Tryptophan trimers and tetramers inhibit dengue and zika virus replication by interfering with viral attachment processes

Antonios Fikatas^a, Peter Vervaeke^a, Belén Martínez-Gualda^{b¥,} Olaia Martí-Marí^b Sam Noppen^a, Eef Meyen^a, María-José Camarasa^b, Ana San-Félix^b, Christophe Pannecouque^a, Dominique Schols^a

^a KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, 7 Belgium

^b Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
*Present address: Medicinal Chemistry, Rega Institute of Medical Research, KU
Leuven, 10 Herestraat 49, 3000, Leuven, Belgium

Includes:

1. CHEMISTRY

- 1.1. Synthetic Schemes
- 1.2. Chemistry procedures and characterization of the compounds
- 1.3. ¹HNMR and ¹³CNMR of the synthesized compounds

1. CHEMISTRY

1.1. Synthetic Schemes

First, the corresponding sulfenylating agent, phenylsulfenyl chloride (PS-CI) or *p*-nitrobenzenesulfenyl chloride (*p*NPS-CI) were obtained following reported procedures.^{1,2} Reaction of these sulfenyl halides, with the methyl protected tryptophan trimer **1**³ in dry THF/acetic acid afforded the C2-sulfenyltryptophan intermediates **2** and **3** in 83 and 88 yield respectively (Scheme 1). Reaction of intermediate **3** with methyl iodide, in the presence of cesium carbonate (Cs_2CO_3) at 80 °C, followed by deprotection (LiOH/H₂O) of intermediate **4** afforded the N1 methyl Trp derivative **AL-484** in 90% yield (Scheme 1). In addition, the N1 unsubstituted Trp derivative **AL437** was prepared in 90% yield by deprotection (LiOH/H₂O) of the sulfenyl intermediate **2** (Scheme 1).

Scheme 1. Synthesis of the 2-sulfenyltryptophan AL437, AL484 and N $^{\alpha}$ methyl tryptophan AL-544 trimers

In addition, reaction of trimer **1** with methyl iodide in the presence of cesium carbonate (Cs₂CO₃) at 80 °C, followed by subsequent deprotection (LiOH/H₂O) of intermediate **5** afforded compound **AL-544** in 78% yield (Scheme 1).

Next, reaction of tetramer 6³ with *p*-fluoro benzyl bromide, in the presence of Cs₂CO₃ at 80 °C, followed by subsequent deprotection (LiOH/H₂O) of intermediate **7** afforded tetramer **AL-531** in 80% yield (Scheme 2).

Scheme 2. Synthesis of the N1-benzyl tryptophan tetramer AL531

The synthesis of the N1 substituted monopodal derivatives **AL441** and **AL442** started with the commercially available scaffold **8** (Scheme 3). Reaction of **8** with the corresponding benzyl iodide, in the presence of cesium carbonate (Cs_2CO_3) at 80 °C, followed by subsequent deprotection (LiOH/H₂O) of intermediates **9** and **10** afforded compounds **AL-441** and **AL-442** in 71 and 80 % yield respectively (Scheme 3).

Scheme 3. Synthesis of the N1-benzyl tryptophan monomers AL441 and AL442

1.2. Chemistry procedures and characterization of the compounds

General Chemical Procedures. Commercial reagents and solvents were used as received from the suppliers without further purification unless otherwise stated. The solvents used in some reactions were dried prior to use. DMF dry was commercially available (Aldrich).

Analytical thin-layer chromatography (TLC) was performed on aluminum plates precoated with silica gel 60 (F_{254} , 0.20 mm). Products were visualized using an ultraviolet lamp (254 nm and 365 nm) or by heating after treatment with a 5% solution of phosphomolybdic acid (PMA) or vanillin in ethanol.

The compounds were purified by: a) high performance flash chromatography (HPFC) with a system "Isolera One" (Biotage) in reverse phase using water/acetonitrile (100:0 to 0:100) as eluent, b) preparative centrifugal circular thin layer chromatography (CCTLC) on a chromatotron[®] (Kiesegel 60 PF254 gipshaltig, Merck) layer thickness 1 mm, flow rate 2–4 mL/min.

For HPLC analysis an Agilent Technologies 1120 Compact LC with a reverse phase column ACE 5 C18-300 (4.6 mm \times 150 mm, 3.5 μ m) equipped with a PDA (Photo Diode Array) detector was used. Acetonitrile was used as mobile phase A, and water 0.05% of TFA was used as mobile phase B with at a flow rate of 1 mL·min⁻¹. All retention times are quoted in minutes and the gradients are specified for each compound in the experimental data.

High resolution mass spectrometry (HRMS) was recorded on an Agilent 6520 Accurate Mass QTOF (quadrupole time of flight) coupled with LC/MS using an electrospray interface (ESI) working in the positive-ion (ESI⁺) and negative-ion (ESI⁻) mode.

NMR spectra (¹H, ¹³C NMR) were recorded on a Varian UNIT INOVA-300 (300 MHz), Bruker AVANCE 300 (300 and 75 MHz), Varian INOVA-400 (400 and 100 MHz), Varian MERCURY-400 (400 and 100 MHz) and Varian-500 (500 and 125 MHz) spectrometers, using (CD₃)₂SO and CDCl₃ as solvents. Chemical shift (δ) values are reported in parts per million (ppm) relative to tetramethylsilane (TMS) in ¹H and CDCl₃ (δ = 77.0) in ¹³C NMR. Coupling constant (*J* values) are reported in hertz (Hz) and multiplicities of signals are indicated by the following symbol: s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet) and bs (broad singlet).

Final compounds were lyophilized using a Telstar 6-80 system.

S4

Trp(PS)-OMe trimer (2). Phenylsulfenyl chloride was prepared from phenyl thiol according to literature procedures.^{1,2} Thus, sulfuryl chloride (92.2 mg, 0.055 mL, 12 equiv) was added dropwise over a period of 1 h. to a cold solution (0 °C, ice-bath) of phenyl thiol (37.7 mg, 0.035 mL, 6 equiv) in THF (5 mL). After an additional hour of stirring, the yellow phenyl chloride^{1,2} (PS-CI) solution, generated in situ, was added to a cold (0 °C, ice-bath) solution of trimer 1³ (50 mg,0.06 mmol) in acetic acid (10 mL), and the mixture was stirred at room temperature until the starting material disappeared (30 min approximately). Removal of the solvent left a residue which was purified by CCTLC using dichloromethane: methanol (20:1) as eluent to give 113.7 mg (83%) of 2 as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃-d) δ : 8.60 (s, 3H, 3H, NH-Trp), 7.52 (d, J = 7.9 Hz, 3H, Ar), 7.19 – 7.14 (m, 11H), 7.13 – 7.07 (m, 5H, Ar), 6.99 (m, 5H, Ar), 6.21 (d, J = 7.8 Hz, 3H, Ar), 4.91 (m, 3H, α -CHTrp), 3.69 (s, 9H, OCH₃), 3.45 (dd, J = 14.5, 5.5Hz, 3H, β-CH₂Trp), 3.31 (dd, J = 14.5, 5.5 Hz, 3H, β-CH₂Trp), 2.04 – 1.88 (m, 6H, CH₂), 1.85 – 1.70 (m, 6H, CH₂). ¹³C NMR (101 MHz, CDCl₃-d) δ: 172.4, 170.7, 137.1, 136.2, 129.5, 127.9, 127.1, 126.5, 123.9, 123.6, 120.3, 119.1, 117.3, 111.5, 92.3, 52.9, 52.7, 30.5, 30.1, 27.3. HPLC [gradient: H₂O:MeCN, 10-100% of A in 10 min]: 6.859 min. HRMS (ESI⁺) m/z: calculated for C₆₄H₆₃N₇O₁₁S₃. 1201.3747; found 1201.3717.

Trp(pNPS)-OMe trimer (3). *p*-Nitrobenzenesulfenyl chloride was prepared from *p*nitrophenyl thiol according to literature procedures.² Thus, a stream of chlorine, dried by bubbling through concentrated sulfuric acid, was added to a suspension of 30 g (0.1 mol) of 4,4-dinitrodiphenyl disulfide in dry carbon tetrachloride (200 mL). The rate of flow of chlorine was regulated so that 10 g reacted over a period of 2-2.5 hr at a temperature maintained at 50-60 °C. The solid 4,4-dinitrodiphenyl disulfide gradually disappeared and at the end of the reaction time a dark yellow solution was obtained. The warm solution was filtered through a hot Buchner funnel. The excess of chlorine and the solvent were evaporated, leaving an orange-red residue. Recrystallization from carbon tetrachloride afforded *p*-nitrobenzenesulfenyl chloride, mp 52° (lit.² mp 50-52°). A solution of *p*-

S5

nitrobenzenesulfenyl chloride (259 mg, 1.37 mmol) in dioxane (8 mL) was added to a solution of trimer 1³ (400 mg,0.4 mmol) in acetic acid (2 mL), and the mixture was stirred at room temperature for 1 h. A solution of NaHCO₃ was added to reach pH = 7. Elimination of the solvent left a residue which was dissolved in ethyl acetate (30 mL) and washed successively with saturated solutions of NaHCO₃ (3 x 20 mL) and brine (1 x 20 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The residue was concentrated and purified by precipitation using dichloromethane: diethyl ether to give 539 mg (88%) of 3 as a yellow solid. m.p 138-141 $^{\circ}$ C.¹H NMR (400 MHz, CDCl₃-*d*) δ : 8.86 (s, 3H, NH-Trp), 7.95 (d, J = 8.8 Hz, 6H, Ar), 7.53 (d, J = 8.0 Hz, 3H, Ar), 7.27 – 7.16 (m, 6H, Ar), 7.11 (t, J = 7.3 Hz, 4H, Ar), 6.97 (d, J = 8.8 Hz, 6H, Ar), 6.30 (d, J = 8.0 Hz, 3H, NHCO), 4.86 (m, 3H, α-CHTrp), 3.63 (s, 9H, OCH₃), 3.37 (dd, J = 14.4, 6.0 Hz, 3H, β -CH₂Trp), 3.23 (dd, J = 14.4, 6.0 Hz, 3H, β -CH₂Trp), 2.01 – 1.74 (m, 12H, CH₂). ¹³C NMR (101 MHz, DMSO-*d*₆) δ: 171.8, 170.5, 147.3, 145.0, 137.5, 127.2, 125.8, 124.3, 123.4, 119.7, 119.4, 119.3, 118.5, 111.7, 93.0, 53.1, 51.9, 30.4, 29.2, 27.0. HPLC [gradient: H₂O:MeCN, 30-100% of A in 10 min]: 9.149 min. HRMS (ESI-) m/z: calculated for C₆₄H₆₀N₁₀O₁₇S₃ 1336.3300; found 1336.3289.

NMe-Trp(*p***NPS)-OMe trimer (4).** To a solution containing trimer **3** (50 mg, 0.04 mmol) in anhydrous DMF (5 mL), Cs₂CO₃ (54.2 mg, 0.16 mmol) was added and the mixture was stirred at room temperature for 15 minutes. Then, methyl iodide (15.76 mg, 7 μ L, 0.11 mmol) was added and the reaction mixture was stirred in a sealed tube at 50 °C overnight. The mixture was evaporated to dryness, dissolved in dichloromethane (20 mL) and washed successively with citric acid (3 x 20 mL) and brine (3 x 20 mL). The organic phase was dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was purified by CCTLC using dichloromethane:methanol (20:1) as eluent to give 41.22 mg (80%) of **4** as a yellow solid. m.p 133-135 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.03 (d, *J* = 8.9 Hz, 6H), 7.60 (d, *J* = 8.0 Hz, 3H, Ar), 7.38 – 7.27 (m, 6H, Ar), 7.17 (t, *J* = 8.1, 6.1 Hz, 3H, Ar), 6.99 (d, *J* = 8.9 Hz, 6H, Ar), 6.15 (d, *J* = 7.9 Hz, 3H, NHCO), 4.83 (m, 3H, α -

S6

CHTrp), 3.66 (s, 9H, OCH₃), 3.63 (s, 9H, OCH₃), 3.41 (dd, J = 14.4, 6.0 Hz, 3H, β -CH₂Trp), 3.31 (dd, J = 14.4, 6.0 Hz, 3H, β -CH₂Trp), 2.08 – 1.98 (m, 6H, CH₂), 1.92 (m, 6H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ : 171.9, 170.5, 146.6, 145.9, 138.6, 127.1, 125.6, 124.6, 124.4, 122.9, 120.5, 119.6, 118.8, 110.4, 92.8, 53.1, 52.7, 30.4, 28.1. HPLC [gradient: H₂O:MeCN, 10-100% of A in 10 min]: 7.981 min. HRMS (ESI-) m/z: calculated for C₆₇H₆₆N₁₀O₁₇S₃ 1378.3770; found 1378.3764.

NMe-Trp OMe trimer (5). To a solution containing trimer 1³ (400 mg, 0.45 mmol) in anhydrous DMF (10 mL), Cs₂CO₃ (668.0 mg, 2.05 mmol) was added and the mixture was stirred at room temperature for 15 minutes. Then methyl iodide (232.8 mg, 102 μL, 1.64 mmol) was added and the reaction mixture was treated as it was described for **4**. The residue was purified by CCTLC using dichloromethane:methanol (20:1) as eluent to give 370 mg (88%) of **5** as a white solid. m.p 135-137 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.47 (dt, *J* = 7.9, 1.0 Hz, 3H, Ar), 7.24 (m, 3H, Ar), 7.19 (t, *J* = 7.5 Hz, 3H), 7.08 (t, *J* = 7.5 Hz, 3H, Ar), 6.86 (s, 3H, Ar), 6.33 (s, 3H, NHCO), 4.84 (m, 3H, α-CHTrp), 3.73 (s, 9H, CH₃), 3.69 (s, 9H, CH₃), 3.29 (dd, *J* = 14.8, 5.6 Hz, 3H, β-CH₂Trp), 3.23 (dd, *J* = 14.8, 5.6 Hz, 3H, β-CH₂Trp), 2.10 – 1.98 (m, 12H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ: 172.2, 171.2, 137.1, 137.0, 128.2, 127.7, 122.0, 119.4, 118.7, 109.6, 108.3, 93.0, 53.3, 52.6, 32.9, 30.6, 30.4, 27.5. HPLC [gradient: H₂O:MeCN, 10-100% of A in 10 min]: 9.724 min. HRMS (ESI-) m/z: calculated for C49H₅₇N₇O₁₁ 919.4116; found 919.4138.

N^α-(4-fluorobenzyl)-L-Trp-OMe tetramer (7). To a solution containing the tetrapodal Ltryptophan methyl ester **6**³ (100 mg, 0.08 mmol) in dry acetonitrile (1 mL) at 0 °C (icebath), Cs₂CO₃ (159.45 mg, 0.49 mmol) was added and the mixture was stirred at this temperature for 15 minutes. Then a solution of 4-fluorobenzyl bromide (73 mg, 48 µL, 0.38 mmol) in DMF (1 mL) was added dropwise and the reaction mixture was stirred at 80 °C overnight. Ammonium chloride was added and the mixture was evaporated to dryness. The residue was dissolved in dichloromethane (20 mL) and washed successively with citric acid (3 x 20 mL) and brine (3 x 20 mL). The organic phase was dried over anhydrous Na₂SO₄ and evaporated to dryness and the residue was purified on a Biotage HPFC (High Performance Flash Chromatography) purification system on reverse phase using water/acetonitrile (100:0 to 0:100) as eluent to afford 93 mg (70%) of **7** as an amorphous solid of white color. ¹H NMR (400 MHz, CDCl₃) δ : 7.53 (d, *J* = 7.7 Hz, 4H, Ar), 7.18 - 6.89 (m, 32H, Ar), 6.82 (d, *J* = 7.82 Hz, 4H, NHCO), 5.18 (s, 8H, CH₂Bn), 4.91 (m, 4H, α -CHTrp), 3.55 (s, 12H, OCH₃), 3.43 (m, 8H, OCH₂), 3.28 (dd, *J* = 14.8, 5.9 Hz, 4H, β -CH₂Trp), 3.21 (dd, *J* = 14.8, 5.9 Hz, 4H, β -CH₂Trp), 3,11 (m, 8H, OCH₂), 2.31 (m, 8H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ : 172.5, 171.3, 163.5, 161.1, 136.5, 133.4, 133.3, 128.5, 128.5, 128.4, 126.8, 122.2, 119.6, 119.1, 115.9, 115.6, 109.9, 109.8, 69.3, 67.1, 53.3, 52.3, 49.3, 45.0, 36.7, 28.1, 1.2. HRMS (ESI-) m/z: calculated for C₆₁H₅₇N₇O₁₁S₃ 1656.6880; found 1656.6834.

N^α-(4-methoxycarbonylbenzyl)-N-Cbz-L-tryptophan methyl ester (9). To a solution containing Cbz-L-tryptophan methyl ester 8 (100 mg, 0.28 mmol) in dry acetonitrile (1 mL) at 0 °C (ice-bath), Cs₂CO₃ (184 mg, 0.56 mmol) was added and the mixture was this temperature for 15 minutes. Then a stirred at solution of 4methoxycarbonylbenzylbromide (128.26 mg, 0.56 mmol) in DMF (1 mL) was added dropwise and the reaction mixture was stirred at 80 °C overnight and treated as described for 7 to afford 88 mg (62%) of 9 as an amorphous solid of cream color. ¹H NMR (400 MHz, CDCl₃) δ: 7.95 (d, J = 7.9 Hz, 2H, Ar), 7.54 (d, J = 7.9 Hz, 1H, Ar), 7.34 (m, 5H, Ar), 7.17 (m, 2H, Ar), 7.17 (m, 2H, Ar), 7.09 (m, 3H, Ar), 6.89 (s, 1H, Ar), 5.36 (d, J = 8.2 Hz, 1H, NHCO), 5.30 (s, 2H, CH₂Ph), 5.12 (m, 2H, CH₂Ph), 4.74 (m, 1H, α-CHTrp), 3.89 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 3.33 (m, 2H, β-CH₂Trp). ¹³C NMR (101 MHz, CDCl₃) δ: 172.4, 166.8, 155.8, 142.7, 136.6, 130.2, 129.7, 128.6, 128.5, 128.3, 128.3, 126.9, 126.6, 122.4, 119.8, 119.1, 109.8, 67.0, 54.8, 52.5, 52.3, 49.8, 28.1. HPLC [gradient: H₂O:MeCN, 10-100% of A in 10 min]: 6.238 min. HRMS (ESI-) m/z: calculated for C₂₉H₂₈N₂O₆ 500.1947; found 500.1952.

 N^{α} -(4-fluorobenzyl)-*N*-Cbz-L-tryptophan methyl ester (10). Following the above mentioned procedure, Cbz-L-tryptophan methyl ester 8 (100 mg, 0.28 mmol), Cs₂CO₃

(184 mg, 0.56 mmol) and 4-fluorobenzyl bromide (106 mg, 70 μ L, 0.56 mmol) afforded 130 mg (70%) of **10** as an amorphous solid of cream color that was used inmediately for deprotection.

General procedure for the deprotection of the methyl esters. Synthesis of AL437, AL484, AL544, AL531, AL441 and AL442. To a solution containing the corresponding methyl ester derivative (1.0 mmol) in THF (10 mL) at 0 °C (ice-bath), a solution of LiOH·H₂O (2 eq for each methyl ester group) in water (2 mL) was added, and the mixture was stirred at room temperature overnight. Then 1 N hydrochloric acid aqueous solution was added to reach pH = 2, and volatiles were evaporated to dryness. The residue was dissolved in ethyl acetate (15 mL) and washed with H₂O (3 x 10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and evaporated to dryness. The compounds were precipitated using a mixture of ethyl acetate and diethyl ether to afford the pure deprotected derivatives.

Trp(PS)-OH trimer (AL437). Following the general procedure for the deprotection of methyl esters, the methyl ester derivative **2** (100 mg, 0.08 mmol) in THF (8 mL) at 0 °C (ice-bath), was treated with a solution of LiOH·H₂O (21 mg, 0.5 mmol) in water (2 mL) to afford 87.2 mg (90 %) of **AL437** as a solid of cream color. m.p 147-149 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ : 11.42 (s, 3H, NH-Trp), 8.21 (d, *J* = 8.1 Hz, 3H, Ar), 7.62 (d, *J* = 8.1 Hz, 3H, Ar), 7.27 – 7.18 (m, 8H, Ar), 7.16 – 7.04 (m, 5H, Ar), 7.01 (m, 8H, Ar), 4.43 (m, 3H, α-CHTrp), 3.25 (dd, *J* = 14.0 Hz, 7.5 Hz, 3H, β-CH₂Trp), 3.08 (dd, *J* = 14.0, 7.5 Hz, 3H, β-CH₂Trp), 1.92 – 1.66 (m, 12H, CH₂). ¹³C NMR (101 MHz, DMSO-*d*₆) δ : 173.1, 170.4, 137.2, 137.1, 129.3, 127.4, 126.3, 125.8, 122.8, 122.3, 119.3, 119.1, 118.1, 111.3, 93.0, 53.3, 30.6, 30.5, 29.3, 27.3. HPLC [gradient: H₂O:MeCN, 10-100% of A in 10 min]: 9.651 min. HRMS (ESI-) m/z: calculated for C₆₁H₅₇N₇O₁₁S₃ 1159.3278; found 1159.3269.

NMe-Trp(*p***NPS)-OH trimer (AL484).** Following the general procedure for the deprotection of methyl esters, the methyl ester derivative **4** (116 mg, 0.08 mmol) in THF (6 mL) at 0 °C (ice-bath) was treated with a solution of LiOH·H₂O (21 mg, 0.5 mmol) in

water (2 mL) to afford 101.21 mg (90%) of **AL484** as an amorphous yellow solid. m.p 160-163 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 8.18 (m, 3H, NHCO), 8.08 – 8.02 (m, 6H, Ar), 7.75 (d, *J* = 8.0 Hz, 3H, Ar), 7.48 (d, *J* = 8.0 Hz, 3H, Ar), 7.25 (t, *J* = 7.7 Hz, 3H, Ar), 7.12 (m, 9H, Ar), 4.44 (m, 3H, α-CHTrp), 3.62 (s, 9H, N-CH₃), 3.29 (dd, *J* = 14.0, 7.2 Hz, 3H, β-CH₂Trp), 3.15 (dd, *J* = 14.0, 7.2 Hz, 3H, β-CH₂Trp), 1.83 (d, *J* = 9.0 Hz, 12H, CH₂). ¹³C NMR (101 MHz, DMSO-*d*₆) δ: 172.9, 170.3, 146.6, 145.1, 138.1, 126.6, 125.7, 124.4, 123.5, 122.1, 120.1, 119.8, 119.6, 110.5, 93.2, 53.4, 30.3, 29.9, 29.4, 27.7. HRMS (ESI⁺) m/z: calculated for C₆₄H₆₀N₁₀O₁₇S₃ 1336.3300; found 1336.3295.

NMe-L-Trp-OH trimer (AL544). Following the general procedure for the deprotection of methyl esters, the methyl ester derivative **5** (50 mg, 0.05 mmol) in THF (5 mL) was treated with a solution of LiOH·H₂O (14 mg, 0.33 mmol) in water (2 mL) to afford 37 mg (78%) of **AL544** as an amorphous white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ : 8.22 (d, *J* = 7.8 Hz, 3H, NHCO), 7.53 (dt, *J* = 8.1, 1.0 Hz, 3H, Ar), 7.33 (dt, *J* = 8.1, 1.0 Hz, 3H, Ar), 7.10 (t, *J* = 7.6 Hz, 3H, Ar), 7.08 (s, 3H, Ar), 7.00 (t, *J* = 7.0 Hz, 3H, Ar), 4.44 (m, 3H, *α*-CHTrp), 3.68 (s, 9H, CH₃), 3.14 (dd, *J* = 14.6, 5.6 Hz, 3H, *β*-CH₂Trp), 2.98 (dd, *J* = 14.6, 5.6 Hz, 3H, *β*-CH₂Trp), 2.04 – 1.95 (m, 12H, CH₂). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 173.3, 170.6, 136.5, 127.9, 127.5, 121.0, 118.5, 118.4, 109.5, 109.2, 93.2, 53.1, 32.2, 30.6, 29.3, 27.0. HPLC [gradient: H₂O:MeCN, 10-100% of A in 10 min]: 8.076 min. HRMS (ESI-) m/z: calculated for C₄₆H₅₁N₇O₁₁ 877.3646; found 877.3655.

N^α-(**4**-fluorobenzyl)-L-Trp-OH tetramer (AL531). Following the general procedure for the deprotection of methyl esters, the methyl ester derivative **7** (32.2 mg, 0.019 mmol) in THF (6 mL) was treated with a solution of LiOH·H₂O (6.52 mg, 0.15 mmol) in water (2.5 mL) to afford 24 mg (80 %) of AL531 as an amorphous white solid. ¹H NMR (500 MHz, DMSO-*d*₆) *δ*: 8.24 (d, *J* = 7.7 Hz, 4H, NHCO), 7.54 (d, *J* = 7.9 Hz, 4H, Ar), 7.34 (d, *J* = 8.2 Hz, 4H, Ar), 7.25 (s, 4H, Ar), 7.16 (m, 8H, Ar), 7.05 (m, 12H, Ar), 6.97 (t, *J* = 7.3 Hz, 4H, Ar), 5.29 (s, 8H, CH₂Bn), 4.50 (m, 4H, α-CHTrp), 3.38 (m, 8H, OCH₂), 3.14 (m, 12H, OCH₂, β-CH₂Trp), 3.00 (dd, *J* = 14.5, 7.9 Hz, 4H, β-CH₂Trp), 2.24 (m, 8H, CH₂). ¹³C

NMR (101 MHz, CDCl₃) δ 173.6, 170.0, 162.3, 160.3, 135.8, 134.5, 134.5, 128.9, 128.9, 128.0, 127.3, 121.2, 118.7, 115.3, 115.1, 110.3, 110.0, 68.9, 67.0, 53.4, 48.1, 44.7, 35.8, 27.3. HRMS (ESI⁺) m/z: calculated for C₈₉H₈₈F₄N₈O₁₆ 1600.6254; found 1600.6334.

N^α-(**4**-carboxybenzyl)-*N*-Cbz-Trp-OH (AL441). Following the general procedure for the deprotection of methyl esters, the methyl ester derivative **9** (60 mg, 0.12 mmol) in THF (6 mL) was treated with a solution of LiOH·H₂O (10 mg, 0.25 mmol) in water (2 mL) to afford 40 mg (71%) of **AL441** as an amorphous white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.88 (dd, *J* = 8.3, 3.9 Hz, 2H, Ar), 7.58 (d, *J* = 8.5 Hz, 1H, Ar), 7.39 (m, 5H, Ar), 7.16 (m, 2H, Ar), 7.08 (qd, *J* = 4.9, 2.4 Hz, 1H, Ar), 7.03 – 6.97 (m, 1H, Ar), 6.84 (t, *J* = 7.4 Hz, 2H, Ar), 5.52 (d, *J* = 8.5 Hz, 1H, NCH₂-Ph), 5.43 (m, 1H, NHCO), 5.32 – 5.28 (m, 1H, OCH₂-Ph), 5.28 – 5.24 (m, 1H, OCH₂-Ph), 5.14 (d, *J* = 8.5 Hz, 1H, NCH₂-Ph), 4.95 (m, 1H, α-CHTrp), 3.48 – 3.40 (m, 2H, β-CH₂Trp). ¹³C NMR (101 MHz, CDCl₃) δ : 178.6, 172.3, 155.8, 144.6, 136.5, 131.0, 128.7, 128.4, 128.3, 127.7, 127.2, 125.3, 122.5, 120.1, 119.6, 109.9, 109.4, 67.2, 56.0, 48.9, 30.5. HPLC [gradient: H₂O:MeCN, 10-100% of A in 10 min]: 5.438 min. HRMS (ESI⁺) m/z: calculated for C₂₇H₂₄N₂O₆ 472.1634; found 472.1594.

N^α-(4-fluorobenzyl)-*N*-Cbz-Trp-OH (AL442). Following the general procedure for the deprotection of methyl esters, the methyl ester derivative **10** (57 mg, 0.12 mmol) in THF (6 mL) was treated with a solution of LiOH·H₂O (10 mg, 0.25 mmol) in water (1 mL) to afford 44 mg (80%) of **AL442** as an amorphous white solid. ¹H NMR (400 MHz, CDCl₃-*d*) δ : 7.57 (d, *J* = 7.9 Hz, 1H, Ar), 7.32 (m, 3H, Ar), 7.18 (m, 3H, Ar), 7.07 (t, *J* = 7.0 Hz, 1H, Ar), 7.00 – 6.87 (m, 6H, Ar), 5.28 (d, *J* = 8.0 Hz, 1H, CH₂Ph), 5.17 (s, 2H, CH₂Ph), 5.09 (q, *J* = 12.3 Hz, 2H, CH₂Ph), 4.72 (m, 1H, *α*-CHTrp), 3.38 (dd, *J* = 14.8, 5.4 Hz, 1H, *β*-CH₂Trp), 3.29 (dd, J = 14.8, 5.4 Hz, 1H, *β*-CH₂Trp). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 162.3 (*J*_{C-F} = 247 Hz), 156.1, 136.5, 136.2, 133.2, 128.7, 128.4, 128.4, 128.3, 127.1, 122.3, 119.8, 119.1, 115.8 (*J*_{C-F} = 21.5 Hz) 109.9, 109.1, 77.2, 67.2, 54.7, 49.4,

27.8. HPLC [gradient: H₂O:MeCN, 10-100% of A in 10 min]: 6.612 min. HRMS (ESI⁺) m/z: calculated for C₂₆H₂₃FN₂O₄ 446.1642; found 446.1655.

References

- 1.-Mueller WH, Butter PE. 1968. Factors influencing the nature of the episulfonium ion in sulfenyl chloride addition to terminal olefins. J Am Chem Soc 90, 2075-2081.
- 2.- Raban M., Jones FB Jr. 1971. Stereochemistry at trivalent nitrogen. XI. Effect of polar substituents on the barrier to rotation about the sulfenyl sulfur-nitrogen bond in Nalkyl-N-arenesulfonylarenesulfenamides. J Am Chem Soc, 93, 2692- 2699.
- 3.- Martínez-Gualda B, Sun L, Martí-Marí O, Noppen, S, Abdelnabi R., Bator C.M., Quesada E, Delang L, Mirabelli C, Lee H, Schols D, Hafenstein S, Camarasa M.J, Gago F, San-Félix A. J. Med. Chem 2019 in press, PubMed ID: 3180904, DOI: 10.1021/acs.jmedchem.9b01737.

1.3. ¹*HNMR and* ¹³*CNMR of the synthesized compounds* Trimer 2

Trimer 3

Trimer 5

Tetramer 7

Monomer 9

FigureS1: Quantification data (total intensity) of immunofluorescence staining. Different concentrations of AL440 were used and the fluorescence intensity signal is measured from 5 different spots/well. Images were processed by high content imaging (CellInsight CX5, Thermo Scientific) and the values are derived from 3 independent experiments. As shown in the Figure, the fluorescence intensity is decreased when the cells are treated with concentrations of AL440 higher than the EC₅₀ values.