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Supporting Information Text10

Main Derivation11

Here we derive the main results (eq. 5 to eq. 14 in the main text) in greater detail. The system’s energy is given by:12

U(y) = λα(θ)φα(x) [1]13

Here λ, φ are indexed by α,β,γ and x is indexed by i,j,k. We use natural units and unit temperature so that β = T = 1 and
µ = D = γ−1, where µ is the mobility, D is the diffusion, and γ is the resistance. When µ, D, γ and things like probability
currents j appear without indices, they refer to θ. In particular we use ∂i and ∂j as shorthand for ∂xi and ∂xj . When they
appear with roman indices (i,j,k), they refer to x. The Langevin equations are:

θ̇(t) = v +
√

2Dη(t)

ẋi(t) = DijFj(y) +
√

2Dijξj(t)

〈η(t)η(t′)〉 = δ(t− t′)
〈ξi(t)ξj(t′)〉 = δijδ(t− t′)

[2]

where η and ξ are white noise functions and Fj(y) = −∂jU(y). We denote p(y, t) to mean the probability of finding the system14

at state y = (θ,x) at time t. The probability currents are given by:15

j(y, t) = [v −D∂θ] p(y, t) = p(y, t)D [vγ − ∂θ log p(y, t)]

ji(y, t) = Dij [Fj(y)− ∂j ] p(y, t) = p(y, t)Dij [Fj(y)− ∂j log p(y, t)]
[3]16

The total averaged entropy production rate is the sum of the production rate for the two individual variables:17

〈Ṡ(t)〉 = 〈Ṡx + Ṡθ〉 =
∫

dy
[
ji(y, t)γijjj(y, t)

p(y, t) + j(y, t)γj(y, t)
p(y, t)

]
[4]18

Starting with the θ contribution:19

〈Ṡθ〉 =
∫

dy j(y, t) γ j(y, t)
p(y, t) =

∫
dy [vγ − ∂θ log p(y, t)] j(y, t)

= vγ

∫
dy j(y, t)−

∫
dy j(y, t)∂θ log p(y, t)

= v2γ − v
∫

dy p(y, t) ∂θ log p(y, t)−
∫

dy j(y, t) ∂θ log p(y, t)

[5]20

Since p(y, t)∂θ log p(y, t) = ∂θp(y, t) and θ is periodic, after integrating over θ, the middle term disappears leaving:21

〈Ṡθ〉 = v2

D
−
∫

dy j(y, t)∂θ log p(y, t) [6]22

Next we consider the x contribution:23

〈Ṡx〉 =
∫

dy j
i(y, t) γij jj(y, t)

p(y, t) =
∫

dy ji(y, t)(Fi(y)− ∂i log p(y, t))

= −
∫

dy ji(y, t)∂iU(y)−
∫

dy ji(y, t)∂i log p(y, t)
[7]24

Giving us:25

〈Ṡ〉 = v2

D
−
∫

dy
[
(j(y, t)∂θ + ji(y, t)∂i) log p(y, t) + ji(y, t)∂iU(y)

]
[8]26

We can rewrite U = F − log peq where F(θ) is the free energy for the system for a fixed θ and peq(x|θ) = eF(θ)−U(θ,x) is the27

equilibrium Boltzmann distribution for fixed θ. Then ∂iU = −∂i log peq since F is a function of θ only:28

〈Ṡ〉 = v2

D
−
∫

dy
[
(j(y, t)∂θ + ji(y, t)∂i) log p(y, t)− ji(y, t)∂i log peq(x|θ)

]
[9]29

Now we may integrate by parts on each of the terms in the integral:30

〈Ṡ〉 = v2

D
+
∫

dy
[
(∂θj(y, t) + ∂ij

i(y, t)) log p(y, t)− (∂iji(y, t)) log peq(x|θ)
]

[10]31

where the boundary terms disappear because p(y, t) goes to zero at the boundaries of x.32
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Now we assume that the system reaches a steady state so all time dependences drop out of the problem. In particular, 33

the Fokker-Plank equation yields ∂θj(y) + ∂ij
i(y) = −∂tp = 0, allowing us to remove the first term in the integral and swap 34

∂ij
i(y) = −∂θj(y) in the second: 35

〈Ṡ〉 = v2

D
+
∫

dy [∂θj(y)] log peq(x|θ) [11] 36

Next we expand ∂θj(y) = v∂θp(y)−D∂2
θp(y) and log peq(x|θ) = F(θ)− U(y), giving: 37

〈Ṡ〉 = v2

D
+
∫

dy
[
v∂θp(y)−D∂2

θp(y)
]

(F(θ)− U(y)) [12] 38

Now we integrate by parts to move the ∂θ, ∂2
θ to the other term. Since θ is periodic, we can always neglect the boundary terms: 39

〈Ṡ〉 = v2

D
−
∫

dy p(y)
[
v∂θ +D∂2

θ

]
[F(θ)− U(y)] [13] 40

We now need to compute the derivatives of U and F with respect to θ. Recall we denote 〈· · ·〉θ as an average over all microstates 41

x with non-equilibrium weight p(x|θ) for a fixed value of θ. We also denote 〈· · ·〉eq,θ to indicate an average over all x with 42

equilibrium Boltzmann weight peq(x|θ) for a fixed value of θ: 43

∂θU(θ,x) = ∂U

∂λα
∂λα

∂θ
= φα(x)∂λ

α

∂θ
(θ) [14] 44

45

∂2
θU(θ,x) = φα(x)∂

2λα

∂θ2 (θ) [15] 46

47

∂θF(θ) = ∂F
∂λα

∂λα

∂θ
= 〈φα〉eq,θ

∂λα

∂θ
(θ) [16] 48

49

∂2
θF(θ) = 〈φα〉eq,θ

∂2λα

∂θ2 (θ)− gλαβ
∂λα

∂θ

∂λβ

∂θ
[17] 50

where gλαβ = − ∂
∂λβ
〈φα〉eq,θ is the equilibrium Fisher information metric in the λ basis. Plugging these in gives: 51

Ṡ(y) = v2

D
+
[
v
∂λα

∂θ
(θ) +D

∂2λα

∂θ2 (θ)
]
δφα(y) +Dgλαβ(θ)∂λ

α

∂θ
(θ)∂λ

β

∂θ
(θ) [18] 52

Where δφα = φα(x) − 〈φα〉eq,θ is the deviation of φ from its equilibrium value for fixed system state θ. If we identify 53

gθ ≡ ∂λα

∂θ
gλαβ

∂λβ

∂θ
as the Fisher information metric on θ inherited from λ, we get: 54

Ṡ(y) = v2

D
+
[
v
∂λα

∂θ
(θ) +D

∂2λα

∂θ2 (θ
]
δφα(y) +Dgθ(θ) [19] 55

To find the average dissipation rate when the system is at the point θ, we average over all x with weight p(x|θ). This 56

immediately yields the multidimensional analog of (13): 57

〈Ṡ〉θ = v2

D
+Dgθ(θ) +

[
v
∂λα

∂θ
(θ) +D

∂2λα

∂θ2 (θ)
]
〈δφα〉θ [20] 58

Again, this is an exact expression. Next we use linear response to approximate 〈δφα〉θ assuming that v and D are small. 59

Linear Response Approximation. Our starting point is the following expression (1) which gives the average linear response of φ 60

at time t0 to a specific control trajectory θ(τ): 61

〈δφα(t0)〉θ(τ) =
∫ 0

−∞
dt′
[

dCθ(t0)
αβ

dt′

] [
λ(t0)− λ(t0 + t′)

]β [21] 62

with the multidimensional autocorrelation function for φ: 63

C
θ(t0)
αβ (t) = 〈δφα(0)δφβ(t)〉eq,θ(t0) = 〈φα(0)φβ(t0)〉eq,θ(t0) − 〈φα(0)〉eq,θ(t0)〈φβ(t)〉eq,θ(t0) [22] 64

This is the linear response function to a single path. 65

The expression we need is 〈δφα(t0)〉θ0 , the average of the above expression over all paths θ(τ) such that θ(t0) = θ0 for a 66

specific point (θ0, t0). The important point is that only λ(t+ t′) is trajectory dependent, the other parts of the expression only 67

depend on the value of the trajectory at the moment t0. Therefore we may write: 68

〈δφα(t0)〉θ0 =
∫ 0

−∞
dt′
[

dCθ0
αβ

dt′

]
〈λβ(t0)− λβ(t0 + t′)|θ0, t0〉 [23] 69
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where here 〈· · · |θ0, t0〉 represents an average over all possible control paths θ(τ) such that θ(t0) = θ0 weighted by their70

probability as given by the Langevin dynamics of θ. By integrating by parts we are left with:71

〈δφα(t0)〉θ0 =
∫ 0

−∞
dt′Cθ0

αβ(t′) d
dt′ 〈λ

β(t0 + t′)|θ0, t0〉 [24]72

To compute this, we need an expression for the expectation value of λβ for this set of trajectories, which we may formally write73

as:74

〈λβ(t0 + t′)|θ0, t0〉 =
∫ ∞
−∞

dθ′ p(θ0 + θ′, t0 + t′|θ0, t0)λβ(θ0 + θ′) [25]75

Note that despite the fact that θ is periodic, the integration bounds here are not. This is because θ′ = 2π in this context refers76

to the control parameter making a full cycle in time t′ which is not the same as it not moving (θ′ = 0).77

Since the stochasticity of θ is driven by Gaussian noise, it’s trivial to write down p:78

p(θ0 + θ′, t0 + t′|θ0, t0) = 1√
4πD|t′|

e
− (θ′−vt′)2

4D|t′| [26]79

which is a Gaussian that diffuses away from a Dirac delta function as |t′| > 0 (see Fig 2 from the main text). We also Taylor80

expand λβ(θ0 + θ′) about θ0:81

λβ(θ0 + θ′) = λβ(θ0) + θ′∂θλ
β(θ0) + 1

2! (θ
′)2∂2

θλ
β(θ0) + · · · [27]82

Putting these together gives:83

〈λβ(t0 + t′)|θ0, t0〉 =
∑
k=0

∂kθλ
β(θ0)

k!
√

4πD|t′|

∫ ∞
−∞

dθ′ e−
(θ′−vt′)2

4D|t′| (θ′)k [28]84

Solving this integral for each value of k will yield terms of the form:85

(D|t′|)m(vt′)n∂2m+n
θ λβ(θ0) [29]86

An underlying assumption of this work is that we are in the near-equilibrium regime where the perturbation on the system is87

weak. We treat v and D as small parameters and only keep terms of order m+ n = 1 in v, D:88

〈λβ(t0 + t′)|θ0, t0〉 = λβ(θ0) + vt′∂θλ
β(θ0) +D|t′|∂2

θλ
β(θ0) +O(2) [30]89

We can see that to leading order, the time-derivative of this expression will be time-independent. Thus, to leading order we can90

replace d
dt′ 〈λ

β(t+ t′)|θ0, t0〉 with its value at t′ = 0. However, due to the presence of the absolute value terms |t′|, the time91

derivative at t′ = 0 is discontinuous. This is more than a minor detail; it’s connected with the choice of whether to define92

derivatives in stochastic calculus using left sided limits or right sided limits analogous to choices in Riemann sums (2).93

We introduce the following notation to distinguish between the left and right-sided limits of the time derivative of the94

conditional expectation value of λ:95 〈
dλβ

dt±

〉
θ0

≡ lim
t′→0±

d
dt′ 〈λ

β(t0 + t′)|θ0, t0〉 ≈ v∂θλβ(θ0)±D∂2
θλ

β(θ0) [31]96

As one may expect, this is exactly the formula for the net drift of λβ at t′ = 0 given by the Ito formula under the Ito (+) and97

reverse-Ito (−) conventions (2).98

Plugging this result into eq. 24 and using the definition of thermodynamic friction:99

g̃λαβ = ταβ ◦ gλαβ =
∫ 0

−∞
dt′ Cθαβ(t′) [32]100

yields the time-independent expression for the average linear response:101

〈δφα〉θ0 = g̃λαβ(θ0)
〈

dλβ

dt−

〉
θ0

[33]102

which in turn gives an average entropy production rate for the system when it’s at the state θ0:103

〈Ṡ〉θ0 =
〈dλα

dt+
〉
θ0
g̃λαβ(θ0)

〈
dλβ

dt−

〉
θ0

+ v2

D
+Dgθ(θ0) [34]104
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What about the higher order terms in (30)? We can neglect them under the assumption that the speed of control is small 105

compared to the excitation timescale τ of the system at equilibrium. However, an explicit mathematical statement of this 106

requirement is challenging because of the unknown form of λ(θ). Since C is a decay function, we expect roughly that: 107∫ 0

−∞
dt′ (t′)kCθαβ(t′) ∼ gλαβτk+1 [35] 108

Thus in keeping terms of order m+ n > 1 we would generate additional contributions to (33) of the form: 109

(Dτ)m(vτ)n
[
gλαβ∂

2m+n
θ λβ(θ)

]
[36] 110

Comparing these to the leading order terms (Dτ)gλαβ∂2
θλ

β and (vτ)gλαβ∂θλβ , we can see that for a reasonably behaved function 111

λ(θ) with a characteristic length scale L we can summarize our assumption via the requirements: 112

vτ/L� 1 Dτ/L2 � 1 [37] 113

114

Essentially this is the requirement that
〈

dλα
dt (t)

〉
(under the reverse-Ito convention) remains relatively constant over the 115

system relaxation timescale τ . This is the natural stochastic generalization of the constraint imposed by [3]. 116

However, because we have not explicitly given a definition for L, this requirement is admittedly a little vague. One major 117

complication in doing so arises from the fact that because we only care about the total dissipation bounds, we only want to keep 118

the terms in (34) that contribute to the leading order behavior of the integral of (34). Thus, while it may be the case that for a 119

specific point θ0, the second order term dominates: (vτ)2∂2
θλ(θ0)� (vτ)∂θλ(θ0), we still want to drop the higher order term 120

because its contribution to the total integral is subleading. The actual formal constraints dictating when this approximation is 121

appropriate is further complicated by the unconstrained behavior of g̃(θ) and λ(θ). However, it should be clear that as we 122

approach equilibrium behavior (D, v → 0), the kept terms dominate over the dropped terms. We feel that the constraint given 123

in (37) satisfactorily captures this idea. 124

References 125

1. Zwanzig R (2001) Nonequilibrium statistical mechanics. (Oxford University Press, Oxford ; New York). 126

2. Gardiner CW (2004) Handbook of stochastic methods for physics, chemistry, and the natural sciences, Springer series in 127

synergetics. (Springer-Verlag, Berlin ; New York), 3rd ed edition. 128

Samuel J. Bryant, Benjamin B. Machta 5 of 5


