

Supplementary Information for

Unique subsite specificity and potential natural function of a chitosan deacetylase from the human pathogen Cryptococcus neoformans

Lea Hembach ^a, Martin Bonin ^a, Christian Gorzelanny ^b, Bruno M. Moerschbacher ^{a,1}

Bruno M. Moerschbacher Email: moersch@uni-muenster.de

This PDF file includes:

Figures S1 to S6 Table S1

Fig. S1. Comparison of separated cell fractions of CnCda4 expressed in E. coli Lemo21 cells in the presence of α -L-rhamnose (0–2 mM) by immunoblotting using an HRP coupled Strep-tag II affinity protein. (–) Before induction of expression with 400 μ M IPTG, (IS) insoluble fraction, (S) soluble fraction.

Fig. S2. CnCda4 in terms of pH, temperature, reaction buffer, and substrate. Enzyme activity was calculated from the quantity of acetate released during the reaction and each experiment was carried out at least in duplicate. (*A*) The pH and (*B*) temperature optima were determined by incubating 0.5 µg CnCda4 for (*A*) 20 h or (*B*) 22 h at 37 °C with chitosan DA50%. (*A*) Sodium bicarbonate buffer (50 mM) ranging from pH 7 to 10 and a universal buffer consisting of 20 mM CH₅NO₂, 10 mM TEA, 10 mM KH₂PO₄, and 10 mM Na₂HPO₄, (pH 3–10). (*B*) 50 mM NaHCO₃, pH 7. (*C*) We incubated 1 µg CnCda4 for 24 h with chitosan DA50% at 37 °C in 50 mM NaHCO₃, 50 mM pH7, TEA (50 mM), NH₄HCO₃ (50 mM), and universal buffer. (*D*) We incubated 20 µL of CnCda4 with chitosan DA50%, colloidal chitin, α -chitin and β -chitin for 24 h at 37 °C in 50 mM NaHCO₃ (pH7). For *C* and *D*, n = 3, mean ± SD.

Fig. S3. Relative CnCda4 activity incubated without (–) EDTA and with (+) EDTA, before dialysis against NaHCO₃ to remove all EDTA and subsequent incubation with 1 mM metal salts for 2 h prior to activity tests on A4. The activity was measured by integrating LC-MS peak areas (n = 3, mean \pm SD).

Fig. S4. The effect of early and late CnCda4 products, A6/D6 controls, culture medium as negative control, and LPS as positive control on the secretion of TNFα and the activity of the human chitotriosidase (ChT) in the cell supernatant of human peripheral blood-derived macrophages (HPBMs). (*A*) Activation of HPBMs by different chitin and chitosan hexamers (1 µg/mL). Secretion of TNFα into the supernatant was measured 6 h after stimulation. Data from five independent experiments with different batches of macrophages were normalized to the negative control (starvation medium, 0%) and to the positive control (10 ng/mL LPS, 100%). Data are presented as means ± SD. (*B*) Activity of the human ChT measured in the supernatant after stimulation with the different chitin and chitosan hexamers (1 µg/mL). The concentration of ChT in 5 µL supernatant was determined by adding 20 mM of the ChT substrate 4-methylumbelliferyl-β-D-*N*,*N*-diacetylchitobioside in 100 mL McIlvain buffer (100 mM citric acid, 200 mM sodium phosphate, pH 5.2). The enzyme reaction was stopped after 20 min at 37 °C by adding 200 mL 300 mM glycine-NaOH buffer, pH 10.5. Converted substrate was measured by fluorimetry at 450 nm and related to a standard of recombinant ChT. Values are means of three independent experiments ± SD.

Fig. S5. Product profile following the digestion of hexameric CnCda4 products (used for stimulation of human macrophages) with human chitotriosidase (ChT). We incubated 5 μ g of the hexameric samples with 50 ng of purified ChT for 24 h at 37 °C in 50 mM ammonium acetate buffer pH (4.5). The products were quantified by HPLC-MS analysis.

Fig. S6. Sequence alignment of the different CnCda4 constructs used during this work. (1) pET22b(+)::SP-CDA4-StrepII, (2) pET22b(+)::SP-CDA4-linker-StrepII, (3) pET22b(+)::CDA4-strepII, and (4) pET22b(+)::StrepII-CDA4-StrepII. All constructs have a pET22b(+) backbone differing only in their sequences shown in this alignment, which contains the following elements: T7 promoter, *lac* operator, ribosome binding site (RBS), CnCda4 sequences including either an N-terminal Strep-tag II or the original signal peptide (SP), a C-terminal linker and a C-terminal Strep-tag II, an unused His₆ tag originating from the pET22b(+) plasmid and the T7 terminator.

Table S1. Mono-isotopic *m/z* values of chitin and chitosan oligomers used for analysis, isolation and fragmentation (MS/MS) with A representing an *N*-acetyl-D-glucosamine unit, D a D-glucosamine unit, R a D-glucosamine unit chemically acetylated using [${}^{2}H_{6}$]acetic anhydride (Sigma-Aldrich) and ${}^{18}O$ representing the reducing end labeled with H ${}^{218}O$.

AD	H+ Charge1	H+ Charge2	AD ¹⁸ O	H+ Charge1	H+ Charge2	AR	H+ Charge1	H+ Charge2	AR ¹⁸ O	H+ Charge1	H+ Charge2
A1	222.097		A1	224.097		A1	222.097		A1	224.101	
D1	180.087		R1	182.087		R1	225.116		R1	227.120	
A2	425.177	213.092	A2	427.177	214.092	A2	425.177	213.092	A2	427.181	214.094
A1D1	383.166	192.087	A1R1	385.166	193.087	A1R1	428.195	214.601	A1R1	430.200	215.603
D2	341.155	171.081	R2	343.155	172.081	R2	431.214	216.111	R2	433.218	217.113
A3	628.256	314.632	A3	630.256	315.632	A3	628.256	314.632	A3	630.260	315.634
A2D1	586.245	293.626	A2R1	588.245	294.626	A2R1	631.275	316.141	A2R1	633.279	317.143
A1D2	544.235	272.621	A1R2	546.235	273.621	A1R2	634.294	317.650	A1R2	636.298	318.653
D3	502.224	251.616	R3	504.224	252.616	R3	637.312	319.160	R3	639.317	320.162
A4	831.335	416.171	A4	833.335	417.171	A4	831.335	416.171	A4	833.340	417.173
A3D1	789.325	395.166	A3R1	791.325	396.166	A3R1	834.354	417.681	A3R1	836.358	418.683
A2D2	747.314	374.161	A2R2	749.314	375.161	A2R2	837.373	419.190	A2R2	839.377	420.192
A1D3	705.304	353.155	A1R3	707.304	354.155	A1R3	840.392	420.700	A1R3	842.396	421.702
D4	663.293	332.150	R4	665.293	333.150	R4	843.411	422.209	R4	845.415	423.211
A5	1034.415	517.711	A5	1036.415	518.711	A5	1034.415	517.711	A5	1036.419	518.713
A4D1	992.404	496.706	A4R1	994.404	497.706	A4R1	1037.434	519.220	A4R1	1039.438	520.223
A3D2	950.394	475.700	A3R2	952.394	476.700	A3R2	1040.452	520.730	A3R2	1042.457	521.732
A2D3	908.383	454.695	A2R3	910.383	455.695	A2R3	1043.471	522.239	A2R3	1045.475	523.241
A1D4	866.372	433.690	A1R4	868.372	434.690	A1R4	1046.490	523.749	A1R4	1048.494	524.751
D5	824.362	412.685	R5	826.362	413.685	R5	1049.509	525.258	R5	1051.513	526.260
A6	1237.494	619.251	A6	1239.494	620.251	A6	1237.494	619.251	A6	1239.498	620.253
A5D1	1195.484	598.245	A5R1	1197.484	599.245	A5R1	1240.513	620.760	A5R1	1242.517	621.762
A4D2	1153.473	577.240	A4R2	1155.473	578.240	A4R2	1243.532	622.270	A4R2	1245.536	623.272
A3D3	1111.462	556.235	A3R3	1113.462	557.235	A3R3	1246.551	623.779	A3R3	1248.555	624.781
A2D4	1069.452	535.230	A2R4	1071.452	536.230	A2R4	1249.569	625.288	A2R4	1251.574	626.290
A1D5	1027.441	514.224	A1R5	1029.441	515.224	A1R5	1252.588	626.798	A1R5	1254.592	627.800
D6	985.431	493.219	R6	987.431	494.219	R6	1255.607	628.307	R6	1257.611	629.309