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Supplementary Information 
 
Supplementary Tables and Legends 
 
Supplementary Table 1. Comparison of vbSPT and Spot-On; Effect of HMM (vbSPT) on filtering out bound 
population. Summary of Spot-On inferred parameters for each condition: Diffusion Coefficients and Bound and Free 
Fractions. Please see attached spreadsheet for Supplementary Table 1.  
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Supplementary Table 2. Parameters for the simulations  

Description Parameters Value 

Polymer persistence length 𝑙0  
600nm 

Diffusion constant of the 
free protein   

 

𝐷𝐹  5𝜇𝑚2/sec 

Diffusion constant of the 
protein inside a zone (TTZ 
or PTZ) 

𝐷𝑍 2.5𝜇𝑚2/sec 

Diffusion constant of the 
protein inside a CBS 

𝐷𝐶𝐵𝑆 0.5𝜇𝑚2/sec 

Trapping radius of 
CBS/TTZ 

𝜀𝐶𝐵𝑆 /𝜀𝑇𝑇𝑍 30nm/200nm 

Release radius of the 
protein from CBS/TTZ 

𝑎𝐶𝐵𝑆 /𝑎𝑇𝑇𝑍 40nm/210nm 

Characteristic time bound 
at the cognate binding site. 
Randomized from a 
Poisson distribution with 

mean 𝜏CBS 

𝜏CBS 1 minutes 

Spring constant 𝑘  
3𝑘𝐵𝑇

(0.2𝑙0)2
𝑁𝑚−1 

Monomer-monomer LJ 
distance  

𝜎  
𝑙0 

Radius of the nucleus 𝐴 5𝜇m 

Fraction of cognate binding 
sites 

𝑓𝐶𝐵𝑆 0.02 

Fraction of the Power-law-
distributed-Trapping Zones 
out total zone number 

𝑓𝑃𝑇 (Figure4G-I): 0.2 (red,black) 

Monomer number/ total 
number of zones 

𝑁 550  

 

Size distribution of the  
Power-law Trapping Zones 
(PTZ) 

𝑃𝑃𝑇𝑍(𝜀)~𝐴1𝜀−𝛾 (Figure4G-I): 𝛾 = 0.5 

The PTZ can have size between 100nm 
and 800nm. A1 is a normalization 
coefficient 

Release radius of the 
protein from the PTZ. 
Different for each PTZ, 
depending on its size 

𝑎𝑃𝑇𝑍 𝑎𝑃𝑇𝑍 = 𝜀𝑃𝑇𝑍 + 10nm 
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CBS/TTZ 

Trapping probability to the 
Transiently Trapping Zone 
(TTZ) 

𝑃𝑡𝑟𝑎𝑝,𝑇𝑇𝑍 (Fig. 2d-h): 0.99 (red), 0.1 (black)   

(Fig. 3g-i):  0.99 (red-wt), 0.2 (black-
RBRi-CTCF), 0.01 (green ZF-CTCF)  

Trapping probability to the 
cognate binding site (CBS) 

𝑃𝑡𝑟𝑎𝑝,𝐶𝐵𝑆 Equal to 𝑃𝑡𝑟𝑎𝑝,𝑇𝑇𝑍 

Trapping probability to the 

Power-law Trapping Zone 
(PTZ) 

𝑃𝑡𝑟𝑎𝑝,𝑃𝑇𝑍 (Fig. 3g-i):  1 (red-wt), 1 (black-RBRi-

CTCF), 0.01 (green ZF-CTCF) 

Trapping exponent of the 

PTZs 𝑃𝑡𝑟𝑎𝑝,𝑃𝑇𝑍(𝜀)~𝜀−𝛿  

𝛿 (Fig. 3g-i): 0.5   

Exit probability when 
hitting the boundary of a 
zone 

𝑃𝑒𝑥𝑖𝑡 0.2 

 

On-Rate to bind inside a 
TTZ or a PTZ 

𝑘𝑜𝑛  (Fig. 2d-h): 70msec-1  

(Fig. 3g-i): 1000msec-1 

Off-Rate to be released 
from a binding site inside a 
TTZ 

𝑘𝑜𝑓𝑓,𝑇𝑇𝑍 200 msec-1 

 

Off-Rate to be released 
from a binding site inside a 
PTZ 

𝑘𝑜𝑓𝑓,𝑃𝑇𝑍 2000 msec-1 
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Supplementary Table 3. Non-Gaussian parameter (NGP). The non-Gaussian parameter (NGP)1 given by 

( ) ( )
24 2

/ 3 1NGP x x=   −  estimated for both the experimental data and the simulation corresponding to  

Supplementary Figure 12. NGP is 1 for the Laplace distribution and 0 for a Gaussian. 

 

t    sec mESC C59 wt-
Halo-mCTCF 

mESC ZF-
Halo-mCTCF 
(OE) 

Model: wt 
 

Model: ZF 
𝑃𝑡𝑟𝑎𝑝,𝑇𝑇𝑍 = 0.01 

𝑃𝑡𝑟𝑎𝑝,𝑃𝑇𝑍 = 0.01 

 

 0.0045 0.3872 0.0517 1.1315 0.0344 

    0.0075     0.5421     0.0449     1.5436     0.0463 

    0.0135     0.6201     0.0881     0.8799     0.0603 

    0.0225     0.3568     0.1322     1.1153     0.0725 

    0.0292     0.4447     0.1258     1.1402     0.0801 

    0.0385     0.3978     0.1414     1.3389     0.0720 
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Supplementary Figures and Legends  

 
Supplementary Figure 1. MSD-analysis and anomalous CTCF diffusion. 
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Top: Mean-square displacement (MSD) analysis for mESC C59 Halo-CTCF (top row), mESC C87 Halo-CTCF (2nd 

row), mESC C59D2 RBRi-Halo-CTCF (3rd row) and mESC Halo-3xNLS (4th/bottom row). The data for each cell line 

was analyzed using code available at https://gitlab.com/anders.sejr.hansen/anisotropy. Briefly, using an HMM we filter 
out the bound population, such that the MSD is only calculated for the diffusing subpopulation. spaSPT2,3 was 
performed at three frame rates (4.477 ms per frame or ~223 Hz, 7.477 ms per frame or ~134 Hz, and 13.477 ms per 
frame or ~74 Hz) and the MSD-fit is shown to each of the three datasets in the first three columns. Briefly, a power-law 

accounting for localization error was fit and the anomalous exponent, , inferred. As suggested4,5, we only used the 

first 50% of the data for the fitting. Error bars show standard deviation (from subsampling 50% of the data using 25 
iterations) and the number of timepoints was limited to 20, 18, and 16 for 223 Hz, 134 Hz, and 74 Hz, respectively. The 
4th column shows the MSD-fit with all the data merged. We show all four versions in part to emphasize that the inferred 

anomalous exponent, , is quite sensitive to the data processing and therefore should be interpreted cautiously. 

Nevertheless, we believe the merged fit (column 4) most robustly represents the actual value. Finally, the 5th column 
shows the same data at a log-scale.  

Bottom: Table quantifying the robustness of inferring the anomalous exponent, , as a function of fitting parameters. 

As discussed previously4,5, it can make sense to use only the more statistically relevant first fraction of the MSD-curve 
for fitting and we thus varied from 20% to 100%, which part of the MSD-curve we used in the fit. As expected, perhaps 

in part due to collisions with the nuclear envelope at long lag times, the estimated -value decreases as we consider 

longer and longer lag times. As also pointed out previously, interpreting time- and ensemble-averaged MSD-curves 

based on multi-population SPT data is highly challenging6. Therefore, we suggest that the -values reported here 

should be interpreted very cautiously.  
 
 
 
 
  

https://gitlab.com/anders.sejr.hansen/anisotropy
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Supplementary Figure 2. Control simulations demonstrating that apparent anisotropy is not an artifact of 
localization uncertainty, insufficient filtering of the bound population or polymer fluctuations of CTCF bound 
to the chromatin fiber.  
Please note: Panels a, b, c and g show simulated data, whereas d, e and f show experimental data.  
(a) simSPT simulations. Brownian motion with a mixture of bound and free subpopulations subject to significant 
localization error (std=35 nm) confined inside the nucleus can result in “apparent” anisotropy, since a bound molecule 
will appear to take steps back and forth around its true localization because of localization uncertainty. The purpose of 
these simulations was to assess whether or not our analysis pipeline fully filters this out. We performed these 
simulations using simSPT2, which simulates experimentally realistic HILO SPT data. For each condition (e.g. C59 

Halo-CTCF at 223 Hz), we “matched” the parameters (FBOUND, DFREE, ) to the data (parameters obtained from 

analysis with Spot-On2) and then simulated 500,000 trajectories and analyzed them the same way as the experimental 
data.  
(b) Analysis of simSPT simulations. Representative plots of fold-anisotropy, f180/0, at the bulk level (left), as a function 
of the lag time (middle) and as a function of the mean displacement length (right) for the indicated “matched” 

experiments: mESC Halo-CTCF (FBOUND=0.65; DFREE=2.5 m2/s), mESC Halo-3xNLS (FBOUND=0.10; DFREE=6.0 m2/s), 

mESC Rad21-Halo G1 (FBOUND=0.50; DFREE=1.5 m2/s), mESC ZFmut-Halo-CTCF (FBOUND=0.30; DFREE=2.5 m2/s), 

mESC ZF-Halo-CTCF (FBOUND=0.05; DFREE=5.5 m2/s). As can be seen, simulated Rad21 is mildly anisotropic at 

~223 Hz, but otherwise, the analysis pipeline successfully filters out “apparent” anisotropy. This is from n=1 simulation 
and based on 500,000 simulated trajectories. Error bars show standard deviation from 50 subsamplings with 
replacement using 50% of the data and centre values show value using 100% of the data.  
(c) Anisotropy heatmaps. Plot of f180/0 as a function of the length of the first and second displacement. Most notably, 
the anisotropy “bump” around 200 nm is fully absent in the simulations.  
(d-e) Reliability of HMM-pipeline (vbSPT) to remove the bound population. To remove the bound population and 
perform anisotropy analysis, our pipeline takes 2 steps (Fig. 1b): first HMM-mediated classification into Free and 
Bound states. We remove the Bound state. Second, we remove displacements below a certain minimum threshold, 
rmin. To test if the HMM efficiently removes the bound population, we applied it to our entire experimental SPT data (full 
results in Supplementary Table 1). Here we show a few examples. To test if the bound fraction was removed, we ran 
Spot-On before and after filtering. If the bound fraction is efficiently removed, then the Spot-On inferred bound fraction 
should be close to zero after filtering. Indeed this was the case: the bound fraction was minimal after HMM-filtering as 
shown in (d-f) and in Supplementary Table 1. 
(g) Polymer simulation. Fold anisotropy of the diffusion protein is estimated in a simulation where the polymer is 
diffusing. The simSPT analysis above (a-c) was applied to estimate the fold anisotropy of the protein in a simulation 
where the polymer is also diffusing, but simSPT models the polymer using Brownian motion. We tested if our HMM-
pipeline would filter out the motion of protein cognately bound to chromatin, which is due to chromatin dynamics. Left: 
Chromatin is described as a chain of 50 monomers (blue spheres) that interact with the potential described in the 
Methods (see “Brownian simulation of chromatin and the protein”). Each monomer corresponds to a cognate binding 
site (CBS) to which the protein binds with a characteristic time of 1 minute. There are no TTZs or PTZs monomers in 
the simulation. An additional Gaussian noise with standard deviation of 35 nm and zero mean was added to the 
position of the protein in the simulation to account for the localization error. The diffusion coefficient of the protein is 
𝐷𝐶𝑇𝐶𝐹 = 5𝜇𝑚2/𝑠  while the diffusion coefficient of the polymer (chromatin) is the empirically estimated diffusion 

coefficient of a fluorescently chromatin locus on the X chromosome in mESC ( 𝐷𝑀𝑜𝑛𝑜𝑚𝑒𝑟 = 4 × 10−3𝜇𝑚2/𝑠  7). 

Effectively, there are two subpopulations of CTCF in the simulation. One is freely diffusing and the other is bound to 
the polymer Right: The fold anisotropy of the protein as a function of the mean step size following the HMM pipeline. 
Our HMM-pipeline largely filters out any apparent anisotropy coming from the DNA polymer fluctuations. The residual 
value of the anisotropy (~1.2) is scale-free, and similar in value to that of the free, Halo-3xNLS (Fig. 1c). This rules out 
that the observed anisotropy could be due to polymer motion. The data shown in (g) is the result of n=100 independent 
simulations. In each simulation, the trajectory of CTCF was recoded until its 10000’s capture event. Error bars in (g) 
show standard deviation from 50 subsamplings with replacement using 50% of the data and centre values show value 
using 100% of the data. 
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Supplementary Figure 3. Additional control simulations demonstrating that apparent anisotropy peak at ~200 
nm is not an artifact of localization uncertainty or chromatin mobility.  
(a) simSPT simulations processed through anisotropy pipeline. simSPT simulates Brownian motion (Supplementary 
Fig. 2a) under realistic HiLo-experimental conditions subject to localization uncertainty and both a bound and free 
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population. Here, we tested how the diffusion coefficient of the chromatin bound population (DBOUND = {0.001, 0.02, 
0.05} μm2/s; shown as different columns) and the 1-dimensional localization error or uncertainty (defined as the 

Gaussian standard deviation: 1D = {20, 30, 35, 40, 45, 50, 60, 75} nm; shown as different rows), affect our anisotropy 

analyses with the other parameters chosen to approximately fit Halo-CTCF in mESCs (as shown in the plot). As can 
be seen, the bound diffusion coefficient makes a minimal contribution to apparent anisotropy. But predictably, at very 
high localization uncertainty, apparent movement due to localization errors becomes poorly distinguishable from true 
movement of the free population and thus is no longer filtered out efficiently, which causes apparent anisotropy. 

However, this only happens at high localization error 1D  60 nm, which is much higher than our experimental 

uncertainty of 35 nm.  
(b-d) Apparent anisotropy as a function of mean displacement length. For different bound diffusion coefficients, we 

plotted how the apparent anisotropy scales mean displacement length as a function of the 1D localization error 1D. As 

can be seen, at high enough localization uncertainty, we do get apparent anisotropy, but it does not manifest itself as a 

sharp peak ~200 nm as seen for CTCF in our experimental data and this only occurs at high localization error 1D  60 

nm, which is much higher than our experimental uncertainty of 35 nm. (b-d) are from n=1 simulation and based on 
500,000 simulated trajectories. Error bars show standard deviation from 50 subsamplings with replacement using 50% 
of the data and centre values show value using 100% of the data. 
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Supplementary Figure 4. 2-color spaSPT experiments to estimate the misconnection probability during 
tracking. 
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(a) Misconnection probability for U2OS Halo-CTCF and U2OS Halo-3xNLS. Cells were labeled ~1:1 with the 
distinguishable PA-JF549 and PA-JF646 dyes8. This way, we can directly observe tracking misconnections (e.g. green-
to-red or red-to-green). We correct for the ~2-fold undercounting. We imaged at a ~2-3-fold higher density than normal 
(~2-3 particles per frame per nucleus) to estimate the worst-case level of tracking errors. Histograms of displacement 
lengths are shown for correct connections (1st column) and misconnections (2nd column). The 3rd column shows that 
the misconnection probability increases exponentially with displacement length. Histograms of number of localizations 
per frame for correct and incorrect connections are shown in column 4 and 5, respectively.  
(b) Schematics. Schematics illustrating two types of misconnections: Misconnection due to overlapping trajectories 
(MOT) and Misconnection due to new Appearance of Particle (MAP). 
(c) Why tracking errors increase exponentially. “back-of-the-envelope” illustration of why tracking errors increase 
exponentially with displacement length. Although the misconnection probability presumably scales with the area of a 
circle (radius square), because correct connections decrease exponentially with displacement length, misconnection 
probability will increase exponentially with displacement length.  
(d) Close encounter filter. To minimize misconnections, we applied a close encounter filter, rTHRESHOLD, such that 

whenever two particles come closer than rTHRESHOLD they will be cut short. Choosing rTHRESHOLD = 2 m optimally 

reduced the misconnection probability.  
(e) How misconnections scale with lag time.  
(f) Misconnection probability for U2OS Halo-CTCF and U2OS Halo-3xNLS. Same as (A), but for temporally 
subsampled data (35 Hz, 12.2 Hz).  
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Supplementary Figure 5. Anisotropy for CTCF in human U2OS cells and cohesin in mESCs.  
Anisotropy plots for C32 Halo-CTCF and Halo-3xNLS in human U2OS cells showing fold-anisotropy, f180/0, at the bulk 
level (a), as a function of the lag time (b) and as a function of the mean displacement length (c).  
(d) Anisotropy heatmap. Plot of f180/0 as a function of the length of the first and second displacement for U2OS C32 
Halo-CTCF.  
Anisotropy plots for C45 Rad21-Halo (knock-in) in either G1-phase or S/G2 phase of the cell cycle, and a mut-Rad21-
Halo, which cannot form cohesin complexes3 (transiently over-expressed) in mESCs showing fold-anisotropy, f180/0, at 
the bulk level (e), as a function of the lag time (f) and as a function of the mean displacement length (g).  
Error bars in plots above show standard deviation from 50 subsamplings with replacement using 50% of the data and 
centre values show value using 100% of the data.  
(h-j) Anisotropy heatmaps. Plot of f180/0 as a function of the length of the first and second displacement for the indicated 
cell lines. 
Here KI refers to endogenous knock-in cell lines and OE refers to exogenous over-expression using an optimized 
protocol as outlined in Supplementary Fig. 10. 
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Supplementary Figure 6. Overview of chromatin polymer simulations. 
Overview of the model. (a) Chromatin is described as a long chain of N monomers (beads, cyan) connected by 

harmonic springs. The monomers additionally interact via LJ interactions with a LJ size . Each monomer corresponds 

to one of three zones/domains (TTZs,CBSs,PTZs). The monomer assignment is random. The polymer is equilibrated 

within a domain (nucleus) which has a radius of 5m. The CTCF protein is a Brownian particle (dark blue). The protein 

was released from monomer (zone) 5 after being trapped there (magenta).  

(b) (Left) The protein is absorbed/trapped with probability 𝑃𝑡𝑟𝑎𝑝,𝐶𝐵𝑆 if it arrives to a distance 𝜀𝐶𝐵𝑆 (red dashed-line 

circle) from the center of a cognate binding site (CBS). It is then trapped there for a characteristic time 𝜏CBS. When 

released, the protein is positioned with equal probability on a sphere centered around the CBS with a radius 𝑎𝐶𝐵𝑆 

(magenta dashed-line circle). (Middle) The protein is absorbed/trapped with probability 𝑃𝑡𝑟𝑎𝑝,𝑇𝑇𝑍 if it arrives to a 

distance 𝜀𝑇𝑇𝑍 (red dashed-line circle) from the center of a Transiently Trapping Zone (TTZ). It diffuses within the TTZ 

which has radius 𝜀𝑇𝑇𝑍. When released, the protein is positioned on a sphere center around the CBS with a radius 

𝑎𝑇𝑇𝑍 , at the same angular direction from which it escaped (magenta dashed-line circle). (Right) The protein is 

absorbed/trapped with probability 𝑃𝑡𝑟𝑎𝑝,𝑃𝑇𝑍 if it arrives to a distance 𝜀𝑃𝑇𝑍 (red dashed-line circle) from the center of a 

Power-law Trapping Zone (PTZ). The distance 𝜀𝑃𝑇𝑍 is randomized from a distribution (see Methods). It diffuses within 

the PTZ which has radius 𝜀𝑃𝑇𝑍. When released, the protein is positioned on a sphere center around the CBS with a 

radius 𝑎𝑃𝑇𝑍, at the same angular direction from which it escaped (magenta dashed-line circle)  

(c) When the protein escapes from the zone it is released from the spherical border (radius 𝑎𝑇𝑇𝑍 or 𝑎𝑃𝑇𝑍  depending 

on the zone from which it escaped) along the same radial vector from the center of the zone it had when it crossed the 
border. 
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Supplementary Figure 7. MSD from model simulations.  
The MSD was estimated form the Brownian simulation, using the same algorithm described at 
https://gitlab.com/anders.sejr.hansen/anisotropy and in Supplementary Fig. 1.  

https://gitlab.com/anders.sejr.hansen/anisotropy
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(a-b) The MSD and anomalous exponent correspond to the data plotted in Fig. 2e-f. (a) Model where the trapping 
probability at the TTZ is high 𝑃𝑡𝑟𝑎𝑝 = 0.99. (b) The trapping probability at the TTZ is low 𝑃𝑡𝑟𝑎𝑝 = 0.1.  

(c-e) The MSD and anomalous exponent correspond to the data shown for the data plotted in Fig. 2d-h. (c) 

Representing wt with binding probability 𝑃𝑡𝑟𝑎𝑝,𝑇𝑇𝑍 = 0.99, 𝑃𝑡𝑟𝑎𝑝,𝑃𝑇𝑍 = 1. (d) representing RBRi-CTCF 𝑃𝑡𝑟𝑎𝑝,𝑇𝑇𝑍 = 0.2, 

𝑃𝑡𝑟𝑎𝑝,𝑃𝑇𝑍 = 1  (e) representing ZF-CTCF 𝑃𝑡𝑟𝑎𝑝,𝑇𝑇𝑍 = 0.01, 𝑃𝑡𝑟𝑎𝑝,𝑃𝑇𝑍 = 0.01 . 

Error bars show standard deviation (from subsampling 50% of the simulated data) and the number of timepoints was 
limited to 20, 18, and 16 for 223 Hz, 134 Hz, and 74 Hz, respectively. The centre values, show value using 100% of 
the simulated data from n=1 simulation. The data shown in the figure in each condition is the result of n=30 
independent simulations. In each simulation, the trajectory of CTCF was recoded until its 10000’s capture event. 
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Supplementary Figure 8. The normalized velocity autocorrelation function for the CTCF experiments.  

(a) The normalized velocity autocorrelation function 
 ( ) / (0)v

t t

vC C C   from Ref 9,10 computed at different time 

steps as a function of time for mESC C59 wt-Halo-mCTCF.  
(b) The time-scaled normalized velocity autocorrelation function for the same cell line.  

(c,d) mESC D2 RBRi-CTCF (e,f) mESC ZF-Halo-mCTCF (OE).  
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Supplementary Figure 9. Anisotropy of wild-type and mutant CTCF in human U2OS cells.  
Anisotropy plots for C32 Halo-CTCF (knock-in), Halo-CTCF without Zinc Finger 10 and 11 and the RBRi (transiently 

over-expressed; ZF10,11-RBRi-Halo-CTCF), RBRi-Halo-CTCF (transiently over-expressed) and Halo-CTCF 

without all 11 Zinc Fingers (transiently over-expressed; ZF-Halo-CTCF) in human U2OS cells showing fold-

anisotropy, f180/0, at the bulk level (a), as a function of the lag time (b) and as a function of the mean displacement 
length (c).  
Error bars in plots above show standard deviation from 50 subsamplings with replacement using 50% of the data and 
centre values show value using 100% of the data.  
(d-g) Anisotropy heatmaps. Plot of f180/0 as a function of the length of the first and second displacement for the 
indicated cell lines. 
Here KI refers to endogenous knock-in cell lines and OE refers to exogenous over-expression using an optimized 
protocol as outlined in Supplementary Fig. 10. 
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Supplementary Figure 10. An optimized protocol for minimizing artifacts associated with protein over-
expression and comparison of knock-in (KI) and over-expression (OE) results.  
(a) Overview of transient transfection approach to minimize artifacts associated with very high over-expression of 
CTCF. As previously described, strong exogenous over-expression of CTCF causes cell-cycle arrest and altering of 
CTCF dynamics3,11. Notably, the bound fraction of CTCF is greatly reduced when strongly over-expressed3. We 
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therefore optimized a protocol to minimize the artifacts associated with CTCF over-expression, since certain likely 
lethal mutants of CTCF can only be studied under exogenous over-expression (OE) conditions. We use a robust, but 
modest expression promoter (L30) to express CTCF and related proteins and mutants. But the plasmid also encodes a 
GFP-3xNLS protein. We can then use the GFP channel to identify cells with the lowest level of expression and then 
only study those using spaSPT in the PA-JF549 or PA-JF646 channels. We found that unlike when using strong 
promoters like CMV or EF1a, this approach only led to a modest reduction in the wt-CTCF bound fraction (of ~10-15%) 
even when over-expressed exogenously in the presence of endogenous CTCF.  
(b-g) Anisotropy analyses for endogenous Halo-wt-CTCF (C59 and C87) in mESCs and for exogenously over-
expressed Halo-wt-CTCF using the protocol outlined in (a). 
(h-l) Anisotropy analyses for endogenous Halo-wt-CTCF (C32) in U2OS cells and for exogenously over-expressed 
Halo-wt-CTCF using the protocol outlined in (a). 
Error bars in plots above show standard deviation from 50 subsamplings with replacement using 50% of the data and 
centre values show value using 100% of the data and experiments were performed in at least n=3 biological replicates.  
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Supplementary Figure 11. Parameter scan.  Plot of f180/0 vs. mean displacement length averaging over all lag times 
or vs. lag time averaging over all displacement lengths for different model parameters. In each curve only one 
parameter is modified. The value of the other parameter is the same as the model simulation wt-CTCF. See Fig. 2e-h, 
red curve and Supplementary Table 2. The data shown in the figure in each condition is the result of n=30 
independent simulations. In each simulation, the trajectory of CTCF was recoded until its 10000’s capture event. 
Error bars in plots above show standard deviation from 50 subsamplings with replacement using 50% of the data and 
centre values show value using 100% of the simulated data based on n=30 simulations.  
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Supplementary Figure 12. The normalized velocity autocorrelation function for the CTCF simulations.  

(a) The normalized velocity autocorrelation function 
 ( ) / (0)v

t t

vC C C   from Ref 9,10 computed at different time 

steps as a function of time for the model corresponding to wt-CTCF.  
(b) The time-scaled normalized velocity autocorrelation function for the same cell line.  

(c,d) model corresponding to RBRi-CTCF  

(e,f) model corresponding to ZF-Halo-CTCF. See Fig. 3g-h. 
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Supplementary Figure 13. The displacement probability distribution function.  
The displacement probability distribution function (pdf) for both the experimental data and model data, normalized by 
the standard deviation of each curve for different time steps. Also plotted is the Gaussian distribution (with mean zero 
and variance of one) (dashed line), and a Laplace distribution (full line) with the same moments for comparison. (a) 

mESC C59 wt-Halo-mCTCF (KI). (b) mESC ZF-Halo-mCTCF (OE). (c) The model corresponding to wt-CTCF. (d) 

The model corresponding to ZF-CTCF. See Fig. 3g-h. 
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Supplementary Figure 14. Plots related to 2-color spaSPT and PALM.   
(a) Measured localization errors (defined at the standard deviation) for mESC C59 wt-Halo-CTCF and mESC C59D2 

RBRi-Halo-CTCF. For bound trajectories lasting at least 20 frames, we calculated the mean and then took the 

difference in x and y from this mean as the measured localization error. The histograms show all of these measured 
localization errors across n=3 replicates and at least 30 single cells.  
(b) Pair cross correlation analysis. The analysis is the same as shown in Fig. 4e, except we are comparing all of the 
PALM localizations to the anisotropic spaSPT localizations.  
Errors bars shown standard error of the mean based on a total of 33 cells for C59 and 31 cells for D2 from n = 3 
biologically independent replicates. Centre values show the mean.  
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Supplementary Figure 15. Model-fit to FRAP data and supplementary spaSPT and in vitro binding 
experiments.  
(a) Raw FRAP data (330 frames at 1 frame every 2 seconds and bleach applied at frame 20) for mESC C59 Halo-

CTCF (left) and mESC C59D2 RBRi-Halo-CTCF (right). A 2-state reaction dominant model was fit and the slow-
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component interpreted as the residence time for binding to cognate DNA binding sites (shown as well as 95% 
confidence interval).  
(b) Estimating the specifically bound fraction from FRAP. As a simplified form of analysis, we operationally defined the 
bleached fraction that remains after 4 seconds as the specifically bound fraction (assuming that the diffusing fraction 
and non-specifically bound fraction has largely recovered at this point). We used this to estimate the speed-up of the 
search process by the RBRi. For full details, please see the Methods. 
(c) Estimating the non-specifically bound fraction from spaSPT. We operationally define the bound fraction that 
remains after mutating the 11 Zinc Fingers (point mutation in each; His→Arg) as the non-specifically bound fraction 
and subtract this from the total bound fraction, in order to estimate the specifically bound fraction and the search times. 
For full details, please see the Methods.  
(d) Schematic representation of fluorescence polarization-based in vitro DNA binding assays. A labeled DNA duplex 
freely rotates in solution in the absence of protein. When excited by polarized light, the emitted light is mainly 
depolarized due to the small size and rapid rotation of the oligo. Upon binding to a specific protein, the mass of the 
complex slows the rotation so that the emitted light is still polarized. The residual polarization is thus an indirect 
measurement of the amount of protein bound to the oligo.  
(e) Total fluorescence intensity of oligo-only control samples (CTCF core binding site or mutant oligo) and of samples 
containing an increasing amount of either wt or mutant CTCF recombinant protein (0.5,1, 2, 4, 10, 20, 40 or 100 nM). 
Total fluorescence remains within the error range (mean of 2 replicates), with no evident change after protein addition.  
(f) Polarization values used to calculate the fraction bound of Fig. 5e. No significant binding is measured in the 
presence of the mutant oligo, while wild type and mutant CTCF proteins bind indistinguishably to the specific core DNA 
oligo (mean and standard deviation of 3 independent experiments performed with the same batch of oligos and 
recombinant proteins). 
(g) Protein inputs for the binding assays. Left: a representative PageBlue-stained SDS-PAGE gel of recombinant wt 
and mutant CTCF; Right: quantification of band intensities for 2 replicates (relative to wt-CTCF).  
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Supplementary Video Legends 
 
Video 1. Single Halo-CTCF protein exhibiting anomalous diffusion inside mESC nucleus.  
Frame-rate: 134 Hz; dye: PA-JF549; laser excitation pulse: 1 ms of 561 nm; Cell line: C59. Raw microscopy data with 
tracking overlaid in red. Representative single trajectory from 311,144 total trajectories collected from 28 single cells 
across n=4 independent biological replicates.  
 
Video 2. Single Halo-CTCF protein exhibiting anomalous diffusion inside mESC nucleus.  
Frame-rate: 134 Hz; dye: PA-JF549; laser excitation pulse: 1 ms of 561 nm; Cell line: C59. Raw microscopy data with 
tracking overlaid in red. Representative single trajectory from 311,144 total trajectories collected from 28 single cells 
across n=4 independent biological replicates. 
 
Video 3. Single Halo-CTCF protein exhibiting anomalous diffusion inside mESC nucleus.  
Frame-rate: 134 Hz; dye: PA-JF549; laser excitation pulse: 1 ms of 561 nm; Cell line: C59. Raw microscopy data with 
tracking overlaid in red. Representative single trajectory from 311,144 total trajectories collected from 28 single cells 
across n=4 independent biological replicates.   
 
Video 4. Single Halo-CTCF protein exhibiting anomalous diffusion inside mESC nucleus.  
Frame-rate: 134 Hz; dye: PA-JF549; laser excitation pulse: 1 ms of 561 nm; Cell line: C59. Raw microscopy data with 
tracking overlaid in red. Representative single trajectory from 311,144 total trajectories collected from 28 single cells 
across n=4 independent biological replicates.   
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Supplementary Notes 
 

Supplementary Note 1 - Data processing and anisotropy and MSD calculations 
Full details of the data processing and how the calculations were performed including the raw code are 

available on GitLab: https://gitlab.com/anders.sejr.hansen/anisotropy. Here we will describe each step briefly. 
We wrote all the code in Matlab and ran it in Matlab 2014b.  

First, we converted raw images into SPT trajectories using the MTT-algorithm12 as described above.  
Second, we use “MergeQC_SPT_data.m” to merge data. When performing tracking and localization, 

each single cell results in a single file. Thus, to keep things manageable, we use “MergeQC_SPT_data.m” to 
merge data from all these single cells (~20-30 cells) into a single file for a given frame rate, by concatenating the 
frames (e.g. if two movies with 20,000 frames are merged, frame 1 in the second movie becomes frame 20,001). 

To minimize tracking errors, we also use “ClosestDist = 2” (in units of m) to abort trajectories where two 

particles came closer than 2 m to each other. This is achieved by calling the function 
“RemoveAmbigiousTracks.m”.  

Third, we use “Batch_vbSPT_classify.m” to classify trajectory segments into “bound” and “free” 
segments. “Batch_vbSPT_classify.m” first removes gaps from all the trajectories and then calls vbSPT13. We 
implemented a 2-state Hidden Markov Model (HMM) through vbSPT, which uses a Bayesian approach to infer 
the most likely state for each displacement in a trajectory (“bound” or “free”) based on displacement lengths and 
trajectory history. This is important because the apparent movement of bound molecules is dominated by 
localization errors. Thus, we want to exclude bound/immobile molecules from the analysis since we are 
interested in understanding the nuclear search mechanism, which only applies to diffusing/free molecules and 
also because bound/immobile molecules will artefactual appear anisotropic due to localization errors around a 
relatively fixed position. Thus, by using a 2-state HMM we can filter out the bound population and restrict our 
subsequent analysis to the free population (the number of states is controlled by the variable “maxHidden”. 
“Batch_vbSPT_classify.m” will automatically run on all SPT datasets in the directory “input_path”, reformat 
data to remove gaps and save the reformatted data to “path_reformatted” and finally save the classified data to 
“path_classified”. The final classified SPT data contains 4 variables:  

• “CellTracks”, a cell array where each element is a trajectory and is a Nx2 matrix with the XY 
coordinates for each of the N frames.  

• “CellTrackViterbiClass”, a cell array where each element is a N-1 column vector corresponding 
to the relevant trajectory in “CellTracks”. In other words, “CellTrackViterbiClass” classifies each 
displacement and thus is one length shorter than the number of localizations in “CellTracks”. “1” 
corresponds to bound and “2” corresponds to free. E.g. if a trajectory had 5 localizations, 
“CellTrackViterbiClass” will have length 4.  

• “vbSPT_metadata”, a structure array object containing the most relevant vbSPT metadata such 
as the inferred diffusion coefficients, subpopulation sizes and transition matrix. 

• “LagTime”, the time between frames in units of seconds. 
“Batch_vbSPT_classify.m” calls two dependent functions: “InferFrameRateFromName.m”, which infers 

the frame rate from the filename and “EditRunInputFile_for_batch.m” which edits the file 
“vbSPT_RunInputFileBatch.m” to automatically feed the relevant information to vbSPT. In summary, at the 
end of this step the trajectories have been classified to allow subsequent analysis to focus exclusively on the 
free/diffusing population.  

Fourth, we use “CompileTemporalSubSamplesOfHMM.m” to temporally subsample the existing SPT 
data and generate trajectories with longer lag times. E.g. by subsampling every 10 th frame (frames 1, 11, 21, …) 
of the 223 Hz data and every 6th frame (frames 1, 7, 13, …) of the 133 Hz data, we can generate new SPT 
trajectories at 22.2 Hz. Full details on how the 223 Hz, 133 Hz and 74 Hz SPT data was temporally subsampled 
is given in the structure array, “TempSubSampleStruc” in lines 40-117. We use this approach to generate SPT 
data at the following frame rates: 44.4 Hz, 34.2 Hz, 26 Hz, 22.2 Hz, 18.8 Hz, 16.5 Hz, 14.8 Hz, 12.2 Hz, 10.6 Hz, 
9.2 Hz. The subsampling is performed in the dependent function “TemporallyReSampleCellTracks.m” and we 
note one potential ambiguity here. To illustrate, suppose we want to take every 3rd frame of a trajectory (i.e. 
frames 1, 4, 7, …). Since the SPT data has already been HMM-classified, a trajectory of length N will have N-1 

https://gitlab.com/anders.sejr.hansen/anisotropy
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displacements classified as either bound or free. We would like to carry over this classification to the temporally 
subsampled trajectory. While most trajectories are either entirely free (“2”) or bound (“1”), some trajectories 
show transitions. In this example, say the HMM-classification is [1,2,2,2,2,1] for frames 1-7. In this case, the 
subsampled displacement from frame 1-to-4 will have HMM-classification [1,2,2], but we have to label it as 
either “1” or “2’ in the sub-sampled data. In these cases, we took the most conservative approach. Since our 
primary goal is to filter out the bound population, we labelled any temporally subsampled displacement as bound 
as long as any one of the intermediate displacements were classified as bound, even if the majority were free. 
This is implemented in the function “TemporallyReSampleCellTracks.m”. Finally, at the end of this procedure, 
all the temporally subsampled and HMM-classified SPT datasets are saved to the directory 
“HMM_first_QC_data”.  

Fifth, we wrote “Process_SpatioTemporal_AngleAnalysis_v2.m” to perform all the analysis of the 
HMM-classified trajectory data at multiple spatial and temporal scales. The bulk of the analysis is performed in 
the dependent function “angleFWHM_Amp_HMM_analyzer_v5.m” and the code also calls 
“AngleMatrix_analyzer.m” and “ComputeAmpFWHM.m”. The analysis is somewhat complicated and for full 
details, we refer the reader to the underlying function “angleFWHM_Amp_HMM_analyzer_v5.m”. But briefly, 
we describe the analysis, input parameters and output results here. For a given trajectory, as long as it consists of 
at least 3 localizations and thus 2 displacements, it is possible to calculate an angle between adjacent 
displacements. If we define the 3 localizations making up the angle as p1, p2 and p3, we can define 2 column 
vectors and calculate the angle between them as follows (using Matlab syntax):  
>> v1 = (p2-p1)'; 
>> v2 = (p3-p2)'; 
>> angle(1,1) = abs(atan2(det([v1,v2]),dot(v1,v2))); 
>> angle(1,2) =  2*pi-angle(1,1); 

Here, the second element in the angle is due to the factor that whether a 150 degree angle is classified as 
150 or 210 degrees is arbitrary. Note though that the above calculation is in units of radians. We then loop over 
all the trajectories. However, we want to be careful to filter out the bound population and we therefore apply 
two criteria. First, the displacements must be HMM-classified as “free” and, second, both displacements must be 
at least of length “MinMinJumpThres”. Only if both criteria are satisfied, do we count the angle.  These criteria 
are used for the bulk analysis of the angles (subplots 1-6 in the plotting step). Afterwards, the analysis quantifies 
4 different anisotropy metrics: 

• AC: anisotropy coefficient which is defined as: AC = log2(P(a[150-210])/ P(a[330-30])), 
and this metric was introduced previously by Izeddin et al.14 Thus, the AC quantifies how much 
more likely a molecule is to go in the backwards after having going forwards.  

• Amp: how the amplitude is calculated is described in the function “ComputeAmpFWHM.m”. 
Briefly, we build a histogram of the probability as a function of the binned angle. We then use 
fine-scale interpolation to overcome the binning. From this we fit the background density and 
then calculate the “excess” anisotropy. Since the histogram sums to 1, the amplitude takes values 
between 0 and 1. This provides a related but somewhat orthogonal metric or anisotropy.  

• f(18030/030) or f(180/0) for short: is identical to the AC, but does not use a logarithm. 
Essentially, f(180/0) quantifies how many times more likely a particle is to go backwards relative 
to continuing forwards. For example, if f(180/0)=1.6, the particle is 1.6-fold more likely to return 
in the backwards direction than to continue forwards.  

• FWHM (full width at half-maximum): quantifies the width of the anisotropy histogram and is 

defined as the full width of the histogram peak centered around 180 at the half-maximal value 
(i.e. when the probability is half-way in between the peak of the of the angle histogram and the 
background probability).   

This analysis quantifies the “bulk” anisotropy.  
To analyze how the anisotropy changes with space and time, we do binning. For spatial analysis, i.e. how 

the anisotropy metrics depend on the length of the two displacements making up the angle, we control the range 
of translocations in the variable “MovingThreshold”, which we allow to run from 100 nm to 950 nm in bins of 
50 nm. Thus, in this case we additionally consider displacements that are HMM-classified as free and also which 
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are at least 100 nm long (set by the variable “GlotbalMinJumpThres”). Since there are two displacements making 
up the angle, one can either quantify their mean displacement, their minimal displacement (univariate analysis) or 
the length of both displacements (bivariate analysis), and we took all three approaches here. For spatial analysis, 
we averaged over all 13 time-scales (from 223 Hz to 9.2 Hz) and calculated the anisotropy metrics. For example, 
for f(180/0) as a function of mean displacement, we populated the [100 nm ; 150 nm] bin by taking all angles 
from all 13 frame rates where the mean of the two displacements making up the angle is between 100 and 150 
nm and then calculated f(180/0) using all of these angles. And likewise for the other metrics. For analysis of 
anisotropy as a function of time, we use all the angles making up a single frame rate satisfying the both of the 
two criteria listed above: HMM-classified as “free” both displacements at length “MinMinJumpThres” (200 nm). 

Errorbars were estimated using re-sampling and is controlled by the variables “JackKnife_fraction” and 
“JackKnife_iterations”. Specifically, we resampled 50% of the angles with replacement 50 times and calculated 
the anisotropy metrics for each iteration. The error bars reported here show the standard deviation between 
these 50 iterations.  

We noticed that at very long displacements, we would occasionally see very strange trajectories such as a 
particle shifting back and forth between 2 points separated by a large distance (~800 nm). These are almost 
certainly a tracking artifact, perhaps from 2 bound molecules blinking out-of-frequency. To remove this and 
avoid these biasing the analysis especially at long displacements, we removed trajectories where more than half of 
the angles were highly anisotropic using the variables “MaxNumAngles” and “MaxAsymAnglesFrac”.   

Finally, all of the anisotropy metrics are saved to the structured array “FinalResults” and saved. With the 
example data provided on GitLab, the workspace saved is “U2OS_C32_SpatioTemporalAnalysis.mat”. 

Sixth and finally, we used “PLOT_SpatioTemporalAnalysisResults_v4.m” to plot and visualize the 
results for each individual data set and similar code to overlay results from multiple different samples. For a 
more comprehensive description of the analysis and the underlying source code, please see GitLab: 
https://gitlab.com/anders.sejr.hansen/anisotropy 

 

MSD  
Full details and all the raw code used for calculating the time- and ensemble-averaged MSD is available 

on GitLab https://gitlab.com/anders.sejr.hansen/anisotropy. Here we provide a brief overview. We wrote all 
the code in Matlab and tested it in Matlab 2014b. The mean-squared displacement (MSD) is a classic analysis 
approach for SPT. Briefly, it involves analyzing displacements at increasing time-lags and then plotting the time- 
and ensemble-averaged mean squared displacement with time. If the particle exhibits normal Brownian motion, 
the MSD should be linear with time according to: 

𝑀𝑆𝐷(𝜏) = 4𝐷𝜏𝛼 

Accordingly, =1 for Brownian motion. <1 indicates subdiffusion (anomalous diffusion). Here, since 
our trajectories are generally too short to analyze individually15, we therefore compute the time- and ensemble-

averaged MSD. The MSD at a timelag  is given by: 

𝑀𝑆𝐷𝑖(𝜏) = (𝑟𝑖(𝑡 + 𝜏) − 𝑟𝑖(𝑡)) 

Thus, if we average over all displacements with time-lag  and over all trajectories, i, we obtain the time- 

and ensemble-averaged MSD for a given timelag . In the case of nuclear proteins that bind chromatin and 
which are tracked with a significant localization error (around 35 nm in our data), the calculations are 
substantially more complicated. For example, the bound molecules exhibit much longer trajectories than the 
freely diffusing population, since the free population rapidly moves out-of-focus2. Thus, at longer time-lags, 
unless corrected for, the bound population would dominate the MSD calculations. Moreover, MSDs should not 
be calculated and averaged over a mixture of two distinct populations. Thus, to filter out the bound molecules, 
we use the HMM-classification described above. We use the function “MSD_HMM_analyzer.m” to calculate the 
MSD using only the segments that are classified as free using the HMM. Since we have data at three different 
frame rates, we calculate the MSD for each frame rate individually (~223 Hz, 134 Hz, 74 Hz) and we also merge 
the data from all three frame rates.  

When it comes to model-fitting, we fit to the HMM-classified MSD. But we must also account for 
localization errors and we therefore consider the expression: 

𝑀𝑆𝐷HMM(𝜏) = 4𝐷𝜏𝛼 + 4𝜎2 

https://gitlab.com/anders.sejr.hansen/anisotropy
https://gitlab.com/anders.sejr.hansen/anisotropy
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where  is the localization error (standard deviation in one dimension; approximate 35 nm as determined 
using Spot-On2). In terms of model-fitting the time- and ensemble-averaged MSD, there are a number of 
considerations. First, how long time-lags to consider for calculating the MSD. Second, what fraction of the data 
to use for the fitting. To answer the first question, we used subsampling of the data: for each time-lag, we 
subsampled 50% of the data using 25 iterations and calculated the standard deviation (as shown by the error 
bars). We then limited the number of timepoints to use (using the vector “Conditions.MSD_timepoints”) to 20, 
18 and 16 for 223 Hz, 134 Hz and 74 Hz, respectively, such that we did not consider MSD values where the 
error bars got very large. In terms of least-squares fitting of the data, Saxton has argued that one should limit the 
fitting to only a fraction of the MSD curve5,16. Thus, here we only use the first 50% of the data in the fitting and 
we perform least-squares fitting as shown in “ProcessPlotFit_MSD.m”.  

We note that fitting the MSD was not very robust in this case. We see substantially variation in the 
inferred parameters between the 3 frame rates and it has been argued elsewhere that MSD-analysis is not an 
optimal method for analyzing SPT data6. We also note that MSD analysis is much less robust for inferring 

diffusion coefficients2. Nevertheless, since it is a standard method for determined the anomalous exponent, , 

we include it here. We took the final inferred  as the one fitted when averaged over data from all three frame 
rates and we also calculated the 95% confidence interval. Full details and raw code to reproduce our analysis is 
given on Gitlab: https://gitlab.com/anders.sejr.hansen/anisotropy. 

 

 
  

https://gitlab.com/anders.sejr.hansen/anisotropy
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Supplementary Note 2 - Estimating the contribution of tracking errors (misconnections) 
Single-particle tracking (SPT) is uniquely suited to analyzing the dynamics of proteins, how they explore 

the nucleus and whether they exhibit anomalous diffusion since it allows direct observation of molecular motion 
at high spatiotemporal resolution. However, experimental SPT is also subject to numerous biases, which 
complicates the interpretation of SPT experiments. First, while a frame is recorded, fast-diffusing molecules can 
move several pixels, which causes a “motion-blur” artifact. These molecules will not be recognized by most 
localization algorithm since they no longer resemble a PSF and thus fast-diffusing molecules will be 
undercounted. Second, most SPT experiments in live mammalian cells have used quite high particle densities 
(e.g. ~20-100 in-focus molecules per frame). This allows a user to rapidly and conveniently record large amounts 
of data, but comes at the cost of tracking errors. When the displacements of multiple particles overlap between 
frames, there is no way to unambiguously identify which molecule moved where. In general, the fraction of 
displacements that are misconnected increases with particle density. In the high-density limit, when the 
trajectories contain many tracking errors, it is no longer possible to make inferences about how single molecules 
explore the nucleus.  

To minimize these biases we introduced stroboscopic photo-activation single-particle tracking 
(spaSPT)2,3, which builds on and integrates previous approaches17,18. First, spaSPT minimizes motion-blur bias by 
using stroboscopic excitation18. Here we use 1 ms stroboscopic excitation pulse, which is sufficient to achieve 
very good signal (signal-to-background ratio > 5), and which we have previously shown theoretically3 and 
experimentally2,3 causes negligible motion-blur bias even for fast-diffusing proteins such as Halo-3xNLS (DFREE 

~ 10-12 m2/s). Second, spaSPT largely avoids tracking errors, by keeping the particle density very low. We take 
advantage of the very bright photo-activatable Janelia Fluor dyes8, which allows us to tune the photo-activation 
probability such that essentially any desired particle density can be achieved. Here we aimed for an average 
density of ~ 0.5-1 localizations per nucleus per frame, which provides a reasonable compromise between 
minimizing tracking errors and also recording large SPT datasets necessary for statistical analysis.  

Even though tracking errors through misconnections between 2 particles are quite rare in spaSPT at low 
densities, they always will happen with some probability and we wanted to quantitatively assess their frequency. 
To do so, we labeled Halo-tagged proteins in live U2OS cells with the two spectrally distinct dyes, PA-JF646 and 
PA-JF549. The HaloTag protein binds only one dye covalently and irreversibly and under our imaging conditions 
there was no spectral overlap (i.e. any fluorescence bleedthrough between the color channels was far below the 
detection limit). Thus, we recorded simultaneous 2-color spaSPT data using U2OS C32 Halo-CTCF and U2OS 
Halo-3xNLS at 133 Hz and 74 Hz. We considered both Halo-CTCF and Halo-3xNLS since they represent 

opposite extremes: U2OS Halo-CTCF diffuses very slowly (DFREE ~ 2.0-2.5 m2/s) and exhibits a high bound 

fraction (FBOUND,total ~ 60%), whereas Halo-3xNLS diffuses extremely rapidly (DFREE ~ 10-12 m2/s) and exhibits 
a minimal bound fraction (FBOUND ~ 10%). Thus, we reasoned that considering the two extremes would allow us 
to place upper and lower bounds and the frequency of tracking errors.  

We then analyzed the data as follows: We analyzed the JF549 and JF646 datasets individually and we then 
combined the localizations for both datasets and feed them into the tracking algorithm12 such that the tracking 
algorithm was blind to a particle’s “color” (and keeping all algorithm parameters the same). This allowed us to 
identify any cases where a single-trajectory contains localizations in more than one color, which must have 
involved a tracking misconnection. Moreover, to generate a “worst-case scenario” dataset, we used a particle 
density of ~0.5-1.5 for JF549 and JF646 individually (so ~1-3 in-focus particles per frame in total), such that the 
merged localizations would exhibit a 2-3 fold higher density than normal. Thus, this analysis would generate an 
upper bound on the number of tracking errors.  

However, not all tracking errors will give a change in particle colors. Even in the 2-color datasets, JF549-
to-JF549 and JF646-to-JF646 are also possible. More generally, if we refer to the colors as “1” and “2”, the fractions 
of all localizations in each color will be: 

𝑓1 =
𝑛1

𝑛1+𝑛2
 and 𝑓2 =

𝑛2

𝑛1+𝑛2
  

where n is the number of localizations per color per movie. If tracking is totally arbitrary (this is a slight 
approximation, since the probability of either color appearing in frame k+1 is not independent of frame k due to 
photo-activation being less likely than photo-bleaching), the probability of tracking being observed as correct is: 

𝑃correct ≈ 𝑃(𝑐Frame k+1 = 1|𝑐Frame k = 1) + 𝑃(𝑐Frame k+1 = 2|𝑐Frame k = 2) 
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and similarly the probability of actually observing a tracking error is: 

𝑃wrong ≈ 𝑃(𝑐Frame k+1 = 1|𝑐Frame k = 2) + 𝑃(𝑐Frame k+1 = 2|𝑐Frame k = 1) 

Again, if we assume tracking to be totally arbitrary and that there is no memory between frames (which is 
an approximation), these reduce to: 

𝑃correct ≈ 𝑃(𝑐Frame k+1 = 1|𝑐Frame k = 1) + 𝑃(𝑐Frame k+1 = 2|𝑐Frame k = 2) 

= 𝑓1 ∙ 𝑓1 + 𝑓2 ∙ 𝑓2 = 𝑓1
2 + (1 − 𝑓1)2 = 1 + 2(𝑓1

2 − 𝑓1) 

And 

𝑃wrong ≈ 𝑃(𝑐Frame k+1 = 1|𝑐Frame k = 2) + 𝑃(𝑐Frame k+1 = 2|𝑐Frame k = 1) 

= 𝑓1 ∙ 𝑓2 + 𝑓2 ∙ 𝑓1 = 2𝑓1(1 − 𝑓1) = 2(𝑓1 − 𝑓1
2) 

Thus, as expected in the limit where tracking is totally arbitrary and where 𝑓1 = 𝑓2 , these reduce to 

𝑃correct ≈ 0.5 and 𝑃wrong ≈ 0.5. In practice, due to slight differences in cell permeability and labeling kinetics 

between JF549 and JF646 19, as well as experimental variations such as small pipetting errors and slight differences 
in photo-stability etc., it is difficult to get exactly 1:1 labeling and precisely the same number of localizations for 
both dyes. While the exact expressions above can be used for individual movies based on the number of 
localizations for each dye, in order to get good statistics it is necessary to averages over many movies with 
slightly different fractions. Moreover, in almost all of the movies the fraction of localizations in one color was in 

the range 40-60%. 𝑃wrong is symmetric and inverse U-shaped, and even 𝑃wrong(𝑓1 = 0.4) = 𝑃wrong(𝑓1 = 0.6) =

0.48, which is very close to 0.5, as expected if we obtained perfectly 1:1 labeling. Thus, averaging over all movies 
despite these having slightly different relative numbers of localizations is a very small approximation.  

Having verified that we can reasonably average all of the movies, we next analyzed how the number of 
observed tracking errors depends on density and displacement length. First, we note that the probability of a 

tracking error resulting in a color change is approximately 50% assuming 𝑓1 ≈ 𝑓2. That is, if we are tracking a 
particle in color 1, a misconnection to another particle in color 1 will not appear as a tracking error since it does 
not result in a color change. Only if the misconnection occurred to a particle of the opposite color, will it appear 
as a color change. Thus, when we count tracking errors as color changes, the actual number of tracking errors is 

~2-fold higher than the observed number assuming 𝑓1 ≈ 𝑓2 . Thus, we multiplied the observed number of 
tracking errors by 2 to get the total number of tracking errors, both observed and unobserved. Somewhat 
encouragingly, after multiplying by 2 the fraction of incorrect connections, it was still quite low despite imaging 
at a 2-3 fold higher particle density than normal. Specifically, we got the following number of incorrect 
connections (after multiplying by 2): U2OS C32 Halo-hCTCF; 74 Hz gave 3.36%; U2OS C32 Halo-hCTCF; 133 
Hz gave 1.85%; U2OS Halo-3xNLS; 74 Hz gave 6.65%; U2OS Halo-3xNLS; 133 Hz gave 4.12%.  

As expected, the number of tracking errors increase when the frame rate decreases (74 Hz vs. 133 Hz) 
since the mean displacement increases with the lag time and also as expected, the number of tracking errors is 
higher for Halo-3xNLS, which diffuses very rapidly (mean displacement at 74 Hz: 637 nm) and thus is more 
likely to cross paths with another molecule than it is for Halo-hCTCF (mean displacement at 74 Hz: 178 nm), 
which diffuses much more slowly. Thus, even at 2-3 fold higher particle density, the number of tracking errors 
for Halo-hCTCF at 133 Hz is still <2%.  

We further analyzed the 2-color spaSPT data to understand under which conditions tracking errors start 
appearing (Supplementary Fig. 4a). This analysis reveals several important points: First, the mean displacement 
for misconnections is much longer than for correct tracking connections (e.g. 134 nm vs. 766 nm for Halo-
hCTCF at 133 Hz). Second, although the mean number of localizations per frame is generally higher when there 
is a misconnection compared to when the tracking was correct, it is only slightly higher (e.g. 2.05 
localizations/frame for correct connections vs. 2.35 localizations/frame for misconnections for Halo-hCTCF at 
133 Hz; please note that this is not the average number of localizations per frame, which is significantly lower; 
but since we only count displacements, e.g. frames without localizations are not counted). Third, the probability 
of a displacement being a misconnection (tracking error) increases exponentially with the displacement length 
(until saturation). This is perhaps surprising at first glance and to understand why this would be and to facilitate 
filtering out misconnections, we will distinguish two types of tracking errors: Misconnection due to Overlapping 
Trajectories (MOT) and Misconnection due to new Appearance of Particle (MAP) (Supplementary Fig. 4b). 
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Misconnection due to Overlapping Trajectories (MOT; Supplementary Fig. 4b): MOT errors will tend 
to occur at high densities. The higher the number of particles, the more ambiguous the tracking becomes. While 
many tracking algorithms6, including the MTT-algorithm12 used here, are more sophisticated than simply 
connecting nearest neighbors (for example by taking trajectory history into account), as trajectories begin to 
overlap, there is simply no way of unambiguously connecting molecules between frames. Accordingly, we expect 
the number of MOT errors to increase with: 1) increasing density of particles; 2) longer lag times (i.e. time 
between frames; slower frame rates); 3) larger molecular diffusion coefficient (e.g. since CTCF diffuses more 

slowly than Halo-3xNLS (DFREE ~ 2.5 m2/s vs. 10-12 m2/s) trajectories are less likely to overlap for a given 
density and frame rate since the average displacement is much lower; accordingly, the fraction of misconnections 
is ~2-fold smaller for CTCF compared to Halo-3xNLS).  

Misconnection due to new Appearance of Particle (MAP; Supplementary Fig. 4b): MAP errors tend to 
occur when a new particle appears close to an existing particle. This can either be due to a particle outside of the 
focal plane moving inside the focal plane (this may occur regardless of whether photo-activation is used or not) 
or due to spontaneous photo-activation of a particle close an existing particle. If the existing particle either 
bleached or moved further away, a misconnection to the newly appeared particle is then likely. MAP errors due 
to particles out-of-focus moving into focus are density dependent, but depend on the density of out-of-focus 
particles and thus will not necessarily be captured in a simple statistic like localizations/frame, which only count 
in-focus and detected localizations. Conversely, MAP errors due to photo-activation might be expected to be 
inversely dependent on density: the probability of such a MAP error occurring increases at low densities where 
any newly photo-activated molecule will be connected to a molecule that photobleached in the previous frame 
assuming that the two were sufficiently close. It is also important to note that MAP errors due to photo-
activation should be expected to scale with the displacement squared. If we assume that photo-activation is 
equally likely to occur anywhere in the nucleus, the probability of such a MAP error to occur will depend on the 

area of the maximally allowed displacement (𝐴(𝑟) = 𝜋𝑟2). Thus, for this reason, we might initially expect the 

misconnection probability to increase with 𝑟2  instead of exponentially as observed above. However, theory 
actually predicts the misconnection probability to increase exponentially with distance. To understand why, 
consider a case of a protein (very similar to CTCF) where roughly half of the molecules are bound to chromatin 

and with DFREE ~ 2.5 m2/s. The distribution of displacements (leaving out the normalization constant) is then 
given by: 

𝑃(𝑟) = 𝐹BOUND

𝑟

2(𝐷BOUND∆𝜏 + 𝜎2)
𝑒

−
𝑟2

4(𝐷BOUND∆𝜏+𝜎2) + (1 − 𝐹BOUND)
𝑟

2(𝐷FREE∆𝜏 + 𝜎2)
𝑒

−
𝑟2

4(𝐷FREE∆𝜏+𝜎2) 

Here, 𝐹BOUND is the fraction of molecules that are bound to chromatin, 𝐷BOUND is diffusion coefficient 

of chromatin bound molecules, 𝐷FREE is diffusion coefficient of freely diffusing molecules, r is the displacement 

length, ∆𝜏 is lag time between frames and 𝜎 is localization error. If we assume that MAP errors contribute to a 
5% misconnection probability at 500 nm as seen in the raw 2-color Halo-hCTCF data at 134 Hz such that 

𝐴(𝑟 = 500 nm) = 0.05;  𝑃(𝑟 = 500 nm), then we get the results shown in Supplementary Fig.  4c. On the 
top plot, we see that at long displacements, MAP errors (red) become more likely than true displacements 
(green). If we now plot the fraction of displacements that are incorrect as a fraction of all displacements (right 
plot), we see precisely the same trend as in the experimental data: We see a steep exponential increase at lower 
displacements (up until ~100-150 nm), followed by a kink and then a slower exponential increase from around 
~150 nm to ~700 nm, where saturation begins to happen. The misconnection probability increases exponentially 

because the correct connection probability decreases exponentially and thus the exponential trend is due to 𝑃(𝑟) 

and not 𝐴(𝑟). Of course, where the transitions occur depend on the details of the parameters and this model 
involves several approximations, but it is notable that such a simple theoretical model can faithfully capture 
observed experimental trends. Most importantly, it highlights that tracking errors increase exponentially with 
displacement length.  

The above analysis revealed MOT errors to be highly density dependent and MAP errors somewhat 
density dependent. Consistently, misconnections occur at, on average, slightly higher particle densities 
(Supplementary Fig. 4a). We note that although the above 2-color experiments were performed at a 2-3-fold 
higher particle density than the 1-color experiments and thus represent a worst-case scenario, occasionally frames 
with high densities are unavoidable. Since photo-activation and photo-bleaching are both Poisson processes, we 
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would expect the distribution of localizations per frame to roughly follow a Poisson distribution. For example, if 
the mean density is 1 localization/frame, 26.4% of frames will nevertheless have 2 or more localizations. 
Likewise, even at a very low mean density of 0.5 localizations/frame, 9.0% of frames will have 2 or more 
localizations. Thus, a simple approach to minimizing MOT errors is to abort and remove all parts in frames n+1 

and beyond, if two trajectories get closer than a certain threshold distance, 𝑟threshold . To determine how to 

choose 𝑟threshold we plotted the probability of misconnections as a function of 𝑟threshold (Supplementary Fig. 
4d). A couple of points stand out: First, as expected, restricting the closest allowable distance between particles 
in the same frame reduces the number of tracking errors, i.e. the probability of a misconnection. Second, the 
strategy is effective both for Halo-CTCF (slow diffusion, overwhelmingly bound) and Halo-3xNLS (very fast 

diffusion, overwhelmingly free). E.g. setting 𝑟threshold = 2 μm , reduces the misconnection probability from 
6.77% to 4.55% for Halo-3xNLS at 74 Hz but also from 1.85% to 0.94% for Halo-CTCF at 133 Hz. Third, in all 

four cases diminishing returns are observed and eventually the curve plateaus. This happens 1.5 m for Halo-

CTCF at 133 Hz and around 2 m in the other three cases. Most likely, the plateau occurs because this approach 
can filter out MOT, but not most MAP, errors. Thus, it is likely that the plateau is largely composed of MAP 
errors.  

Importantly, filtering out data in this way also filters out some correctly tracked particles and there is 

always the risk of introducing unintended biases. Therefore, using 𝑟threshold = 2 μm seemed like the optimal 
choice and we therefore applied this to all the datasets (“ClosestDist” variable in MergeQC_SPT_data.m).  

Analyzing anisotropy at multiple spatiotemporal scales has proven very informative in distinguishing 
different mechanistic models of anomalous diffusion14. Thus, we would like to determine how far out we can 
extend the analysis in space (i.e. displacement length) for a given time (i.e. frame rate), while maintaining a 

relatively low probability of misconnections. We therefore applied the 𝑟threshold = 2 μm  to the raw 2-color 
dataset and then sampled the trajectories at different time scales. For example, considering localizations 1, 3, 5, 
7… of trajectories recorded at 74 Hz, yields a dataset at 37 Hz. Since photobleaching is quite high under our 
spaSPT conditions, re-sampling the data in this way leads to smaller datasets. At 12.2 Hz, we only had 7,805 
Halo-3xNLS trajectories and 32,563 Halo-CTCF trajectories. At this point, analyzing the as above by binning 
based on displacement length etc. causes the analysis to start to get noisy due to the limited amount of data, so 
we did not further extend the analysis to longer lag times. First, we plotted the probability of misconnections 

(after applying 𝑟threshold = 2 μm) as a function of the frame rate or lag time (Supplementary Fig.  4e). As 
observed before, Halo-CTCF had fewer tracking errors than Halo-3xNLS and the 133 Hz data had fewer 
tracking errors than the 74 Hz data (this is why the trend is slightly irregular, since the second point is composed 
exclusively of 74 Hz data, whereas the third point is composed exclusively of 133 Hz data). Nevertheless, the 
probability of misconnections did not increase with increasing lag time – if anything, it slightly decreased. Thus, 
this suggests that we can extend our analysis to substantially longer lag times than under which the data was 
originally recorded – for example, for Halo-CTCF at ~12.2Hz the probability of a tracking error is just 0.58%, 
that is, just 1 out of every 172 tracking connections was an error.  

To further understand how tracking errors occurred in the temporally subsampled datasets, we repeated 
the analysis above for both Halo-CTCF and Halo-3xNLS at two representative frame rates: 35 Hz and 12.2 Hz 
(Supplementary Fig. 4f). As can be seen, most of the conclusions derived from the analysis of the 74 Hz and 
133 Hz datasets, also apply to the temporally subsampled datasets (shown: 35 Hz and 12.2 Hz). In particular, the 
probability of a displacement being a misconnection reaches our somewhat arbitrary 5%-threshold once we 
reach displacements of ~1000 nm. Thus, this analysis suggests that we can reliably only analyze displacements up 
to about ~1000 nm, even at longer timescales if we want to make sure that we are not affected by tracking 
errors. Also, note that since the trajectories are quite short, when we temporally subsample very long lag times, 
the amount of data available decreases a lot, which is why the plots in Supplementary Fig.  4f are more noisy.  

In summary, the above analysis and Supplementary Fig. 4 show that tracking errors contribute 
minimally to our results as long as we do not consider displacements that are much longer than 800 nm.  

 

  



 36 

Supplementary Note 3 - Comparision of ADTZ to other anomalous diffusion models 

Many nuclear proteins exhibit subdiffusive behaviors4,20, where their MSD grows as a power law with 

time 𝑀𝑆𝐷𝑖(𝜏) = (𝑟𝑖(𝑡 + 𝜏) − 𝑟𝑖(𝑡))~𝜏𝛼 , with 𝛼 < 1 . By analyzing the trajectories, we found that CTCF 

exhibits anomalous diffusion with an exponent in the range 0.83 < 𝛼 < 0.92, depending on the time step 

(Supplementary Fig. 1; but note that the inferred 𝛼-value is quite sensitive to MSD-fit conditions). Observed 

anomalous diffusion has been attributed to motion in a crowded environment21 or diffusion in a hypothetical 

fractal domain of the nucleus22. This motion is often phenomenologically modeled as a continuous time random 

walk (CTRW), where a particle is trapped for a time drawn from a long-tailed power-law distribution23. To 

examine the consequences of the ADTZ model on the dynamics of a protein, we computed the MSD of our 

simulation. We find that the protein appears to perform subdiffusive motion with an anomalous exponent of 

about 𝛼~0.92 (Supplementary Fig. 7; value is sensitive to conditions) due to the rapid reattachment at the 

release site. The value of 𝛼 is not universal and depends on model parameters. Interestingly, higher reattachment 

probability leads to a slightly lower anomalous exponent (Supplementary Fig. 7a,b). Thus, the ADTZ model 

can mechanistically explain the phenomenology of subdiffusive protein motion in the nucleus without invoking 

power-law dissociation times as is assumed in CTRW23. Importantly, CTRW would not, on its own, result in 

anisotropic motion24, unless confined20.  

Motion anisotropy is also expected for a particle performing Fractional Langevin motion (fLm)25, which 

results from the viscoelastic properties of the medium in which it moves. In fLm, anisotropy or antipersistence is 

identified as a negative value of the velocity autocorrelation function, suggesting that consecutive steps are 

anticorrelated. To examine whether fLm could explain the observed anisotropy of CTCF, we calculated the 

normalized velocity autocorrelation function 
 ( ) / (0)v

t t

vC C C    for different time steps against both time and 

scaled time (Supplementary Fig. 8). C  has a negative peak and relaxes fast to zero, corresponding to the 

antipersistent/anisotropic behavior of CTCF. Interestingly, C is not invariant with the time-step as is the case for 

fLm9 as the time-scaled autocorrelation function do not collapse – the value of the negative peak depends on the 

time step (Supplementary Fig. 8b). This behavior is different from what would be expected for  fLm10. For a 

particle performing CTRW in a confined domain, the velocity autocorrelation function is expected to show a 

single negative peak 10. Hence, analysis of C suggests that neither fLm nor CTRW can account for CTCF 

dynamics. 

To understand if the behavior of the autocorrelation function can be recapitulated by the ADTZ model, 

we computed the velocity autocorrelation function for the simulated trajectories. Interestingly, our model shows 

the same asymptotic relaxation to zero of C  as the experimental data (Supplementary Fig. 12). Moreover, as in 

the experimental data, C  is not invariant with different time-steps. The reason our model does not show a single 

negative value in C  as would be expected for confined CTRW or time-step invariance of C  as expected for 

fLm10 is twofold: 1) The PTZs have a wide distribution of sizes. Since the time to explore each zone is different, 

we would expect to see negative values corresponding to all length scales of the zones. 2) The reattachment 

process appears as an antipersistent motion. The larger the time step is, the farther the protein can diffuse in a 

single time step, and the smaller is the probability of reattachment26. The distance traveled before reattachment 

has a power-law scaling and depend on the properties of the polymer 26. 

Finally, we computed the probability distribution function (pdf)1 of displacements for both the 

experimental data and simulated trajectories (Supplementary Fig. 13). Interestingly, we find the pdf to be non-

Gaussian both for the experimental data and in our model. However, the experimental distribution is closer to a 

Gaussian than the model (see Supplementary Table 3). We find that the displacement pdf of mESC ZF-

Halo-mCTCF (OE) is more Gaussian than that of mESC C59 wt-Halo-mCTCF (Supplementary Table 3). This 

suggests that the origin of the non-Gaussian behavior is the interaction with DNA and RNA. Our model’s 
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displacement pdf is more similar to the Laplace distribution. The non-Gaussian nature of the model pdf is likely 

the result of having different diffusivities in the model (the diffusion coefficient of CTCF is smaller in the 

zones). Our simulation of ZF-CTCF yield a more Gaussian displacement pdf consistent with the experimental 

data.  

CTRW is not expected to result in anisotropic motion, while in fLm, anisotropy is the result of the long 

memory effect of the diffusing particle interacting with the viscoelastic environment in which it moves. Because 

we show here that the anisotropy results from the interaction (direct or indirect) with RNA and DNA, fLm can 

be ruled out as the main mechanism leading to anisotropy. Additionally, since chromatin moves much slower 

than a typical nuclear protein, a chromatin-bound CTCF molecule will appear immobile on a time scale of 

several milliseconds and will not contribute to the anisotropic motion on the scale of several hundred 

nanometers. We suggest that the primary contribution to wt-CTCF anisotropic dynamics is its interactions within 

RBRi-mediated TTZs. Within a zone, CTCF is allowed to move and participate in transient interactions, which 

effectively reduce its in-zone diffusion coefficient. The ADTZ model can mechanistically explain sub-diffusion 

as coming from the retention and reattachment mechanisms (Fig. 2). While inside the zone, CTCF is reflected 

from its boundary with a certain probability (retention), resulting in a characteristic residence time within the zone. 

Once CTCF escapes one zone, it is very likely to rebind to the same zone because of its proximity (reattachment), 

which results in anisotropic behavior. Thus, the ADTZ model suggests that CTCF anisotropy results from the 

non-uniform distribution of zones inside the nucleus. Mechanistically, our results suggest that the transient 

trapping zones (TTZs) likely correspond to clusters of CTCF and that the trapping is mediated by CTCF’s RBR i-

domain – this model is corroborated by our direct observation of anisotropic diffusion near CTCF clusters for 

wt-CTCF, but not for RBRi-CTCF (Fig. 4). 
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