'815'929	342'912'438	253'096'509	181'835'799	165'180'180	16'655'619	NA	C. aegagrus hircus
IRCH-F4-5093	71'749'818	727'932'777	656'182'959	511'594'515	395'940'769	115'653'746	NA	C. aegagrus hircus
IRCH-G5-5185	124'475'913	147'157'579	22'681'666	2'708'642	2'708'642	0	NA	C. aegagrus hircus
MOCH-AA10-2195	146'220'987	340'288'629	194'067'642	151'554'435	114'959'593	36'594'842	landrace	C. aegagrus hircus
MOCH-L10-3100	120'386'963	1'032'323'265	911'936'302	708'108'515	574'495'587	133'612'928	landrace	C. aegagrus hircus
MOCH-Q15-1143	118'049'121	1'156'701'237	1'038'652'116	878'378'405	615'022'573	263'355'832	landrace	C. aegagrus hircus
MOCH-R5-0037	115'316'268	542'454'919	427'138'651	341'618'532	278'102'708	63'515'824	landrace	C. aegagrus hircus
MOCH-58-2252	114'340'854	1'082'372'825	968'031'971	800'852'904	593'627'379	207'225'525	landrace	C. aegagrus hircus
MOCH-V5-3059	178'078'661	256'774'033	78'695'372	21'118'017	21'118'017	0	landrace	C. aegagrus hircus
hi.PCGA06	828'868'429	990'581'676	161'713'247	91'561'239	91'561'239	0	Peacock	C. aegagrus hircus
FRCH-SA-0001	172'403'707	326'762'731	154'359'024	90'564'251	57'648'233	32'916'018	Saanen	C. aegagrus hircus
ITCH-SA-0001	198'698'577	342'352'391	143'653'814	90'281'895	78'559'944	11'721'951	Saanen	C. aegagrus hircus
ITCH-SA-0005	186'683'295	307'887'462	121'204'167	79'505'337	79'505'337	0	Saanen	C. aegagrus hircus

Supplementary Table 4: **Deleterious mutations segregating among and within species.** SNPs were filtered as detailed in the Methods. For Alpine and Iberian ibex, we jointly defined a subset of SNPs for which either the Alpine and/or the Iberian ibex carried the derived allele. The SNPs include only sites for which no other species than Alpine and Iberian ibex carried the derived allele. See Methods for details on ancestral/derived state identification procedures.

Variable sites within	All		C. ibex		C. ibex		C. pyrend	nica	C. pyrend	nica	C. hircus C. aegagrus			C. sibirica		C. falconeri		C. nubiana		
groups/species:	species				derived				derived											
	number of SNPs	%	number of SNPs	%	number of SNPs	%	number of SNPs	%	number of SNPs	%	number of SNPs	%								
Total	370'853		22'255		16'545		29'100		23'656		123'791		83'088		58'850		11'062		43'141	
SnpEff category																				
Stop gained	444	0.12	60	0.27	38	0.23	60	0.21	39	0.16	163	0.13	108	0.13	70	0.12	29	0.26	58	0.13
High	614	0.17	69	0.31	41	0.25	72	0.25	47	0.2	241	0.19	156	0.19	102	0.17	37	0.33	76	0.18
Moderate	70'873	19.1	5157	23.2	3754	22.7	6546	22.5	5254	22.2	24540	19.8	15841	19.1	10491	17.8	2358	21.3	8457	19.6
Low	122'677	33.1	7186	32.3	5068	30.6	9236	31.7	7214	30.5	41614	33.6	28435	34.2	20332	34.5	3612	32.7	14631	33.9
Modifier	176'689	47.6	9843	44.2	7682	46.4	13246	45.5	11141	47.1	57396	46.4	38656	46.5	27925	47.5	5055	45.7	19977	46.3
Range of GERP conservation score																				
>6	4'343	1.2	312	1.4	218	1.3	369	1.3	293	1.2	1494	1.2	989	1.2	695	1.2	125	1.1	507	1.2
4 - 6	96'528	26.0	5759	25.9	4277	25.9	7545	25.9	6151	26.0	32303	26.1	21652	26.1	15493	26.3	2874	26.0	11148	25.8
2 - 4	96'967	26.1	6040	27.1	4598	27.8	7901	27.2	6492	27.4	32525	26.3	21437	25.8	14748	25.1	2814	25.4	11205	26.0
-2 - 2	173'015	46.7	10144	45.6	7452	45.0	13285	45.7	10720	45.3	57469	46.4	39010	47.0	27914	47.4	5249	47.5	20281	47.0

Supplementary Table 5: **Deleterious mutations (indels) segregating among and within species.** Identical to Supplementary Table 4 except showing indels instead of SNPs.

Variable sites within	All		C. ibex		C. ibex		C. pyrena	ica	C. pyrena	ica	C. hircus		C. aegagr	us	C. sibirica	1	C. falcon	eri	C. nubian	a
groups/species:	species				derived				derived											
	number of indels	%	numbe of inde	s %	number of indels	%	number of indels	%	number of indels	%	number of indels	%	number of indels	%	number of indels	%	number of indels	%	number of indels	%
Total	27'039		3'61	8	2'012		2'981		1'960		8'827		5'730		4'746		1'052		3'632	
SnpEff category																				
Stop gained	32	0.12		4 0.11	3	0.15	2	0.07	2	0.1	9	0.1	8	0.14	11	0.23	0	0	0	0
High	1'890	6.99	65	1 17.99	280	13.92	354	11.88	119	6.07	825	9.35	500	8.73	394	8.3	186	17.68	375	10.32
Moderate	1'273	4.7	24	8 6.9	119	5.9	178	6.0	103	5.3	491	5.6	265	4.6	215	4.5	62	5.9	185	5.1
Low	95	0.4	1	2 0.3	5	0.2	14	0.5	11	0.6	25	0.3	17	0.3	19	0.4	3	0.3	15	0.4
Modifier	23'781	88	2'70	7 74.8	1608	79.9	2'435	81.7	1727	88.1	7486	84.8	4'948	86.4	4'118	86.8	801	76.1	3'057	84.2
Range of GERP conservation score																				
>6	15'141	56	1'72	3 47.6	987	49.1	1'551	52.0	1053	53.7	4835	54.8	3'246	56.6	2'706	57.0	562	53.4	2'067	56.9
4 - 6	7'358	27.2	97	5 26.9	534	26.5	821	27.5	546	27.9	2427	27.5	1524	26.6	1'259	26.5	268	25.5	933	25.7
2 - 4	4'357	16.1	87	7 24.2	470	23.4	587	19.7	346	17.7	1508	17.1	917	16.0	750	15.8	212	20.2	608	16.7
-2 - 2	183	0.7	4	3 1.2	21	1.0	22	0.7	15	0.8	57	0.6	43	0.8	31	0.7	10	1.0	24	0.7

Supplementary Table 6: **Predicted protein functions.** Predicted protein functions of genes for which at least one homozygote was found for the derived, high-impact allele.

Gene name	Predicted protein function	Polymorphism within species	SnpEff stop-gained
Alpine ibex (C. ibex)			
KNG1	kininogen-1 isoforms X1-3	Segregating	yes
LOC102181723	protein FAM188B2	Fixed	yes
LOC102181167	60S ribosomal protein L10a-like	Fixed	yes
DIS3L2	DIS3-like exonuclease 2	Segregating	yes
EPHA8	ephrin type-A receptor 8	Segregating	yes
LOC102178786	coiled-coil domain-containing protein 30-like	Segregating	no
LOC102180106	unknown	Segregating	no
OVCH1	ovochymase-1	Fixed	yes
ERAP2	endoplasmic reticulum aminopeptidase 2	Segregating	no
TLN2	talin-2	Segregating	yes
POLR1A	DNA-directed RNA polymerase I subunit RPA1	Segregating	yes
LOC102188952	unknown	Segregating	yes
OOEP	oocyte-expressed protein homolog	Segregating	yes
FOXR1	Forkhead box protein R1	Segregating	yes
PNMAL1	PNMA-like protein 1	Segregating	yes
RAD1	cell cycle checkpoint protein RAD1	Fixed	no
KIF9	kinesin-like protein KIF9 isoforms X1-3	Fixed	yes
LOC102179713	C-C chemokine receptor type 1-like	Segregating	yes
CD2BP2	CD2 antigen cytoplasmic tail-binding protein 2 isoforms X1-2	Fixed	yes
LOC102189088	zinc finger protein 205 isoform X1	Fixed	no
LOC102188472	synaptotagmin-15 isoforms X1-4	Segregating	yes
LOC102175191	solute carrier family 22 member 9-like	Fixed	yes
Iberian Ibex (C. pyrenaica)			
LOC102181723	protein FAM188B2	Segregating	yes
LOC102181167	60S ribosomal protein L10a-like	Segregating	yes
CAPZB	F-actin-capping protein subunit beta	Segregating	yes
TMBIM6	bax inhibitor 1	Segregating	yes
LOC102191021	protein HP-25 homolog 2	Segregating	yes
OVCH1	ovochymase-1	Fixed	yes
LOC102173270	C-type lectin domain family 2 member B	Segregating	yes
TLR6	toll-like receptor 6	Segregating	yes
TLR6	toll-like receptor 6 isoform X1	Segregating	yes
LOC106502316	zinc finger protein 77-like	Segregating	yes
LOC102191525	eukaryotic translation initiation factor 3 subunit J	Segregating	yes
TMEM244	transmembrane protein 244	Segregating	yes

Gene name	Predicted protein function	Polymorphism within species	SnpEff stop-gained
IGF2R	cation-independent mannose-6-phosphate receptor	Fixed	yes
PPP1R14D	protein phosphatase 1 regulatory subunit 14D	Segregating	yes
LOC102187409	60S ribosomal protein L36a-like	Segregating	yes
LOC102173760	Fer-1-like protein 4	Segregating	yes
SOGA1	protein SOGA1	Segregating	yes
CCDC73	coiled-coil domain-containing protein 73	Segregating	yes
PER3	period circadian protein homolog 3	Segregating	yes
LOC102178853	arachidonate 12-lipoxygenase epidermal-type-like	Segregating	yes
LOC102171368	keratin-associated protein 4-9-like	Fixed	yes
LOC102177379	myeloid-associated differentiation marker-like	Segregating	yes
KIF9	kinesin-like protein KIF9 isoforms X1-3	Fixed	yes
CLN3	battenin isoforms X1-3	Segregating	yes
CD2BP2	CD2 antigen cytoplasmic tail-binding protein 2 isoforms X1-2	Fixed	yes
LOC102189088	zinc finger protein 205 isoform X1	Segregating	no
LOC102170020	deleted in malignant brain tumors 1 protein-like	Segregating	no

Supplementary Note 1: Script used for individual based simulations.

run mode overwrite random seed 30317 logfile logfile.log root dir SIMS/sim5000 0.0014 0.01 filename sim replicates 100 generations 3023 patch number 12 $116, 20, 43\}\})$ ntrl init 1 breed selection 2 disperse 3 aging 4 save_stats 5 save files 6 mating system 1 mean fecundity 5 dispersal_connectivity_matrix (@g0 {{1}}{2}{3}{4}{5}{6}{7}{8}{9}{10}{11}{12}},@g3010 $\{\{1,2,3,11\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\},\{9\},\{10\},\{11\},\{12\}\},@g3011\}$ $\{\{1\} \{2\} \{3\} \{4\} \{5\} \{6\} \{7\} \{8\} \{9\} \{10\} \{11\} \{12\}\}, @g3012$ $\{\{1\} \{2,6,4,5\} \{3,6,4,5\} \{4\} \{5\} \{6\} \{7\} \{8\} \{9\} \{10\} \{11\} \{12\}\}, @g3013$ $\{\{1\} \{2\} \{3\} \{4\} \{5\} \{6\} \{7\} \{8\} \{9\} \{10\} \{11\} \{12\}\}, @g3017$ $\{\{1\} \{2\} \{3\} \{4\} \{5\} \{6\} \{7\} \{8\} \{9\} \{10\} \{11\} \{12,9\}\}, @g3019 \{\{1\} \{2\} \{3\} \{4\} \{5\} \{6\} \{7\} \{8\} \{9\} \{10\} \{11\} \{12\}\})$ $\{\{0.996, 0.004\} \{1\} \{1\} \{0.910, 0.090\} \{0.839, 0.161\} \{0.361, 0.051, 0.217, 0.371\} \{1\} \{1\} \{1\} \{1\} \{1\} \{1\} \}, @g3018\}$ ## SELECTION TRAITS selection trait delet selection model direct selection fitness model absolute ## NEUTRAL TRAITS ntrl loci 500 ntrl all 2 ntrl_mutation_rate 5e-05 ntrl recombination rate 0.5 ntrl mutation model 1 ntrl init patch freq $\{\{0.0014\}\}$ ## DELETERIOUS TRAITS delet loci 5000 delet mutation rate 5e-05 delet backmutation rate 5e-07 # default delet recombination rate 0.5

delet_mutation_model 1 delet_fitness_model 1

delet_init_freq 0.0014 delet_effects_distribution gamma delet_effects_mean 0.01 delet_dominance_mean 0.37

delet_effects_dist_param1 0.3

OUTPUT
stat_dir stats
stat_log_time (@g0 1000, @g3000 1)
stat adlt.demography pop.patch fecundity migrants.patch migrants adlt.delet viability ntrl.freq
stat_output_compact
stat_output_CSV

ntrl_save_genotype FSTAT ntrl_output_dir ntrl_geno ntrl_output_logtime {{1, 1000, 2000, 2999, 3000, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009, 3010, 3011, 3012, 3013, 3014, 3015, 3016, 3017, 3018, 3019, 3020, 3021, 3022, 3023}}

delet_save_genotype

delet_genot_dir delet_geno

delet_genot_logtime {{1, 1000, 2000, 2999, 3000, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009, 3010, 3011, 3012, 3013, 3014, 3015, 3016, 3017, 3018, 3019, 3020, 3021, 3022, 3023}}

Supplementary References

- 1. Piodi, M., 1984. Le Bouquetin des Alpes *Capra ibex*. In: C.I.C. Kommission Grosswild (Editor), Der Steinbock in Eurasien. C.I.C. Symposium, Pontresina, Switzerland, 24-25 February 1984
- 2. Stuwe, M. & Nievergelt, B. Recovery of alpine ibex from near extinction the result of effective protection, captive breeding, and reintroductions. Applied Animal Behaviour Science **29**, 379–387 (1991).
- 3. Aeschbacher, S., Futschik, A. & Beaumont, M. A. Approximate Bayesian computation for modular inference problems with many parameters: the example of migration rates. Mol Ecol **22**, 987–1002 (2013). DRYAD entry doi:10.5061/dryad.274b1
- 4. Terrier, G. & Rossi, P. Le bouquetin (*Capra ibex ibex*) dans les alpes maritimes franco-italiennes: occupation de l'éspace, clonisation et régulation naturelles. Traveaux Scientifiques du Parc National de la Vanoise **XVIII**, 271–288 (1994).
- 5. Alpi Marittime Natural Park
- 6. Biebach, I. & Keller, L. F. Inbreeding in reintroduced populations: the effects of early reintroduction history and contemporary processes. Conserv Genet **11**, 527–538 (2010).
- 7. Couturier M. Le bouquetin des Alpes. Edited by author, Grenoble, France, (1962).
- 8. Pérez JM, Granados JE, Soriguer RC, Fandos P, Márquez FJ, Crampe JP, et al. Distribution, status and conservation problems of the Spanish Ibex, *Capra pyrenaica* (Mammalia: Artiodactyla). Mammal Review **32**, 26–39 (2002);.
- 9. Peña, J. La cabra montés en España. International Game Congress, Switzerland (1978).
- 10. Ortuño, F. & Peña, J. Reservas y cotos nacionales de caza. INCAFO, Madrid, UK. (1979)
- 11. Alados CL. Distribution and status of the Spanish ibex (*Capra pyrenaica*, Schinz). In: The Biology and Management of Mountain Ungulates (Ed. by Lovari S.), pp. 204–211. Croom-Helm, Beckenham London, UK, (1985).