

Supplementary Information for ²

Energy Dissipation Bounds for Autonomous Thermodynamic Cycles ³

Samuel J. Bryant, Benjamin B. Machta ⁴

Benjamin B. Machta ⁵ **E-mail: benjamin.machta@yale.edu** ⁶

This PDF file includes: ⁷

Supplementary text and the set of \mathcal{S} is the set of \mathcal SI References ⁹

1

¹⁰ **Supporting Information Text**

¹¹ **Main Derivation**

¹² Here we derive the main results (eq. 5 to eq. 14 in the main text) in greater detail. The system's energy is given by:

$$
U(\boldsymbol{y}) = \lambda^{\alpha}(\theta)\phi_{\alpha}(\boldsymbol{x}) \qquad \qquad [1]
$$

Here
$$
\lambda
$$
, ϕ are indexed by α, β, γ and x is indexed by i, j, k . We use natural units and unit temperature so that $\beta = T = 1$ and $\mu = D = \gamma^{-1}$, where μ is the mobility, D is the diffusion, and γ is the resistance. When μ , D , γ and things like probability currents j appear without indices, they refer to θ . In particular we use ∂_i and ∂_j as shorthand for ∂_{x^i} and ∂_{x^j} . When they appear with roman indices (i, j, k) , they refer to x . The Langevin equations are:

$$
\dot{\theta}(t) = v + \sqrt{2D}\eta(t) \qquad \langle \eta(t)\eta(t') \rangle = \delta(t - t')
$$
\n
$$
\dot{x}^i(t) = D^{ij}F_j(\mathbf{y}) + \sqrt{2D^{ij}}\xi_j(t) \qquad \langle \xi_i(t)\xi_j(t') \rangle = \delta_{ij}\delta(t - t')
$$
\n[2]

¹⁴ where η and ξ are white noise functions and $F_j(y) = -\partial_j U(y)$. We denote $p(y, t)$ to mean the probability of finding the system 15 at state $y = (\theta, x)$ at time *t*. The probability currents are given by:

$$
j(\boldsymbol{y},t) = \left[v - D\partial_{\theta}\right] p(\boldsymbol{y},t) = p(\boldsymbol{y},t)D\left[v\gamma - \partial_{\theta}\log p(\boldsymbol{y},t)\right]
$$

\n
$$
j^{i}(\boldsymbol{y},t) = D^{ij}\left[F_{j}(\boldsymbol{y}) - \partial_{j}\right] p(\boldsymbol{y},t) = p(\boldsymbol{y},t)D^{ij}\left[F_{j}(\boldsymbol{y}) - \partial_{j}\log p(\boldsymbol{y},t)\right]
$$
\n[3]

¹⁷ The total averaged entropy production rate is the sum of the production rate for the two individual variables:

$$
\langle \dot{S}(t) \rangle = \langle \dot{S}^x + \dot{S}^{\theta} \rangle = \int \mathrm{d}\mathbf{y} \left[\frac{j^i(\mathbf{y}, t) \gamma_{ij} j^j(\mathbf{y}, t)}{p(\mathbf{y}, t)} + \frac{j(\mathbf{y}, t) \gamma_j(\mathbf{y}, t)}{p(\mathbf{y}, t)} \right]
$$
\n[4]

¹⁹ Starting with the *θ* contribution:

$$
\langle \dot{S}^{\theta} \rangle = \int \mathrm{d}y \frac{j(y,t) \gamma j(y,t)}{p(y,t)} = \int \mathrm{d}y \left[v\gamma - \partial_{\theta} \log p(y,t) \right] j(y,t)
$$

= $v\gamma \int \mathrm{d}y j(y,t) - \int \mathrm{d}y j(y,t) \partial_{\theta} \log p(y,t)$ [5]
= $v^2 \gamma - v \int \mathrm{d}y p(y,t) \partial_{\theta} \log p(y,t) - \int \mathrm{d}y j(y,t) \partial_{\theta} \log p(y,t)$

 $\lim_{t \to 0} \sin(\theta) \log p(y, t) = \partial_{\theta} p(y, t)$ and θ is periodic, after integrating over θ , the middle term disappears leaving:

$$
\langle \dot{S}^{\theta} \rangle = \frac{v^2}{D} - \int \mathrm{d}\mathbf{y} \, j(\mathbf{y}, t) \partial_{\theta} \log p(\mathbf{y}, t)
$$
 [6]

²³ Next we consider the *x* contribution:

$$
\langle \dot{S}^x \rangle = \int \mathrm{d}y \, \frac{j^i(y,t) \, \gamma_{ij} \, j^j(y,t)}{p(y,t)} = \int \mathrm{d}y \, j^i(y,t) (F_i(y) - \partial_i \log p(y,t))
$$

=
$$
- \int \mathrm{d}y \, j^i(y,t) \partial_i U(y) - \int \mathrm{d}y \, j^i(y,t) \partial_i \log p(y,t)
$$
 [7]

²⁵ Giving us:

$$
\langle \dot{S} \rangle = \frac{v^2}{D} - \int \mathrm{d}\mathbf{y} \left[(j(\mathbf{y}, t)\partial_{\theta} + j^i(\mathbf{y}, t)\partial_i) \log p(\mathbf{y}, t) + j^i(\mathbf{y}, t)\partial_i U(\mathbf{y}) \right]
$$
 [8]

27 We can rewrite $U = \mathcal{F} - \log p_{eq}$ where $\mathcal{F}(\theta)$ is the free energy for the system for a fixed θ and $p_{eq}(x|\theta) = e^{\mathcal{F}(\theta) - U(\theta, x)}$ is the ²⁸ equilibrium Boltzmann distribution for fixed *θ*. Then *∂iU* = −*∂ⁱ* log *peq* since F is a function of *θ* only:

$$
\langle \dot{S} \rangle = \frac{v^2}{D} - \int \mathrm{d}\boldsymbol{y} \left[(j(\boldsymbol{y}, t)\partial_{\theta} + j^i(\boldsymbol{y}, t)\partial_i) \log p(\boldsymbol{y}, t) - j^i(\boldsymbol{y}, t)\partial_i \log p_{eq}(\boldsymbol{x}|\theta) \right]
$$
\n[9]

³⁰ Now we may integrate by parts on each of the terms in the integral:

$$
\langle \dot{S} \rangle = \frac{v^2}{D} + \int \mathrm{d}\mathbf{y} \, \left[(\partial_{\theta} j(\mathbf{y}, t) + \partial_i j^i(\mathbf{y}, t)) \log p(\mathbf{y}, t) - (\partial_i j^i(\mathbf{y}, t)) \log p_{eq}(\mathbf{x}|\theta) \right] \tag{10}
$$

32 where the boundary terms disappear because $p(\mathbf{y},t)$ goes to zero at the boundaries of x.

Now we assume that the system reaches a steady state so all time dependences drop out of the problem. In particular, 33 the Fokker-Plank equation yields $\partial_{\theta} j(y) + \partial_i j^i(y) = -\partial_t p = 0$, allowing us to remove the first term in the integral and swap 34 $\partial_i j^i(\boldsymbol{y}) = -\partial_{\theta} j(\boldsymbol{y})$ in the second: 35

$$
\langle \dot{S} \rangle = \frac{v^2}{D} + \int \mathrm{d}\mathbf{y} \, \left[\partial_{\theta} j(\mathbf{y}) \right] \log p_{eq}(\mathbf{x}|\theta) \tag{11}
$$

Next we expand $\partial_{\theta} j(\mathbf{y}) = v \partial_{\theta} p(\mathbf{y}) - D \partial_{\theta}^2 p(\mathbf{y})$ and $\log p_{eq}(\mathbf{x}|\theta) = \mathcal{F}(\theta) - U(\mathbf{y})$, giving:

$$
\langle \dot{S} \rangle = \frac{v^2}{D} + \int \mathrm{d}\mathbf{y} \left[v \partial_{\theta} p(\mathbf{y}) - D \partial_{\theta}^2 p(\mathbf{y}) \right] \left(\mathcal{F}(\theta) - U(\mathbf{y}) \right) \tag{12}
$$

Now we integrate by parts to move the ∂_{θ} , ∂_{θ}^2 to the other term. Since θ is periodic, we can always neglect the boundary terms: 39

$$
\langle \dot{S} \rangle = \frac{v^2}{D} - \int \mathrm{d}\mathbf{y} \, p(\mathbf{y}) \left[v \partial_{\theta} + D \partial_{\theta}^2 \right] \left[\mathcal{F}(\theta) - U(\mathbf{y}) \right] \tag{13}
$$

We now need to compute the derivatives of *U* and F with respect to θ . Recall we denote $\langle \cdots \rangle_{\theta}$ as an average over all microstates $\frac{41}{41}$ *x* with non-equilibrium weight $p(x|\theta)$ for a fixed value of θ . We also denote $\langle \cdots \rangle_{\text{eq},\theta}$ to indicate an average over all *x* with 42 equilibrium Boltzmann weight $p_{eq}(x|\theta)$ for a fixed value of θ :

$$
\partial_{\theta} U(\theta, \mathbf{x}) = \frac{\partial U}{\partial \lambda^{\alpha}} \frac{\partial \lambda^{\alpha}}{\partial \theta} = \phi_{\alpha}(\mathbf{x}) \frac{\partial \lambda^{\alpha}}{\partial \theta}(\theta)
$$
\n[14]

$$
\partial_{\theta}^{2}U(\theta,\boldsymbol{x}) = \phi_{\alpha}(\boldsymbol{x})\frac{\partial^{2}\lambda^{\alpha}}{\partial\theta^{2}}(\theta)
$$
\n⁽¹⁵⁾

$$
\partial_{\theta} \mathcal{F}(\theta) = \frac{\partial \mathcal{F}}{\partial \lambda^{\alpha}} \frac{\partial \lambda^{\alpha}}{\partial \theta} = \langle \phi_{\alpha} \rangle_{\text{eq}, \theta} \frac{\partial \lambda^{\alpha}}{\partial \theta}(\theta)
$$
\n[16]

$$
\partial_{\theta}^{2} \mathcal{F}(\theta) = \langle \phi_{\alpha} \rangle_{\text{eq}, \theta} \frac{\partial^{2} \lambda^{\alpha}}{\partial \theta^{2}}(\theta) - g_{\alpha\beta}^{\lambda} \frac{\partial \lambda^{\alpha}}{\partial \theta} \frac{\partial \lambda^{\beta}}{\partial \theta}
$$
 [17] so

where $g_{\alpha\beta}^{\lambda} = -\frac{\partial}{\partial\lambda^{\beta}}\langle\phi_{\alpha}\rangle_{\text{eq},\theta}$ is the equilibrium Fisher information metric in the λ basis. Plugging these in gives: 51

$$
\dot{S}(\mathbf{y}) = \frac{v^2}{D} + \left[v \frac{\partial \lambda^{\alpha}}{\partial \theta}(\theta) + D \frac{\partial^2 \lambda^{\alpha}}{\partial \theta^2}(\theta) \right] \delta \phi_{\alpha}(\mathbf{y}) + D g^{\lambda}_{\alpha\beta}(\theta) \frac{\partial \lambda^{\alpha}}{\partial \theta}(\theta) \frac{\partial \lambda^{\beta}}{\partial \theta}(\theta)
$$
\n[18]

Where $\delta\phi_{\alpha} = \phi_{\alpha}(x) - \langle \phi_{\alpha} \rangle_{\text{eq},\theta}$ is the deviation of ϕ from its equilibrium value for fixed system state θ . If we identify ss $g^{\theta} \equiv \frac{\partial \lambda^{\alpha}}{\partial \theta} g^{\lambda}_{\alpha\beta} \frac{\partial \lambda^{\beta}}{\partial \theta}$ as the Fisher information metric on θ inherited from λ , we get: 54

$$
\dot{S}(\mathbf{y}) = \frac{v^2}{D} + \left[v \frac{\partial \lambda^{\alpha}}{\partial \theta}(\theta) + D \frac{\partial^2 \lambda^{\alpha}}{\partial \theta^2}(\theta) \right] \delta \phi_{\alpha}(\mathbf{y}) + D g^{\theta}(\theta)
$$
\n[19] ss

To find the average dissipation rate when the system is at the point θ , we average over all x with weight $p(x|\theta)$. This 56 immediately yields the multidimensional analog of (13): $\frac{57}{20}$

$$
\langle \dot{S} \rangle_{\theta} = \frac{v^2}{D} + Dg^{\theta}(\theta) + \left[v \frac{\partial \lambda^{\alpha}}{\partial \theta}(\theta) + D \frac{\partial^2 \lambda^{\alpha}}{\partial \theta^2}(\theta) \right] \langle \delta \phi_{\alpha} \rangle_{\theta}
$$
 [20] ss

Again, this is an exact expression. Next we use linear response to approximate $\langle \delta \phi_\alpha \rangle_\theta$ assuming that *v* and *D* are small.

Linear Response Approximation. Our starting point is the following expression [\(1\)](#page-4-1) which gives the average linear response of ϕ 60 at time t_0 to a specific control trajectory $\theta(\tau)$: 61

$$
\langle \delta \phi_{\alpha}(t_0) \rangle_{\theta(\tau)} = \int_{-\infty}^{0} dt' \left[\frac{dC_{\alpha\beta}^{\theta(t_0)}}{dt'} \right] \left[\lambda(t_0) - \lambda(t_0 + t') \right]^{\beta} \tag{21}
$$

with the multidimensional autocorrelation function for ϕ : 63

$$
C_{\alpha\beta}^{\theta(t_0)}(t) = \langle \delta\phi_{\alpha}(0)\delta\phi_{\beta}(t) \rangle_{\text{eq},\theta(t_0)} = \langle \phi_{\alpha}(0)\phi_{\beta}(t_0) \rangle_{\text{eq},\theta(t_0)} - \langle \phi_{\alpha}(0) \rangle_{\text{eq},\theta(t_0)} \langle \phi_{\beta}(t) \rangle_{\text{eq},\theta(t_0)}
$$
\n
$$
\tag{22}
$$

This is the linear response function to a *single* path.

The expression we need is $\langle \delta \phi_{\alpha}(t_0) \rangle_{\theta_0}$, the average of the above expression over all paths $\theta(\tau)$ such that $\theta(t_0) = \theta_0$ for a specific point (θ_0, t_0) . The important point is that only $\lambda(t + t')$ is trajectory dependent, the other parts of the expression only 67 depend on the value of the trajectory at the moment t_0 . Therefore we may write: $\qquad \qquad \text{68}$

$$
\langle \delta \phi_{\alpha}(t_0) \rangle_{\theta_0} = \int_{-\infty}^0 dt' \left[\frac{\mathrm{d}C^{\theta_0}_{\alpha\beta}}{\mathrm{d}t'} \right] \langle \lambda^{\beta}(t_0) - \lambda^{\beta}(t_0 + t') | \theta_0, t_0 \rangle \tag{23}
$$

*τ*₀ where here $\langle \cdots | \theta_0, t_0 \rangle$ represents an average over all possible control paths $θ(τ)$ such that $θ(t_0) = θ_0$ weighted by their 71 probability as given by the Langevin dynamics of $θ$. By integrating by parts we are left with:

$$
\langle \delta \phi_{\alpha}(t_0) \rangle_{\theta_0} = \int_{-\infty}^0 dt' C_{\alpha\beta}^{\theta_0}(t') \frac{d}{dt'} \langle \lambda^{\beta}(t_0 + t') | \theta_0, t_0 \rangle \tag{24}
$$

To compute this, we need an expression for the expectation value of λ^{β} for this set of trajectories, which we may formally write ⁷⁴ as:

$$
\langle \lambda^{\beta}(t_0+t')|\theta_0,t_0\rangle = \int_{-\infty}^{\infty} d\theta' p(\theta_0+\theta',t_0+t'|\theta_0,t_0)\lambda^{\beta}(\theta_0+\theta')
$$
 [25]

⁷⁶ Note that despite the fact that *θ* is periodic, the integration bounds here are not. This is because $θ' = 2π$ in this context refers τ to the control parameter making a full cycle in time *t'* which is not the same as it not moving $(\theta' = 0)$.

Since the stochasticity of θ is driven by Gaussian noise, it's trivial to write down p :

$$
p(\theta_0 + \theta', t_0 + t' | \theta_0, t_0) = \frac{1}{\sqrt{4\pi D|t'|}} e^{-\frac{(\theta' - vt')^2}{4D|t'|}}
$$
 [26]

⁸⁰ which is a Gaussian that diffuses away from a Dirac delta function as $|t'| > 0$ (see Fig 2 from the main text). We also Taylor δ ⁸ (*θ*₀ + *θ'*) about *θ*₀:

$$
\lambda^{\beta}(\theta_0 + \theta') = \lambda^{\beta}(\theta_0) + \theta' \partial_{\theta} \lambda^{\beta}(\theta_0) + \frac{1}{2!}(\theta')^2 \partial_{\theta}^2 \lambda^{\beta}(\theta_0) + \cdots
$$
\n[27]

⁸³ Putting these together gives:

$$
\langle \lambda^{\beta}(t_0+t')|\theta_0,t_0\rangle = \sum_{k=0} \frac{\partial_{\theta}^k \lambda^{\beta}(\theta_0)}{k! \sqrt{4\pi D|t'|}} \int_{-\infty}^{\infty} d\theta' e^{-\frac{(\theta'-vt')^2}{4D|t'|}} (\theta')^k
$$
\n[28]

⁸⁵ Solving this integral for each value of *k* will yield terms of the form:

$$
(D|t'|)^m (vt')^n \partial_{\theta}^{2m+n} \lambda^{\beta}(\theta_0) \tag{29}
$$

⁸⁷ An underlying assumption of this work is that we are in the near-equilibrium regime where the perturbation on the system is ⁸⁸ weak. We treat *v* and *D* as small parameters and only keep terms of order $m + n = 1$ in *v*, *D*:

$$
\langle \lambda^{\beta} (t_0 + t') | \theta_0, t_0 \rangle = \lambda^{\beta} (\theta_0) + vt' \partial_{\theta} \lambda^{\beta} (\theta_0) + D |t'| \partial_{\theta}^2 \lambda^{\beta} (\theta_0) + \mathcal{O}(2)
$$
\n
$$
[30]
$$

⁹⁰ We can see that to leading order, the time-derivative of this expression will be time-independent. Thus, to leading order we can ⁹¹ replace $\frac{d}{dt'} \langle \lambda^{\beta}(t+t') | \theta_0, t_0 \rangle$ with its value at $t' = 0$. However, due to the presence of the absolute value terms |t'|, the time ex derivative at $t' = 0$ is discontinuous. This is more than a minor detail; it's connected with the choice of whether to define ⁹³ derivatives in stochastic calculus using left sided limits or right sided limits analogous to choices in Riemann sums [\(2\)](#page-4-2).

⁹⁴ We introduce the following notation to distinguish between the left and right-sided limits of the time derivative of the ⁹⁵ conditional expectation value of *λ*:

$$
\left\langle \frac{\mathrm{d}\lambda^{\beta}}{\mathrm{d}t^{\pm}} \right\rangle_{\theta_{0}} \equiv \lim_{t' \to 0^{\pm}} \frac{\mathrm{d}}{\mathrm{d}t'} \langle \lambda^{\beta}(t_{0} + t') | \theta_{0}, t_{0} \rangle \approx v \partial_{\theta} \lambda^{\beta}(\theta_{0}) \pm D \partial_{\theta}^{2} \lambda^{\beta}(\theta_{0}) \tag{31}
$$

⁹⁷ As one may expect, this is exactly the formula for the net drift of $λ^β$ at $t' = 0$ given by the Ito formula under the Ito (+) and ⁹⁸ reverse-Ito (−) conventions [\(2\)](#page-4-2).

⁹⁹ Plugging this result into eq. **[24](#page-3-0)** and using the definition of thermodynamic friction:

$$
\tilde{g}_{\alpha\beta}^{\lambda} = \tau_{\alpha\beta} \circ g_{\alpha\beta}^{\lambda} = \int_{-\infty}^{0} dt' C_{\alpha\beta}^{\theta}(t')
$$
 [32]

¹⁰¹ yields the time-independent expression for the average linear response:

$$
\langle \delta \phi_{\alpha} \rangle_{\theta_0} = \tilde{g}_{\alpha \beta}^{\lambda}(\theta_0) \left\langle \frac{\mathrm{d}\lambda^{\beta}}{\mathrm{d}t^{-}} \right\rangle_{\theta_0} \tag{33}
$$

which in turn gives an average entropy production rate for the system when it's at the state θ_0 :

$$
\langle \dot{S} \rangle_{\theta_0} = \left\langle \frac{d\lambda^{\alpha}}{dt^{+}} \right\rangle_{\theta_0} \tilde{g}^{\lambda}_{\alpha\beta}(\theta_0) \left\langle \frac{d\lambda^{\beta}}{dt^{-}} \right\rangle_{\theta_0} + \frac{v^2}{D} + Dg^{\theta}(\theta_0)
$$
\n
$$
\tag{34}
$$

What about the higher order terms in (30) ? We can neglect them under the assumption that the speed of control is small $_{105}$ compared to the excitation timescale τ of the system at equilibrium. However, an explicit mathematical statement of this τ_{106} requirement is challenging because of the unknown form of $λ(θ)$. Since *C* is a decay function, we expect roughly that: 107

$$
\int_{-\infty}^{0} dt' (t')^{k} C_{\alpha\beta}^{\theta} (t') \sim g_{\alpha\beta}^{\lambda} \tau^{k+1}
$$
\n[35]

Thus in keeping terms of order $m + n > 1$ we would generate additional contributions to [\(33\)](#page-3-2) of the form:

$$
(D\tau)^m (v\tau)^n \left[g^{\lambda}_{\alpha\beta} \partial_{\theta}^{2m+n} \lambda^{\beta}(\theta) \right]
$$
 [36] ¹¹⁰

Comparing these to the leading order terms $(D\tau)g_{\alpha\beta}^{\lambda}\partial_{\theta}^2\lambda^{\beta}$ and $(v\tau)g_{\alpha\beta}^{\lambda}\partial_{\theta}\lambda^{\beta}$, we can see that for a reasonably behaved function 111 $\lambda(\theta)$ with a characteristic length scale *L* we can summarize our assumption via the requirements: 112

$$
v\tau/L \ll 1 \qquad D\tau/L^2 \ll 1 \qquad [37] \qquad 113
$$

114

Essentially this is the requirement that $\left\langle \frac{d\lambda^{\alpha}}{dt} \right\rangle$ $\frac{\lambda^{\alpha}}{\delta t}(t)$ (under the reverse-Ito convention) remains relatively constant over the 115 system relaxation timescale τ . This is the natural stochastic generalization of the constraint imposed by [3].

However, because we have not explicitly given a definition for L, this requirement is admittedly a little vague. One major 117 complication in doing so arises from the fact that because we only care about the *total* dissipation bounds, we only want to keep ¹¹⁸ the terms in [\(34\)](#page-3-3) that contribute to the leading order behavior of the *integral* of [\(34\)](#page-3-3). Thus, while it may be the case that for a ¹¹⁹ specific point θ_0 , the second order term dominates: $(v\tau)^2 \partial_\theta^2 \lambda(\theta_0) \gg (v\tau) \partial_\theta \lambda(\theta_0)$, we still want to drop the higher order term 120 because its contribution to the total integral is subleading. The actual formal constraints dictating when this approximation is ¹²¹ appropriate is further complicated by the unconstrained behavior of $\tilde{q}(\theta)$ and $\lambda(\theta)$. However, it should be clear that as we 122 approach equilibrium behavior $(D, v \rightarrow 0)$, the kept terms dominate over the dropped terms. We feel that the constraint given in (37) satisfactorily captures this idea.

References ¹²⁵

- 1. Zwanzig R (2001) *Nonequilibrium statistical mechanics*. (Oxford University Press, Oxford ; New York). ¹²⁶
- 2. Gardiner CW (2004) *Handbook of stochastic methods for physics, chemistry, and the natural sciences*, Springer series in ¹²⁷ synergetics. (Springer-Verlag, Berlin; New York), 3rd ed edition. 128