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Table S1. The detailed configuration for each layer, related to Figure 1b. 

conv: convolution layer; fc: fully-connected laser; max_pool: pooling layer; relu: activation 
operator; deconv: deconvolution layer.  
Gray shaded layers are for the encoder part, and the blue shaded layers are for the decoder 
part, respectively. 

 
The Tensorflow framework is used for the neural network implementation and training.  
 
The encoder part is composed of seven convolutional layers and two pooling layers, connected with 
Relu activation functions, and the last layer of the encoder part is a fully connected layer.  
 
The decoder part includes a fully connected layer, followed by two cov3d_transpose layers, and 
concluded with a conv3d layer. It also utilizes Relu activation functions between layers and a sigmoid 
function to obtain the final output. 
 

layer parameters shape 

Input:  In:(32,32,32,1) 

conv1_1 k= (3,3,3,1,64)         strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(32,32,32,1) 
out:(32,32,32,64) 

conv1_2 filter = (3,3,3,64,64)       strides = (1,1,1,1,1) 
padding = “SAME ” 

In:(32,32,32,64) 
Out:(32,32,32,64) 

relu   

max_pool1 ksize = (1,2,2,2,1) 
strides = (1,2,2,2,1) 

In:(32,32,32,64) 
out:(16,16,16,64) 

conv2_1 filter = (3,3,3,64,128)      strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(16,16,16,64) 
out:(16,16,16,128) 

conv2_2 filter = (3,3,3,128,128)    strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(16,16,16,128) 
out:(16,16,16,128) 

relu   

max_pool2 ksize = (1,2,2,2,1) 
strides = (1,2,2,2,1) 

In:(16,16,16,128) 
out:(8,8,8,128) 

conv3_1 filter = (3,3,3,128,128)    strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(8,8,8,128) 
out:(8,8,8,128) 

conv3_2 filter = (3,3,3,128,128)    strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(8,8,8,128) 
out:(8,8,8,128) 

conv3_3 filter = (3,3,3,128,128)    strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(8,8,8,128) 
out:(8,8,8,128) 

relu   

fc1  In:(8,8,8,128)  
Out:(200) 

relu   

fc2  In:(200)  
Out:(8,8,8,128) 

relu   

deconv1 filter = (5,5,5,64,32)        strides = (1,2,2,2,1) 
padding =“SAME ” 

in:(8,8,8,32) 
out:(16,16,16,64) 

relu   

deconv2 filter = (5,5,5,128,64)      strides = (1,2,2,2,1) 
padding =“SAME ” 

in:(16,16,16,64) 
out:(32,32,32,128) 

relu   

conv4 filter = (3,3,3,128,1)        strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(32,32,32,128) 
out:(32,32,32,1) 

sigmoid   



In the auto-encoder network, Relu activation function is applied after conv1_2, conv2_2, conv3_3, fc1, 
fc2, deconv1, deconv2. The pooling method used in the encode part is max-pooling with padding, and 
the stride is 2 in 3d space. 
 
The decoder part utilizes conv3d_transpose with padding to increase its size, and the stride is 2 in 3d 
space. 
 
Key parameters used for training: 
 BATCH_SIZE = 64 
 LEARNING_RATE = 0.01 , 0.001 or exponential_decay 
 TRAINING_EPOCHS = 15 
 
The optimizer function is AdamOptimizer, and the cross entropy was used as the loss function. 
 
Two-stage network training 
The auto-encoder network model was trained in two stages, with shapes in the PISA database as the 
training dataset, which contains 60,000 samples. 
 
Stage-1: 
 Setting the linking layer between encoder and decoder (i.e., the fc1-output and fc2-input, or the 
bottleneck layer) to be 3,000 (i.e., the 3D models are encoded to 3,000-D vectors), and other 
parameters are listed in Table S1. When the training result converges, the preliminary auto-encoder 
model is saved for the second stage training. 
 
Stage-2: 
 Based on the auto-encoder model trained in Stage-1, the linking layer size is reduced to 200, 
and re-train the fc1 and fc2 layers only, while retaining other parameters in the rest of the auto-encoder 
network. The final trained network will have 200 parameters in this linking layer for 3D shapes.  
 
Alternatively, the training can also be accomplished with a single stage training network by inserting the 

200d vector layer to the first stage model, right after the layer of 3000 variables. These two layers are 

linked using a fully connected network. The two approaches yielded similar results. The source codes 

for both approaches are available from the Github repository.  

 
  



Table S2. Representative reconstructed models compared to the reference models, related 
to Figure 2. 

*Rref: Radius of reference model deposited to the database (in the unit of Å) 
#Ropt: Radius optimized using the genetic algorithm in the decodeSAXS program (in the unit 
of Å) 
 
To illustrate the model reconstruction accuracy at various correlation coefficient (cc) levels (in 
ascending order), reconstructed models are superimposed to the models deposited to the 
database. The deposited models are either coarse grain bead models or high resolution atomic 
models.  
Based on visual comparison, the model quality is very good if the cc is greater than 0.70. For 
the models with low cc values, major causes are that the protein complexes are very dynamic 
and flexible, or loosely packed (see SASDB47, SASDB98). For SASDCW6, the SAXS data 
were collected with a buffer matching method to mask the histone protein component, so that 
the DNA superhelices were the only ‘visible’ component for X-rays. This is very unusual for 
biomolecules, so the decodeSAXS failed in 3D model reconstructions for this dataset. For 
SASDC47, the optimized radius (Rmax) was wrong, resulting a wrong model. 
As shown in the main text, using cc=0.70 as a threshold, about 54% reconstructions are in 
good quality; if the cc threshold is relaxed to 0.55 (average cc for randomly paired models) in 
this dataset, then about 86% reconstructions can be considered to be successful. The 
performance does not rely on the prior knowledge of the molecular sizes, and this is a unique 
feature of this method. 

 

Data ID cc 
Rref*/ 
Ropt# 

View-1 View-2 View-3 Fitting I(q) 

SASDC
47 

0.14 
59.19/
85.90 

    

SASDB
D6 

0.41 
53.72/
64.60 

    

SASDC
W6 

0.43 
88.72/
111.85 

    

SASDC
Y7 

0.45 
57.17/
84.45 

    

SASDB
47 

0.47 
84.38/
103.05 

    



Data ID cc 
Rref*/ 
Ropt# 

View-1 View-2 View-3 Fitting I(q) 

SASDB
98 

0.48 
70.60/
89.30 

    

SASDA
W8 

0.57 
70.78/
78.25 

 
   

SASDA
P5 

0.67 
48.58/
58.60 

    

SASDA
V5 

0.68 
75.21/
78.50 

    

SASDA
R5 

0.71 
40.35/
52.05 

    

SASDB
46 

0.73 
74.51/
70.25 

  
  

SASDA
Q7 

0.79 
87.67/
90.65 

    

SASDD
F9 

0.80 
35.94/
51.95 

    

SASDA
P8 

0.84 
69.74/
77.85 

  
  



Data ID cc 
Rref*/ 
Ropt# 

View-1 View-2 View-3 Fitting I(q) 

SASDC
G5 

0.85 
24.63/
27.75 

 
   

SASDB
Y3 

0.85 
82.28/
69.10 

    

SASDA
N8 

0.87 
85.90/
82.05 

 
   

SASDA
U5 

0.87 
83.48/
82.30 

    

SASDB
E2 

0.87 
46.95/
53.55 

  
  

SASDB
32 

0.88 
37.37/
39.00 

    

SASDB
Q3 

0.91 
48.44/
46.15 

   
 

SASDB
X4 

0.93 
101.57
/95.60 

    

 
 
  



Table S3. Hierarchical clustering analysis of multiple reconstructions for 8 tested datasets, 
related to Figure 4. 
 
Eight SAXS datasets were randomly selected for multiple reconstruction tests. The correlation between 
reconstructed models were computed. The hierarchical clustering method was applied using the 
distance metric defined as d=1.0 – cc, where cc is the correlation coefficient between reconstructed 
models calculated using sastb.superpose. Using d=0.3 as cutoff (i.e., correlation coefficient=0.7), 6 out 
of 8 testing cases showed single cluster; and 2 cases (SASDA25 & SASDA28) showed two clusters. 
 

    
SASDA25 SASDA26 SASDA27 SASDA28 

    
SASDA32 SASDA35 SASDA38 SASDA39 

 
 



 
 

Figure S1. The flowchart of model reconstruction algorithm, related to Figure 2. The auto-

encoder-decoder neural network is used to decode latent space parameter to 3D voxel models, whose 

SAXS profiles are compared to experimental data. Genetic algorithm is used to guide the optimization 

of latent space parameters. 

  



 

 
Figure S2. The progression of the first 20 parameters in the latent space, related to Figure 2. 
The parameters widely vary at the beginning and the convergence start to emerge after some 
iterations. Three examples are shown as (a) SASDA38; (b) SASDBQ3; and (c) SASDBY3.  
  

a. 

c. 

b. 



 
Figure S3. The performance comparison between decodeSAXS and three other methods, 
related to Figure 3. The scatter plots are shown for the cc values: y-axis shows the cc values 
between reference models and the models reconstructed using decodeSAXS; x-axis shows the cc 
values between reference models and the models reconstructed using the three other methods 
(labelled in the legends). The points above the line (y=x) corresponding to the cases that 
decodeSAXS performs better. 
 

 
Figure S4. The distribution of Phimax values, related to Figure 2. The values are computed 
between the reconstructed models with decodeSAXS and the reference models. The distribution 
(green histogram) shows that Phimax has a larger population at larger values, compared to the cc 
values (Figure 2d). The cumulative distribution (blue line) shows that 70% of the Phimax values are 
larger than 0.80.  
 
 

 
 

  



Transparent Methods 

Training and Testing Datasets 

The model dataset is compiled from the PISA structure database, including 60,000 randomly selected 

3D models. Each model was first scaled and shifted to fit in a sphere centred at the coordinate origin 

with a radius of 50 Å (the shape does not depend on the size of the model under the uniform density 

model approximation; the size information is used for SAXS profile computation, see equation 2 below). 

Then, the atomic positions were mapped to a grid of 31x31x31 in the process of scaling and voxelization 

(the grid point at (0,0,0) coincides with the center of mass). As a result, each model was converted to a 

voxel object described using a 3D matrix with binary values (i.e., the uniform density is ensured, see 

Figure 1a in main text). For numerical calculation efficiency consideration, the matrix of 31x31x31 was 

padded with zeros to a matrix of 32x32x32, such that the number of discretization is a power of 2, to 

facilitate the convolutional neural network training.  

Auto-encoder Neural network architecture  

The architecture of the auto-encoder is designed based on the VGG network (Simonyan and Zisserman, 

2015). The encoding part of the auto-encoder is composed of seven convolution layers and two pooling 

layers followed by one dense (fully connected) layer as indicated in Figure 1b and described in Table 

S1. Network training was performed in two stages. During the first stage, the dense layer contains 3,000 

variables, and this number is reduced to 200 during the second stage. With this design, the 3D shape 

information is compressed to a representation of 3,000-dimensional vectors after the first training stage. 

Among these 3,000 parameters, a significant portion (approximately 90%) of parameters is found to be 

zero persistently, indicating that the parameter space for encoding can be further reduced. With this 

observation, the fully connected layer was optimized again with a reduced dense layer of 200 

parameters. During the second stage of training, the parameters for convolutional and pooling layers 

were inherited from the first stage and remained unchanged, except that the parameters for the fully 

connected dense layer were subjected to optimization. This two-stage training was adapted to ensure 

fast convergence of the training (we found that if the dense layer was set to a 200-dimension vector 

during the first stage of training, the loss function does not converge). There is an alternative 

architecture to allow the training to be completed within a single stage, by adding the 200-d layer after 

the 3000-d layer and linked with fully connected network. The two approaches yield similar results (the 

network architectures and training codes are available at the Github repository). Similar to many cases 

in neural network training/applications, the choice of 200 parameters for this compressed layer is not 

unique. However, the encoding capacity will be affected if fewer parameters were used.  

The decoding part is relatively simple. The 200-dimension vector is converted to a 4D tensor of size 

8x8x8x32, then followed by two deconvolution layers, and finished with a convolution layer to obtain a 

32x32x32 matrix, from which a submatrix of 31x31x31 was obtained as the reconstructed model. A 

preset threshold of 0.1 was used to convert the matrix to binary values. 



The 60,000 models in the training dataset were fed to this auto-encoder with the loss function measured 

by cross entropy between the input models and the encode-decoded maps. The decoding part of the 

neural network can be applied to interpret any 200-d vectors to its corresponding 3D density map in the 

form of voxel object. 

Model reconstruction from SAXS profiles 

The overall workflow for model reconstruction using the auto-encoder method is as follows (see 

Figure S1). First, a number of latent parameter sets (or genes, in terms of genetic algorithm) are 

generated to initialize the genetic population to be optimized by genetic algorithm. The parameters for 

each gene is sampled based on the gene value distribution at the corresponding positions (see Figure 

1d for representative probability distributions). After initialization, the iterative optimizations will be 

carried out. During each iteration, the genes are decoded to 3D voxel objects using the auto-encoder 

network trained using the molecular shapes abstracted from the PISA database. To ensure the 

continuity of the reconstructed models, only the largest connected domain of each decoded object will 

be kept as the ‘cleaned model’. The SAXS profiles for the ‘cleaned models’ are then computed using 

the Zernike expansion method implemented in the SASTBX (elaborated below). Chi-scores between 

model profiles and target SAXS profiles are used to guide the genetic algorithm to evolve the genes 

until the chi-score is converged or a pre-set number of iterations is reached. The final models are 

saved in density maps (CCP4 format) or bead models (PDB format). 

For a voxel object, the 3D Zernike representation has the advantage of de-coupling the model shape 

and size information; thus, the SAXS profiles can be quickly evaluated if the model size is updated 

while the shapes are not changed. The detailed derivation was elaborated elsewhere (Liu et al., 

2012a, 2012b), and a brief summary is provided for clarity. A 3D object r(r)  after scaling to fit within 

a unit sphere can be expanded as the weighted summation of 3D Zernike functions, which are a set 

of orthonormal polynomials with orders (n, l, m) (Canterakis, 1999; Novotni and Klein, 2003). The 

expansion coefficient or the so-called Zernike moment C
nlm

 at order (n, l, m) is calculated with 

equation (1): 

  (1) 

Subsequently, the 3D density distribution function r(r)  can be approximated using {C
nlm

} up to a 

maximum expansion order n
max

. It has been shown (see (Liu et al., 2012a)) that the SAXS intensity 

can be explicitly expressed as: 

  (2) 



where  describes the contribution from corresponding Zernike 

polynomials to SAXS profile with the Bessel functions of the first kind jn(x). In addition, the shape 

information is encoded in Hnn’, which is expressed using Zernike moments as follows: 

   (3) 

with . According to equation (2), the radius of the object, rmax, is readily decoupled from 

the shape descriptors {Hnn’}. This allows us to optimize the radius as the 201st parameter (the other 200 

parameters encode the 3D shape). The SAXS profiles can be calculated with other programs, as long 

as the program can be interfaced to the reconstruction software by providing the calculated intensities 

at desired scattering angles. In the case if the radius optimization is desired, the SAXS profile calculation 

is slightly more complicated, because the model scaling might be needed.  

 
The genetic algorithm was used to optimize the parameters (200 parameters for given radius 

information or 201 parameters if the radius is a free parameter to be optimized) (Goldberg, 1989). The 

target function to be minimized is the standard chi-score: 

   (4) 

Where I
i

exp
 and I

i

mod
 are the SAXS intensity profiles of the experimental measurement and the 

model calculation respectively, both at position qi. The SAXS profiles were normalized to the range of 

[0,1] before the chi-score computation to remove the mismatched scaling factor and the offset level 

that caused by the residual background intensity. The 1/σi was used as the weighting factor. It is noted 

that the raw SAXS data were preprocessed using a sliding polynomial fitting (with order=2, window 

size=5) to smooth the profile. In order to balance the contributions from all data points to the chi-

score, we compared three different weighting schemes, specifically, setting σi to 1.0, sqrt(𝐼𝑖
𝑒𝑥𝑝

), and 

𝐼𝑖
𝑒𝑥𝑝

. The results suggested that the final reconstructed models reached similar accuracy levels. In the 

program, the default weighting scheme is σi =1.0. It is noteworthy to point out that chi-score is just one 

of many possible metrics to quantify the difference between model profile and experimental data. 

Other formulations, such as likelihood functions based on probability theory can be also adapted 

easily by replacing the scoring function in the program. In this study, the testing results showed that 

the present implementation can achieve very good model quality. 

The distribution of latent parameter values obtained during the auto-encoder training procedure was 

used to guide the initialization of model parameters, so that the genes (each with 200 or 201 values) 

for the first generation of the genetic algorithm were populated by sampling the latent parameter 

distributions to start the optimization procedure. In each generation, 300 genes are generated via 

simulated evolution procedures. The gene evolution was implemented using three operators: 



selection, crossing, and mutation. The selection operator decides which genes are inherited from the 

previous generation by selecting the more fitted gene out of two randomly selected genes. The 

crossing operator is included to exchange gene segments obtained from the previous generation. The 

mutation operator changes parameter values at random positions by replacing the current value to a 

random value with a probability distribution that follows prior knowledge of empirical distributions at 

that gene position.  

The model comparison was measured using the correlation coefficients (cc) after model alignment to 

the reference model (not used during model reconstruction process), which was performed using the 

fast rotation algorithm implemented in sastbx.superpose (Liu et al., 2012b). The correlation coefficient 

used to compare variables with binary values is referred to as Phi coefficient, similar to the pearson 

correlation coefficient for variables with continuous values (Guilford, 1936). In statistical analysis, the 

range for Phi coefficient is not strictly confined in [-1,1] (Davenport and El-Sanhurry, 1991). We 

computed the Phimax between decodeSAXS reconstructed models and the reference models to 

provide a reference (the values are mostly above 0.80, see Figure S4 for a distribution). Here, the 

concept of Phi coefficient is borrowed to measure the similarity between reconstructed model and the 

reference model. The computed cc is used to quantify the overlapped volume from the two models 

being compared. The physical interpretation is the that cc=1.0 corresponds to perfect overlapping 

(aligned to itself), and cc=0.0 corresponds to zero overlapping between the two models. Both Phimax 

and cc can be used to measure the model similarity. The cc values are used to quantify the model 

similarity through the analysis because of its clear physical interpretation, and the Phimax is provided 

as a reference. For consistency analysis for models from multiple reconstructions, the hierarchical 

clustering algorithm was applied using correlation distance (defined as 1.0-cc). The figures were 

prepared using Chimera (Pettersen et al., 2004) or Pymol (Schrödinger, 2015).  
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