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This document provides supporting information for “Integrative Factorization

of Bidimensionally Linked Matrices”. Appendix A gives the details of the ISSVT

algorithm, Appendix B gives proofs for novel results in the main document, Ap-

pendix C gives additional simulation results for the vertical integration context

when data are generated without noise, Appendix D provides residual diagnos-

tics for the TCGA data analysis. Appendix E provides additional plots showing

subtype distinctions under alternative methods for the TCGA analysis.

A Proposed Algorithm (ISSVT)

The ISSVT algorithm, proceeds as follows proceeds as follows:

1. Initialize Θ̂ = {Ĝ00, R̂i0, Ĉ0j, Îij | i = 1, . . . , p, j = 1, . . . , q}.

2. For i = 1, . . . , p and j = 1, . . . , q, apply Proposition 1 to obtain a closed form

solution of the following:
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(a) Ĝ
(new)
00 = arg min

G00:r(G00)≤r00

1

2
||X00 − R̂00 − Ĉ00 − Î00 −G00||2F + λ00||G00||∗

(b) R̂
(new)
i0 = arg min

Ri0:r(Ri0)≤ri0

1

2
||Xi0 − Ĝ

(new)
i0 − Ĉi0 − Îi0 −Ri0||2F + λi0||Ri0||∗

(c) Ĉ
(new)
0j = arg min

C0j :r(C0j)≤r0j

1

2
||X0j−Ĝ

(new)
0j −R̂

(new)
0j − Î0j−C0j||2F +λ0j||C0j||∗

(d) Î
(new)
ij = arg min

Iij :r(Iij)≤rij

1

2
||Xij − Ĝ

(new)
ij − R̂

(new)
ij − Ĉ

(new)
ij − Iij||2F + λij||Iij||∗

3. The algorithm converges if f2(Θ̂)− f2(Θ̂
(new)

) < ε. If it does not converge,

replace Θ̂
(new)

with Θ̂ and repeat Step 2.

The algorithm iteratively minimizes the objective f2 (6) over blocks G00, {Ri0 |

i = 1, . . . , p}, {C0j | j = 1, . . . , q}, and {Iij | i = 1, . . . , p, j = 1, . . . , q}. By

Proposition 1, this is equivalent to a blockwise coordinate descent algorithm for

f1 (4), with corresponding update blocks {U(G)
i0 ,V

(G)
0j | i = 1, . . . , p, j = 1, . . . , q},

{U(C)
ij ,V

(C)
0j | i = 1, . . . , p, j = 1, . . . , q}, {U(R)

i0 ,V
(R)
ij | i = 1, . . . , p, j = 1, . . . , q},

{U(R)
ij ,V

(I)
ij | i = 1, . . . , p, j = 1, . . . , q}.

B Proofs

Theorem 1. Let

Θ̂1 = {Û(G)
i0 V̂

(G)T
0j , Û

(R)
i0 V̂

(R)T
ij , Û

(C)
ij V̂

(C)T
0j , Û

(I)
ij V̂

(I)T
ij | i = 1 . . . p, j = 1, . . . q}

minimize (4). Then,

Θ̂2 = {Ĝij, R̂ij, Ĉij, Îij | i = 1 . . . p, j = 1, . . . q}

2



minimizes (6), where Ĝij = Û
(G)
i0 V̂

(G)T
0j , R̂ij = Û

(R)
i0 V̂

(R)T
ij , Ĉij = Û

(C)
ij V̂

(C)T
0j , and

Îij = Û
(I)
ij V̂

(I)T
ij .

Proof. Because Θ̂1 minimizes f1,

||Û(I)
ij ||2F + ||V̂(I)

ij ||2F = min
UVT=Îij

U:m1×min(m1,n1)
V:n1×min(m1,n1)

(||U||2F + ||V||2F ).

It follows from Lemma 1 that

||Û(I)
ij ||2F + ||V̂(I)

ij ||2F = 2||̂Iij||∗ for all i > 0, j > 0.

Analogous arguments show that

||Û(R)
i0 ||2F + ||V̂(R)

i0 ||2F = 2||R̂i0||∗ for all i > 0

||Û(C)
0j ||2F + ||V̂(C)

0j ||2F = 2||Ĉ0j||∗ for all j > 0, and

||Û(G)
00 ||2F + ||V̂(G)

00 ||2F = 2||Ĝ00||∗.

Thus, f1(Θ̂1) = 2f2(Θ̂2).

Consider an alternative estimate Θ̃2 = {G̃ij, R̃ij, C̃ij, Ĩij | i = 1 . . . p, j =

1, . . . q}. By Lemma 1, 2f2(Θ̃2) = f1(Θ̃1) for some

Θ̃1 = {Ũ(G)
i0 Ṽ

(G)T
0j , Ũ

(R)
i0 Ṽ

(R)T
ij , Ũ

(C)
ij Ṽ

(C)T
0j , Ũ

(I)
ij Ṽ

(I)T
ij | i = 1 . . . p, j = 1, . . . q}

where G̃ij = Ũ
(G)
i0 Ṽ

(G)T
0j , R̃ij = Ũ

(R)
i0 Ṽ

(R)T
ij , C̃ij = Ũ

(C)
ij Ṽ

(C)T
0j , and Ĩij = Ũ

(I)
ij Ṽ

(I)T
ij .
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Thus, because Θ̂1 minimizes f1,

2f2(Θ̃2) = f1(Θ̃1) ≥ f1(Θ̂1) = 2f2(Θ̂2),

and we conclude that Θ̂2 minimizes f2.

Theorem 2. The objective f2(·) in (6) is convex over its domain.

Proof. Consider Θ̃
(m)

= {G(m)
ij ,R

(m)
ij ,C

(m)
ij , I

(m)
ij | i = 1, . . . , p, j = 1, . . . q} for

m = 1, 2 and α ∈ [0, 1]. It suffices to show

f2

(
αΘ̃

(1)
+ (1− α)Θ̃

(2)
)
≤ αf2(Θ̃

(1)
) + (1− α)f2(Θ̃

(2)
), (11)

where αΘ̃
(1)

+ (1− α)Θ̃
(2)

is given by

{αG
(1)
ij + (1− α)G

(2)
ij , αR

(1)
ij + (1− α)R

(2)
ij , αC

(1)
ij + (1− α)C

(2)
ij , αI

(1)
ij + (1− α)I

(2)
ij

| i = 1, . . . , p, j = 1, . . . q}.

Decompose f2(Θ) = fLS
2 (Θ) + fPEN

2 (Θ), where

fLS
2 (Θ) =

1

2

p∑
i=1

q∑
j=1

||Xij −Gij −Rij −Cij − Iij||2F , and

fPEN
2 (Θ) = λ00||G00||∗ +

p∑
i=1

λi0||Ri0||∗ +

q∑
j=1

λ0j||C0j||∗ +

p∑
i=1

q∑
j=1

λij||Iij||∗.
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By convexity of the least squares objective

||Xij − (αA
(1)
ij + (1− α)A

(2)
ij )||2F ≤ α||Xij −A

(1)
ij ||2F + (1− α)||Xij −A

(2)
ij ||2F

(12)

for any A
(1)
ij and A

(2)
ij . Applying (12) for each (i, j), where A

(m)
ij = G

(m)
ij + R

(m)
ij +

C
(m)
ij + I

(m)
ij for m = 1, 2, gives

fLS
2

(
αΘ̃

(1)
+ (1− α)Θ̃

(2)
)
≤ αfLS

2 (Θ̃
(1)

) + (1− α)fLS
2 (Θ̃

(2)
). (13)

By convexity of the nuclear norm operator,

||αA(1) + (1− α)A(2)||∗ ≤ α||A(1)||∗ + (1− α)||A(2)||∗ (14)

for any A(1) and A(2). Applying (14) to each additive term in fPEN
2 gives

fPEN
2

(
αΘ̃

(1)
+ (1− α)Θ̃

(2)
)
≤ αfPEN

2 (Θ̃
(1)

) + (1− α)fPEN
2 (Θ̃

(2)
). (15)

Thus, (13) and (15) imply (11).

Proposition 3. The following conditions are necessary to allow for non-zero Ĝ00,

R̂i0, Ĉ0j, and Îij:

1. maxjλij < λi0 <
∑

j λij for i = 1, . . . , p and maxiλij < λ0j <
∑

i λij for

j = 1, . . . , q

2. maxiλi0 < λ00 <
∑

i λi0 and maxjλ0j < λ00 <
∑

j λ0j.

Proof. Consider a violation of the left-hand inequality in condition 1.: λij ≥ λi0.
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Define Θ̂ to be identical to Θ̃ but with Îij = 0 and R̂ij = R̃ij + Ĩij. By convexity

of the nuclear norm, ||R̂i0||∗ ≤ ||R̃i0||∗ + ||̃Iij||∗, and it follows that

f2(Θ̃)− f2(Θ̂) = λi0||R̃i0||∗ + λij||̃Iij||∗ − λi0||R̂i0||∗

≥ λi0||R̃i0||∗ + λij||̃Iij||∗ − λi0(||R̃i0||∗ + ||̃Iij||∗)

≥ λi0||R̃i0||∗ + λij||̃Iij||∗ − λi0||R̃i0||∗ − λij||̃Iij||∗

= 0.

Thus, regardless of the data X00, the objective f2(Θ) is minimized with Îij =

0mi×nj
. An analogous argument show that a violation of λij < λ0j implies Îij =

0mi×nj
for some i, j. Moreover, analogous arguments show that a violation of

maxi λi0 < λ00 implies R̂i0 = 0mi×n0 for some i, and that a violation of maxj λ0j <

λ00 implies Ĉ0j = 0m0×nj
for some j.

Now, consider a violation of the right-hand inequality of condition 1.: λi0 ≥∑
j λij. Define Θ̂ to be identical to Θ̃ but with R̂i0 = 0mi×n0 and Îij = R̃ij + Ĩij

for j = 1, . . . , q. Then,

f2(Θ̃)− f2(Θ̂) = λi0||R̃i0||∗ +
∑
j

λij||̃Iij||∗ −
∑
j

λij||̂Iij||∗

≥ λi0||R̃i0||∗ +
∑
j

λij||̃Iij||∗ −
∑
j

λij(||̃Iij||∗ + ||R̃ij||∗)

= λi0||R̃i0||∗ −
∑
j

λij||R̃ij||∗

≥ λi0||R̃i0||∗ −
∑
j

λij||R̃i0||∗

≥ 0.
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Thus, regardless of the data X00, the objective f2(Θ) is minimized with R̂i0 =

0mi×n0 . An analogous argument show that a violation of
∑

0j <
∑

i λij implies

Ĉ0j = 0m0×nj
for some j. Moreover, analogous arguments show that a violation

of λ00 <
∑

i λi0 or λ00 <
∑

j λ0j imply Ĝ00 = 0m0×n0 . �

C Noiseless simulation

Here we generate joint and individual signals under the UNIFAC (vertically linked)

model, and assess their recovery without residual error. We contrast the decompo-

sition provided by the penalized objective f2(·), with that obtained by alternative

methods that enforce orthogonality of the estimated components.

We generate X1 : d1×n and X2 : d2×n as a sum of low-rank column-shared and

individual structures that are independent but not necessarily orthogonal. That

is,

X1 = C1 + I1

X2 = C2 + I2

where

Ci = U
(C)
i VT and Ii = U

(I)
i VT

i for i = 1, 2,

and the entries of U
(C)
1 : d1 × r,U

(C)
2 : d1 × r,V : n × r,U

(I)
1 : d1 × r1,V1 :

n × r2,U
(I)
2 : d2 × r2,V2 : n × r2 are generated independently from a N (0, 1)

distribution.

We fix r = r1 = r2 = 10 and generate 10 datasets under each of four scenarios

with different row and column dimensions: (1) d1 = d2 = n = 100, (2) d1 = d2 =
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100, n = 500, (3) d1 = d2 = 500, n = 100, (4) d1 = d2 = n = 500. For each

generated dataset we apply (i) UNIFAC, (ii) JIVE, (iii) AJIVE, and (iv) SLIDE,

where the correctly specified ranks are used for methods (ii–iv). For UNIFAC, the

noise variance is set to a small value (σ = 0.0001) and the default penalties are

used. In each case we compute the mean relative error in recovering underlying

joint and individual structures:

PredErr(Ĉ, Î) =
1

4

(
||C1 − Ĉ1||2F
||C1||2F

+
||I1 − Î1||2F
||I1||2F

+
||C2 − Ĉ2||2F
||C2||2F

+
||I2 − Î2||2F
||I2||2F

)
.

(16)

The results are summarized in Table 1. All methods decompose the underlying

joint and individual signals with negligible error as the dimension of the sample

size (n) and dimensions (d = d2 = d2) increase. UNIFAC recovers the joint and

individual signals with comparable or substantially improved accuracy across the

four scenarios, despite the use of the correct ranks for the other three methods.

The error in recovery for methods (ii-iv) is due to the orthogonality constraints,

which are necessary for identifiability of the decomposition without additional

penalization. The independent joint and individual structures are not exactly

orthogonal, but will approach orthogonality as n → ∞, and thus performance

improves for n = 500 vs n = 100. JIVE and AJIVE both assume orthogonality of

the rows of the joint and individual structure, C and I; thus, their performance

is comparable across scenarios and differences are solely due to imprecision of the

computational algorithm for JIVE. SLIDE additionally assumes orthogonality of

the individual structures I1 and I2, which results in slightly less accurate recovery

for lower n. Even under independence the underlying joint and individual signals

8



are not precisely orthogonal. The performance of UNIFAC for higher dimension

d demonstrates the potential to recover the true joint and individual signals more

accurately by relaxing orthogonality constraints.

Table 1: Mean relative recovery error for joint and individual signals, with standard
error in parentheses, across different scenarios.

d = 100, n = 100 d = 500, n = 100 d = 100, n = 500 d = 500, n = 500
UNIFAC 0.058 (0.002) 0.033 (0.001) 0.027 (0.001) 0.010 (0.001)
JIVE 0.106 (0.003) 0.110 (0.003) 0.023 (0.001) 0.022 (0.001)
AJIVE 0.096 (0.003) 0.100 (0.003) 0.021 (0.001) 0.021 (0.001)
SLIDE 0.132 (0.005) 0.130 (0.004) 0.026 (0.001) 0.024 (0.001)

We also compare the recovery of joint and individual signals as their ranks

increase relative to the data dimensions. We consider the scenario with d1 = d2 =

500, n = 100, and generate 10 datasets for each of r1 = r2 = r = {1, 2, . . . , 50}.

For each dataset we estimate the decomposition via UNIFAC, AJIVE, or SLIDE;

AJIVE is used instead of JIVE because in the noiseless scenario with given ranks

they give the same underlying decomposition and AJIVE is more computationally

efficient. The resulting mean relative errors (16) are shown in Figure 1. For

ranks greater than r = r1 = r2 = 33, the sum of the ranks of column-shared

and individual structures (r + r1 + r2) is greater than the rank of the observed

signal: rank([XT
1 ,X

T
2 ]) ≤ 100. Thus, for these cases a SLIDE decomposition with

the given ranks does not exist because the condition of orthogonality between Ĵ ,

Î1 and Î2 cannot be satisfied. The recovery errors for the AJIVE decomposition

also increase sharply at this point, while the trend remains stable for UNIFAC. In

general, UNIFAC provides better recovery of the generated joint and individual

signal as the ranks increase. However, the recovery error does increase steadily

as the ranks get larger. Moreover, if the sum of the ranks is greater than the

9



rank of the overall signal, this implies linear dependence among the underlying

components (here, linear dependence among V, V1, and V2), which complicates

their interpretation.

Figure 1: Mean relative recovery with data generated and estimated under the
given ranks

D Data Analysis: Residual Diagnostics

Here we consider the distribution of residuals after the application of BIDIFAC

for the TCGA application described in Section 4 of the main manuscript. That is,

10



we consider the residual matrices

Êij = X̂ij − Ĝij − Ĉij − R̂ij − Îij.

BIDIFAC is best motivated when the error terms Eij are approximately Gaussian,

as the objective identifies the mode of a Bayesian model with a Gaussian likelihood

(Section 2.7) and the selection of the tuning parameters is based on the assumption

of Gaussian error (Section 2.6). Figure 2 shows the distribution of residuals for

each of the four datasets considered (tumor mRNA, tumor miRNA, normal mRNA,

normal miRNA) overlayed with two Gaussian densities: one giving the theoretical

distribution of residuals implied by the pre-hoc estimate of the noise variance for

each dataset (σ̂MAD
ij ), and another giving the empirical Gaussian fit resulting from

the sample mean and standard deviation of the observed residuals. None of the

residual histograms show strong departures from Gaussianity, and the variance

estimate used to tune the model (σ̂MAD
ij ) fits the observed residuals reasonably

well in each case.

E Data Analysis: Scatterplots for competing meth-

ods

Here we show scatterplots of the shared gene-miRNA structure for the vertical

integration approaches UNIFAC and JIVE, analogous to that in Figure 2 of the

main manuscript. These plots also show prominent subtype distinctions, similar

to that for BIDIFAC. However, the BIDIFAC analysis further demonstrates that

these distinctions are primarily due to tumor-specific variability.
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Figure 2: Distribution of residuals for the TCGA application. The Gaussian
density given by the noise variance estimate σ̂MAD

ij is shown in red, the density
given by the emperical mean and standard deviation is shown in blue.
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Figure 3: Scatterplots of top three principal components of the estimated column-
shared structures: UNIFAC (top) and JIVE (bottom).
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