Table S1. Anticancer effects of cannabinoids with relative references

Cannabinoid Efforts Reform			
Califiadifiold	ces	Effects Referen	Cannabinoid

	Lung cancer:	
	Inhibition of lung cancer cells spreading	• Winkler et al. [17]
	Gastrointestinal cancer:	
	• Reduction of cell volume and density; induction of G0/G1 cell cycle arrest and apoptosis (Gastric)	• Ortega et al. [42]
	• Reduction of tumor growth <i>in vivo</i> ; downregulation of angiogenic factors VEGF-C, VEGF-R2, and	• DeMorrow et al. [43]
	VEGF–R3 in vivo (Cholangiocarcinoma)	
Anandamide	• Tumor suppressive effect via GPR55 depending on JNK activation in vitro and in	• DeMorrow et al. [43]
(<mark>AEA</mark>)	vivo(Cholangiocarcinoma)	Huang et al. [44]
	Breast cancer:	
	 Modulation cAMP/protein kinase A and MAPK pathway 	• Kiskovà et al. [74]
	• Inhibition cell cycle progression G1/S transition	
	Prostate cancer:	
	• Decrease the proliferative action of EGF and cycle cellular arrest in the G1 phase	• Mimeault et al. [86]
	Increase apoptosis and necrosis	• Sarfaraz et al. [85]
R(+)-methanandamide	Gastrointestinal cancers:	
(<mark>Met-AEA o AM-356</mark>)	G0/G1 cell cycle arrest and necrosis induction (Gastric)	• Ortega et al. [42]
	Lung cancer:	
	• In combination with the FAAH inhibitor URB597 caused G0/G1 cell cycle arrest mediated apoptosis	• Ravi et al. [66]
	• Reduced metastasis inhibiting migratory structures formation as well as MMPs secretion	• Ravi ey al. [71]
	Gastrointestinal cancers:	
2 mothul 2' F	• Increase of AEA availability; decrease of proliferation rate due to CB1 up-regulation through the	• Proto et al.[45]
2-methyr-2 -r-	transcriptional activation of CNR1 promoter(Colorectal)	
$(M_{ot} \in A \in A)$	Breast cancer:	
(WIEt-T-ALA)	Antipoliferative activity	• Laezza et al.,[79]
	• Inhibition of the EMT	• Laezza et al., [80]
		• Grimaldi et al [81]
	Thyroid cancer:	
	• Increase apoptosis via activation of p53 signalling and expression of p21	• Cozzolino et al. [105]
	Lung cancer:	
	Inhibition of angiogenic and lymphangiogenic factors release	• Staiano et al. [63]
arachidonyl-2-	Breast cancer:	
chloroethylamide	• Decrease the invasive potential of breast cancer stem cells	• Elbaz et al. [76]
(<mark>ACEA</mark>)		
	Pancreatic cancer:	
	• Induction of ROS-mediated autophagy via activation of AMPK and inhibition of energetic metabolism	• Dando et al. [100]

	• Inhibition of glycolysis via decreasing of the glycolytic enzymes, GAPDH and PKM2	• Donadelli et al.[101]
	Increase of the anticancer potential in combination with gemcitabine	
	Brain Cancer :	
	• THC reduce tumor grothw in orthotopic and subcutaneous animal models of glioma	• Rocha et al. [111]
	Increase in formation of ROS linked with apoptosis	• Marcu et al. [113]
	THC and /or CBD induce a cell cycle arrest	• Marcu et al., [113]
	• THC could reduce pro-angiogenic VEGF levels in two patients with recurrent GBM	• Blàzquez et al. [117]
	THC was able to down regulate TIMP-1 and MMP-2	• Blàzquez et al., [123]
	clinical trial NCT01812603 of THC:CBD in combination with dose-intense TMZ	• Schultz and Beyer,
Δ9-	Lung cancer:	[128,129],
tetrahydrocannabinol	• Inhibition of tumor growth <i>in vivo</i> and <i>in vitro</i>	• Munson et al., [65]
(<mark>THC ο Δ9-THC</mark>)	• Reduction of signalling molecules(FAK, ERK1/2 and AKT) involved in survival and ECM remodelling	• Preet et al., [67]
	Gastrointestinal cancers:	
	 Induction of apotosis and downregulation of PI3K/Akt pathway (Colorectal) 	• Greenhough et al. [52]
	• Inhibition of tumor growth <i>in vitro</i> and <i>in vivo</i> associated to increased ceramide, ER-stress, PPAR-y	• Vara et al. [53]
	activity and autophagy (Hepatocellular)	
	Pancreatic cancer:	
	• Induction of apoptosis via stimulation of the <i>de novo</i> ceramide synthesis and consequent up-regulation	• Carracedo et al. [99]
	of ER stress-related genes <i>p8</i> , <i>atf-4</i> and <i>trb3</i> .	
	Brain cancer:	
	CBDreduce tumor grothw in orthotopic and xenograft animal models of Glioma	• Rocha et al. [111]
	• Increase of ROS and upregulation of heat-shock protein (HSP) super family	• Scott et al. [114]
	• Induce endothelial cell cytostasis, , inhibited endothelial cell migration and angiogenesis in vivo	• Solinas et al. [118]
	• Anti-invasive effect in GBM cell lines with inhibition of Id-1 expression	• Soroceanu et al.[121]
	• Treatment with CBD inducing autophagy and abrogating the chemoresistance of GSCs at BCNU	• Nabissi et al. [126]
	therapy	
Cannabidiol	Lung cancer:	
(<mark>CBD</mark>)	• PPARy-dependent apoptosis; decrease of cellular migration associated to ICAM1 and TIMP1	• Ramer et al. [5]
	induction	
	Decrease of invasiveness associated to PAI1 downregulation	• Ramer et al. [70]
	Gastrointestinal cancer:	
	• Decrease of cell proliferation, increase of endocannabinoid levels and chemoprotective effect DNA	• Aviello et al. [49]
	trom oxidative insults <i>in vitro</i> ;reduction of invasion and migration <i>in vitro</i> (Colorectal)	
	• Decrease of aberrant crypt foci (ACF) formation, precancerous polyps and tumors in AOM-treated	
	mice counteracting Akt activation induced by AOM (Colorectal)	

	• Induction of apoptosis due to ROS production by mitochondria, ER stress induction and NoxA	• Jeong et al. [50]
	activation (Colorectal)	
	• Anti-angiogenetic and anti-metastatic effects associated to VEGF downregulation <i>in vivo;</i> reduction IL-	• Honarmand et al. [51]
	6 and IL-8 serum levels (Colorectal)	
	<u>Dreast cancer</u>	- Chimesterre et al [75]
	• Inhibition of cell viability	• Shivastava et al. [75]
	• Induction of apoptosis/autophagy and KOS generation	
	• Cell cycle arrest at the GI/S transition (via CBI-R) and at the G2/M phase (via CB2-R)	• Kiskova et al. [74]
	• Invasiveness reduction via ID-1	
	• Inhibition cell migration and angiogenesis	
	Modulation tumor microenvironment and cytokine production	• Elbaz et al. [76]
	• Increase overexpression of the TRPV2 in TNBC cells	• Elbaz et al. [78]
	Prostate cancer:	
	• Inhibits spheroid formation in cancer stem cells from LNCaP	• Sharma et al. [91]
	 Downregulate VEGF, PSA and proinflammatory cytokines IL-6/IL.8 	• De Patrocellis et al. [92]
	• In <i>vivo</i> reduce tumor size in LNCaP xenografted mice	
Cannabinol	Lung cancer:	
(<mark>CBN</mark>)	Inhibition of tumor growth <i>in vivo</i> and <i>in vitro</i>	• Munson et al. [65]
	Lung cancer:	
	• EMT inhibition and TAMs recruitment inhibition at the tumor site <i>in vivo</i>	• Ravi et al. [71]
	• Inhibition of EGF-induced proliferation, migration and invasion in NSCLC cell lines and tumor	• Preet et al.[64]
JWH-015	growth and dissemination <i>in vivo</i>	
	Gastrointestinal cancers:	
	• Inhibition of tumor growth in vitro and in vivo associated to increased ceramide, ER-stress, PPAR- γ	• Vara et al. [53]
	activity and autophagy (Hepatocellular)	
	Brain Cancer:	
	• Inibithion of angiogenesis of malignant gliomas after local administration of nonpsychotic	• Blàzquez et al. [116]
	cannabinoid JWH-133 to mice	
	Lung cancer:	
JWH-133	 Decrease of cellular migration after ICAM1 and TIMP1 induction 	• Ramer et al. [5]
	 Inhibition of angiogenic and lymphangiogenic factors release 	• Staiano et al. [63]
	Thyroid cancer:	
	 Regression of thyroid tumours generated in nude mice by inoculation of the TC cells ARO/CB2 	• Shi et al., [106]
Win55,212-2	Lung cancer:	

	 Inhibition of EGF-induced proliferation, migration and invasion in NSCLC cell lines and tumor growth and dissemination <i>in vivo</i> <u>Gastrointestinal cancer:</u> Inhibition of proliferation and pro-apoptotic effect<i>in vitro</i>(Gastric) Inhibition of Akt activation and release inhibition of pro-migratory factors (MMP2, VEGF-A) <i>in vitro</i> and <i>in vivo</i> (Gastric) <u>Prostate cancer:</u> Inhibition cells survival, growth and proliferation by inhibition of PI3K/Akt/mTOR axis 	 Preet et al. [64] Xian et al. [59] Xian et al. [60] Morell et al. [89]
AM251	Pancreatic cancer: • Induction of cytotoxic effects via a receptor-independent mechanism in Mia PaCa2 cell line	• Fogli et al. [103]
<mark>pyrrolo-1,5-</mark> benzoxazepine-15	 <u>Gastrointestinal cancer:</u> Inhibition of proliferation and pro-apoptotic effect in CRC cell lines; synergistic interaction with 5-FU(Colorectal) 	• Fiore et al. [46]
Rimonabant	 <u>Brain Cancer:</u> Cell proliferation arrest, induction caspase-dependent apoptosis and upregulation of the expression of NKG2D ligands <u>Gastrointestinal cancer:</u> 	 Ciaglia et al. [119] Santoro et al. [55]
(<mark>SR141716</mark>)	 Wnt/β-catenin canonical pathway inhibition <i>in vitro</i> and <i>in vivo</i> associated to β-catenin degradation and TCF/LEF transcriptional inhibition (Colorectal) Improvement of 5-FU efficacy in CRC <i>in vitro</i> models; Decrease of CD133+/CD44+population and spheroid formation Synergistic effect with Oxaliplatin in CRC models 	 Proto et al. [56] Fiore et al. [57] Gazzerro et al. [58]
URB597	Lung cancer: • Inhibition of lung cancer cells spreading • Enforced the effect Met-F-AEA in inhibiting EGFR phosphorylation and its downstream signal transduction pathways Gastrointestinal cancer: • Reduction of CRC cell lines proliferation	 Winkler et al., 2016 [17] Ravi et al., 2014 [66] Proto et al., 2012 [45]

GW405833 <mark>(GW)</mark>	 <u>Pancreatic cancer:</u> Induction of ROS-mediated autophagy via activation of AMPK and inhibition of energetic metabolism Inhibition of glycolysis via decreasing of the glycolytic enzymes, GAPDH and PKM2 Increase of the anticancer potential in combination with gemcitabine 	 Dando et al., 2013 [100] Donadelli et al., 2011 [101]
2-Arachidonoylglycerol <mark>2-AG</mark>	 <u>Prostate cancer:</u> Inactivation of protein kinase A and inhibition of the invasive ability of the cells <u>Pancreatic cancer:</u> Inhibition of cancer cell proliferation both <i>in vitro</i> and orthotopic animal models Immunomodulatory effects in tumour microenvironment 	 Nithipatikom et al., 2004 [87] Qiu et al., 2019 [102]