

Supplementary Materials

Structural diversity of sense and antisense RNA hexanucleotide repeats associated with ALS and FTLD

Tim Božič¹, Matja Zalar¹, Boris Rogelj^{2,3}, Janez Plavec^{1,4,5,*} and Primož Šket^{1,*}

- ¹ Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
- ² Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
- ³ Biomedical Research Institute BRIS, Puhova 10, SI-1000 Ljubljana, Slovenia.
- ⁴ EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia.
- ⁵ Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
- * Correspondence and requests for materials should be addressed to P. Šket (email: <u>primoz.sket@ki.si</u>) and J. Plavec (email: <u>janez.plavec@ki.si</u>)

Figure S1.	Canonical and non-canonical base pairs.		
Figure S2.	Cytosine H5/H6 correlation region of 2D TOCSY NMR spectrum of r(G2C4)4.		
Figure S3.	1 H NMR spectra of r(G ₂ C ₄) ₄ in 10% 2 H ₂ O recorded at 5, 25 and 37 $^{\circ}$ C.	S3	
Figure S4.	ure S4. UV melting experiment of homodimer adopted by $r(G_2C_4)_4$.		
Figure S5.	gure S5. Imino region of 1 H NMR spectra of r(G ₂ C ₄) ₄ in 10% 2 H ₂ O at different pH.		
Table S1.	ble S1. Translational diffusion coefficients (Dt) of r(G ₂ C ₄) ₄ at different pH values.		
Figure S6.	Imino region of ¹ H NMR spectra of r(G ₂ C ₄) ₄ in 10% ² H ₂ O at different pH		
	and in the presence of 10% w/v PEG.	S6	
Figure S7.	CD spectra of $r(G_2C_4)_4$ with pH ranging from 4.5 to 7.0.	S6	
Figure S8.	20% native PAGE of $r(G_2C_4)_4$ at pH 6.0 and 5 °C.	S7	
Figure S9.	Imino-imino spectral region of 2D NOESY spectrum of r(G ₂ C ₄) ₄ .	S7	
Figure S10.	Imino regions of ¹ H NMR spectra of $r(G_2C_4)_4$ in 10% ² H ₂ O at 5, 25 and 40 °C.	S 8	
Figure S11.	UV melting experiment of hairpin adopted by $r(G_2C_4)_4$.	S9	
Figure S12.	¹ H NMR spectra of r(G ₄ C ₂) ₄ in 10% ² H ₂ O at 0, 7, 15, 20, 25 and 37 °C.	S10	
Figure S13.	Imino regions of ¹ H NMR spectra of $r(G_4C_2)_4$ in 10% ² H ₂ O at 0 and 25 °C.	S10	
Figure S14.	Imino and aromatic region of ¹ H NMR spectra of $r(G_4C_2)_4$ in 10% ² H ₂ O at		
	different pH.	S11	
Figure S15.	Imino regions of ¹ H NMR spectra of $r(G_4C_2)_4$ in 10% ² H ₂ O at concentration		
	of 0.05, 0.1, 0.2, 0.3, and 1.1 mM per strand.	S12	
Figure S16.	20% native PAGE of $r(G_4C_2)_4$ at pH 6.0 and 5 °C.	S12	
Figure S17.	CD spectra of equimolar mixture of $r(G_2C_4)_4$ and $r(G_4C_2)_4$ before (black)		
	and after (red) annealing.	S13	
Figure S18.	¹ H NMR spectra of equimolar mixture of $r(G_2C_4)_4$ and $r(G_2C_4)_4$		
	before and after annealing.	S13	
Figure S19.	20% native PAGE of r(G ₄ C ₂) ₄ , r(G ₂ C ₄) ₄ and r(G ₄ C ₂) ₄ + r(G ₂ C ₄) ₄ at pH 6.0 and 5 °C.	S13	

Figure S1. Canonical and non-canonical base pairs. Schematic presentation of **a**) Watson-Crick G-C base pair, **b**) hemi-protonated C⁺-C base pair and **c**) G-G base pair in N1-carbonyl symmetric geometry.

Figure S2. Cytosine H5/H6 correlation region of 2D TOCSY NMR spectrum of $r(G_2C_4)_4$. Spectrum was recorded at pH 7.0 and 25 °C at mixing time of 80 ms and concentration of 0.9 mM per strand.

Figure S3. ¹H NMR spectra of r(G₂C₄)₄ in 10% ²H₂O recorded at 5, 25 and 37 °C. At 25 °C the pH was 7.0. All NMR spectra were acquired at concentration of 0.9 mM per strand.

Figure S4. UV melting experiment of homodimer adopted by $r(G_2C_4)_4$. The absorbance at 260 nm was measured during one cycle of heating (black) and cooling (red) the sample in the temperature range between 20 and 90 °C. Temperature of half transition for homodimer adopted by $r(G_2C_4)_4$ was determined for all four oligonucleotide concentrations from melting curve obtained during heating. All samples were prepared in 20 mM Li⁺ cacodylate buffer with pH 7.0. Concentrations of $r(G_2C_4)_4$ were **a**) 2.6, **b**) 3.0, **c**) 7.7, **d**) 9.3 and **e**) 20 μ M per strand.

Figure S5. Imino region of ¹H NMR spectra of $r(G_2C_4)_4$ in 10% ²H₂O at different pH. All NMR spectra were acquired at 25 °C and 0.3 mM oligonucleotide concentration per strand. Signal corresponding to hemi-protonated C⁺-C base pairs is marked with an arrow.

Table 1. Translational diffusion coefficients (Dt) of $r(G_2C_4)_4$ at different pH values. All 2D DOSY spectra were acquired at 25 °C and concentration of 0.3 mM per strand. Standard deviation of the data set was ± 0.05 .

рН	Dt [* 10^(-10) m ² s ⁻¹]
7.0	0.91
6.5	0.94
6.0	1.25
5.5	1.30
5.0	1.35
4.5	1.40

Figure S6. Imino region of ¹H NMR spectra of $r(G_2C_4)_4$ in 10% ²H₂O at different pH and in the presence of 10% *w*/*v* PEG. All NMR spectra were acquired at 25 °C and concentration of 0.3 mM per strand. The vertical scales of the spectra with pH ranging from 5.5 to 4.5 have been increased six-fold (6×).

Figure S7. CD spectra of $r(G_2C_4)_4$ with pH ranging from 4.5 to 7.0. Arrows represent the direction of change in pH. All CD spectra were acquired at 25 °C and concentration of 100 μ M per strand.

Figure S8. 20% native PAGE of r(G₂C₄)₄ at pH 6.0 and 5 °C. Concentration of r(G₂C₄)₄ was 0.3 mM per strand. DNA ladder was used as a standard.

Figure S9. Imino-imino spectral region of 2D NOESY spectrum of $r(G_2C_4)_4$. Spectrum was recorded at pH 4.5 and 5 °C at mixing time of 100 ms and concentration of 0.7 mM per strand. Above 2D NOESY spectrum is 1D ¹H NMR spectrum of $r(G_2C_4)_4$ recorded at pH 4.5, 5 °C and oligonucleotide concentration of 0.7 mM per strand. NOE contact (marked with red circle) confirms the presence of hemi-protonated C⁺-C base pairs within the hairpin.

Figure S10. Imino regions of ¹H NMR spectra of $r(G_2C_4)_4$ in 10% ²H₂O at 5, 25 and 40 °C. All NMR spectra were acquired at concentration of 0.3 mM per strand. The pH was 4.5 at 25 °C. Numbers under signals represent integral values. The vertical scales of the spectral regions between δ 15.6 to 16.8 ppm have been increased six-fold (6×).

Figure S11. UV melting experiment of hairpin adopted by $r(G_2C_4)_4$. The absorbance at 260 nm was measured during one cycle of heating (black) and cooling (red) the sample in the temperature range between 20 and 90 °C. All samples were prepared in 20 mM Li⁺ cacodylate buffer with pH 5.0. Concentrations of $r(G_2C_4)_4$ were **a**) 2.6, **b**) 3.0, **c**) 7.7, **d**) 9.3 and **e**) 20 μ M per strand.

Figure S12. ¹H NMR spectra of $r(G_4C_2)_4$ in 10% ²H₂O at 0, 7, 15, 20, 25 and 37 °C. All NMR spectra were acquired at concentration of 0.3 mM per strand. The pH was 6.0 at 25 °C.

Figure S13. Imino regions of ¹H NMR spectra of $r(G_4C_2)_4$ in 10% ²H₂O at 0 and 25 °C. Both NMR spectra were acquired at pH 6.0 and concentration of 0.3 mM per strand. Numbers under signals represent integral values.

Figure S14. Imino and aromatic region of ¹H NMR spectra of $r(G_4C_2)_4$ in 10% ²H₂O at different pH. Arrows represent the direction of change in pH. All NMR spectra were acquired on 800 MHz spectrometer at 25 °C and concentration of 0.3 mM per strand.

Figure S15. Imino regions of ¹H NMR spectra of r(G₄C₂)₄ in 10% ²H₂O at concentration of 0.05, 0.1, 0.2, 0.3, and 1.1 mM per strand. All NMR spectra were acquired at pH 6.0 and 25 °C. Numbers under signals represent integral values.

standard [bp]	r(G₄C₂)₄ 0.3 mM	r(G₄C₂)₄ 0.2 mM	r(G₄C₂)₄ 0.1 mM
50	* .		
35			
25			-
20			
		1	
15			

Figure S16. 20% native PAGE of $r(G_4C_2)_4$ at pH 6.0 and 5 °C. Concentration of $r(G_4C_2)_4$ was 0.3, 0.2 and 0.1 mM per strand. DNA ladder was used as a standard.

Figure S17. CD spectra of equimolar mixture of $r(G_2C_4)_4$ and $r(G_4C_2)_4$ before (black) and after (red) annealing. Both CD spectra were acquired at pH 6.0, 25 °C and concentration of 100 μ M per sense and antisense strand.

Figure S18. ¹H NMR spectra of equimolar mixture of $r(G_2C_4)_4$ and $r(G_2C_4)_4$ before and after annealing. Δ represents NMR spectrum after annealing. Both NMR spectra were acquired at 25 °C, pH 6.0 and concentration of 0.2 mM per sense and antisense strand.

Figure S19. 20% native PAGE of $r(G_4C_2)_4$, $r(G_2C_4)_4$ and $r(G_4C_2)_4 + r(G_2C_4)_4$ at pH 6.0 and 5 °C. In all samples concentration of $r(G_4C_2)_4$ and $r(G_2C_4)_4$ was 0.1 mM per strand. DNA ladder was used as a standard.