Supplemental Material

Engineering CRISPR Interference System to Repress Class 1 Integron in *E. coli*

Qingyang Li^a, Peng Zhao^b, Lili Li^c, Haifeng Zhao^a, Lei Shi^{c*}, Pingfang Tian^{b*}

^a School of Food Sciences and Technology, South China University of Technology, Guangzhou 510641,
^b College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029,
^c Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China

*Corresponding author

E-mail: leishi@jnu.edu.cn (LS)

E-mail: tianpf@mail.buct.edu.cn (PT)

1 Legends

2	Fig. S1 Partial sequencing results of seven CRISPRi recombinant plasmids. The base-pairing regions of
3	all CRISPRi recombinant plasmids plv-dCas9-R(0-6) were the same as designed, whereby "R(0-6)"
4	represent different sgRNAs.
5	Fig. S2 Partial sequencing results of ARG cassettes integrated into R388 class 1 integron. (A-B) Partial
6	sequence of integrated fragment intI1-attI-aadA1 (A) or intI1-attI-aadB (B) through conjugation from the
7	control donor E. coli C600(R388+plv-dCas9-R0+pINT-cassette) to the recipient E. coli J53 without
8	CRISPRi induction.
9	Fig. S3 Plasmid loss of the CRISPRi recombinant plasmid plv-dCas9-R3 in serial passage. (A) Colony
10	counts were enumerated on LB+CM plates to assess plasmid loss of every ten generations continuously
11	passaged in liquid medium containing CM. (B) Colony counts were enumerated on LB+CM plates to
12	determine plasmid loss of every ten generations in serial passage without exposure to CM. CM,
13	chloramphenicol; G, generation.
14	Fig. S4 Schematic outline of construction of pINT-cassette. (A) Sequence of BmgBI-P _{tac} for recombinant
15	plasmid pINT-cassette. (B) Schematic diagram of pINT-cassette. (C-D) The resulting recombinant plasmids
16	pINT- <i>aadA1</i> (C) and pINT- <i>aadB</i> (D).
17	Table S1 Strains and vectors used in this study.

- 18 **Table S2 Oligonucleotides and primers used in this study**.
- 19 Table S3 IC₅₀ of TMP and SUL in recombinant *E. coli* with/without aTc induction.

21 Fig S1 Partial sequencing results of CRISPRi recombinant plasmids. The base-pairing regions of plv-

22 dCas9-R(0-6) were the same as designed, whereby "R(0-6)" represent different sgRNAs.

24 Fig S2 Partial sequencing results of ARG cassettes integrated into R388 class 1 integron. (A-B) Partial

- 25 sequence of integrated fragment *intI1-attI-aadA1* (A) or *intI1-attI-aadB* (B) through conjugation from the
- 26 control donor E. coli C600(R388+plv-dCas9-R0+pINT-cassette) to the recipient E. coli J53 without
- 27 CRISPRi induction.

29 Fig S3 Plasmid loss of CRISPRi recombinant plasmid plv-dCas9-R3 in serial passage. (A) Colony

30 counts were enumerated on LB+CM plates to assess plasmid loss of every ten generations continuously

31 passaged in liquid medium containing CM. (B) Colony counts were enumerated on LB+CM plates to

32 determine plasmid loss of every ten generations in serial passage without exposure to CM. CM,

33 chloramphenicol; G, generation.

- 35 Fig S4 Schematic diagram of construction of pINT-cassette. (A) Sequence of BmgBI-P_{tac} for recombinant
- 36 plasmid pINT-cassette. (B) Schematic diagram of pINT-cassette. (C-D) The resulting recombinant plasmids
- 37 pINT-*aadA1* (C) and pINT-*aadB* (D).

Vectors/Strains	Description	Source
Vectors		
R388	33 kb conjugative plasmid containing a class 1	(1) Stokes&
	integron with dfrB2-orfA cassette array,	Hall,198
	TMP ^R , SUL ^R	9
plv-dCas9-sgRNA	CRISPRi encoding vector, CM ^R	(2) Lv et al.
		2015
plv-dCas9-R0	CRISPRi recombinant plasmid, sgRNA R0, CM ^R	This study
plv-dCas9-R1	CRISPRi recombinant plasmid, sgRNA R1, CM ^R	This study
plv-dCas9-R2	CRISPRi recombinant plasmid, sgRNA R2, CM ^R	This study
plv-dCas9-R3	CRISPRi recombinant plasmid, sgRNA R3, CM ^R	This study
plv-dCas9-R4	CRISPRi recombinant plasmid, sgRNA R4, CM ^R	This study
plv-dCas9-R5	CRISPRi recombinant plasmid, sgRNA R5, CM ^R	This study
plv-dCas9-R6	CRISPRi recombinant plasmid, sgRNA R6, CM ^R	This study
pET-28a	Cloning vector, KAN ^R	Novagen
pEtac-28a	pET-28a with original T7 promoter replaced by	This study
	<i>tac</i> promoter, KAN ^R	
ptacINT	pEtac-28a with intI1 gene overexpressing under	This study
	<i>tac</i> promoter, KAN ^R	
pINT-aadA1	ptacINT with <i>aadA1</i> cassette added, KAN ^R	This study
pINT-aadB	ptacINT with <i>aadB</i> cassette added, KAN ^R	This study
R388-aadA1	R388 with <i>aadA1</i> cassette inserted, TMP ^R ,	This study
	SUL ^R , STR ^R	
R388-aadB	R388 with $aadB$ cassette inserted, TMP ^R ,	This study
	SUL ^R , GEN ^R	
Strains		

50 Table S1 Strains and vectors used in this study.

E. coli C600	Wild-type strain, F- tonA21 thi-1 thr-1 leuB6	Lab stock
	$lacY1 glnV44 rfbC1 fhuA1 \lambda^{-}$	
E. coli Top10	Competent cells	Biomed
<i>E. coli</i> DH5a(R388)	E. coli DH5a carrying plasmid R388	Lab stock
E. coli ATCC 25922	Quality control strain for determination of	ATCC
	antibiotic resistance	
Salmonella sp.S084	Wild-type strain of <i>aadB</i> cassette	Lab stock
Salmonella sp.S010	Wild-type strain of <i>aadA1</i> cassette	Lab stock
E. coli C600(R388+plv-	Recombinant E. coli C600 carrying R388 and	This study
dCas9-R0)	plv-dCas9-R0	
E. coli C600(R388+plv-	Recombinant E. coli C600 carrying R388 and	This study
dCas9-R1)	plv-dCas9-R1	
E. coli C600(R388+plv-	Recombinant E. coli C600 carrying R388 and	This study
dCas9-R2)	plv-dCas9-R2	
E. coli C600(R388+plv-	Recombinant E. coli C600 carrying R388 and	This study
dCas9-R3)	plv-dCas9-R3	
E. coli C600(R388+plv-	Recombinant E. coli C600 carrying R388 and	This study
dCas9-R4)	plv-dCas9-R4	
E. coli C600(R388+plv-	Recombinant E. coli C600 carrying R388 and	This study
dCas9-R5)	plv-dCas9-R5	
E. coli C600(R388+plv-	Recombinant E. coli C600 carrying R388 and	This study
dCas9-R6)	plv-dCas9-R6	
E. coli C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R0+pINT-aadA1)	plv-dCas9-R0 and pINT-aadA1	
E. coli C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R1+pINT-aadA1)	plv-dCas9-R1 and pINT-aadA1	
E. coli C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R2+pINT-aadA1)	plv-dCas9-R2 and pINT-aadA1	

<i>E. coli</i> C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R3+pINT-aadA1)	plv-dCas9-R3 and pINT-aadA1	
E. coli C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R4+pINT-aadA1)	plv-dCas9-R4 and pINT-aadA1	
E. coli C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R5+pINT-aadA1)	plv-dCas9-R5 and pINT-aadA1	
E. coli C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R6+pINT-aadA1)	plv-dCas9-R6 and pINT-aadA1	
E. coli C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R0+pINT-aadB)	plv-dCas9-R0 and pINT-aadB	
E. coli C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R1+pINT-aadB)	plv-dCas9-R1 and pINT-aadB	
E. coli C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R2+pINT-aadB)	plv-dCas9-R2 and pINT-aadB	
<i>E. coli</i> C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R3+pINT-aadB)	plv-dCas9-R3 and pINT-aadB	
<i>E. coli</i> C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R4+pINT-aadB)	plv-dCas9-R4 and pINT-aadB	
<i>E. coli</i> C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R5+pINT-aadB)	plv-dCas9-R5 and pINT-aadB	
<i>E. coli</i> C600(R388+plv-	Donor E. coli C600 carrying R388,	This study
dCas9-R6+pINT-aadB)	plv-dCas9-R6 and pINT-aadB	
E.coli J53	Wild-type recipient	Lab stock
E. coli J53 (R388)	Transconjugant E. coli J53 carrying R388	This study
E. coli J53 (R388-aadA1)	Transconjugant E. coli J53 carrying R388-aadA1	This study
E. coli J53 (R388-aadB)	Transconjugant E. coli J53 carrying R388-aadB	This study

51 TMP, trimethoprim; SUL, sulfamethoxazole; CM, chloramphenicol; KAN, kanamycin; STR, streptomycin;

52 GEN, gentamicin; ATCC, American type culture collection.

Primers	Sequences (5'-3')	Vectors	
Oligonucleotides used for sgRNA synthesis			
BspQI-R0-F	aaaTTCGACGTGAACTTGGTACG	plv-dCas9-R0	
R0-BspQI-R	aacCGTACCAAGTTCACGTCGAA		
BspQI-R1-F	aaaCCAGTTGACATAAGCCTGTT	plv-dCas9-R1	
R1-BspQI-R	aacAACAGGCTTATGTCAACTGG		
BspQI-R2-F	aaaCACACCGTGGAAACGGATGA	plv-dCas9-R2	
R2-BspQI-R	aacTCATCCGTTTCCACGGTGTG		
BspQI-R3-F	aaaAGAACCTTGACCGAACGCAG	plv-dCas9-R3	
R3-BspQI-R	aacCTGCGTTCGGTCAAGGTTCT		
BspQI-R4-F	aaaGCTGCGTTCGGTCAAGGTTC	plv-dCas9-R4	
R4-BspQI-R	aacGAACCTTGACCGAACGCAGC		
BspQI-R5-F	aaaCGTGCCTTCATCCGTTTCCA	plv-dCas9-R5	
R5-BspQI-R	aacTGGAAACGGATGAAGGCACG		
BspQI-R6-F	aaaCCGAACAGGCTTATGTCAAC	plv-dCas9-R6	
R6-BspQI-R	aacGTTGACATAAGCCTGTTCGG		
Primers used for c	construction of pINT-cassette		
NdeI-intI1-F	attactaacaacatatgAAAACCGCCACTGCGCC	ptacINT	
	GTTACC		
intI1-XhoI-R	tatactcgagCTACCTCTCACTAGTGAGGGG		
	CGGC		
BglII-aadA1-F	aatagatctGGTTAACAAGTGGCAGC	pINT-aadA1	
aadA1-BmgBI-R	acaagatctGACCTGATAGTTTGGCTG		
BglII-aadB-F	cgtagatctAAGCAGCAAGCGCGTTA	pINT-aadB	
aadB-BmgBI-R	ataagatctGGCCGAGCGCTGGAATA		
Primers used for colony PCR			
BspQI-R0-F	aaaTTCGACGTGAACTTGGTACG	plv-dCas9-R0	

53 Table S2 Oligonucleotides and primers used in this study.

sgRNA-CX-R	GCGGAATATATCCCTAGGCCTGCAG	
BspQI-R1-F	aaaCCAGTTGACATAAGCCTGTT plv-dCas	
sgRNA-CX-R	GCGGAATATATCCCTAGGCCTGCAG	
BspQI-R2-F	aaaCACACCGTGGAAACGGATGA	plv-dCas9-R2
sgRNA-CX-R	GCGGAATATATCCCTAGGCCTGCAG	
BspQI-R3-F	aaaAGAACCTTGACCGAACGCAG	plv-dCas9-R3
sgRNA-CX-R	GCGGAATATATCCCTAGGCCTGCAG	
BspQI-R4-F	aaaGCTGCGTTCGGTCAAGGTTC	plv-dCas9-R4
sgRNA-CX-R	GCGGAATATATCCCTAGGCCTGCAG	
BspQI-R5-F	aaaCGTGCCTTCATCCGTTTCCA	plv-dCas9-R5
sgRNA-CX-R	GCGGAATATATCCCTAGGCCTGCAG	
BspQI-R6-F	aaaCCGAACAGGCTTATGTCAAC	plv-dCas9-R6
sgRNA-CX-R	GCGGAATATATCCCTAGGCCTGCAG	
intI1-F	TGATGGCGACGCACGACA	R388
intI1-R	TCCTGGCTGGCGAACGAG	
BglII-aadA1-F	aatagatctGGTTAACAAGTGGCAGC	pINT-aadA1
intI1-CX-R	ATCCGGATATAGTTCCTCCTTTCAGCA	
	AAAAACC	
BglII-aadB-F	cgtagatctAAGCAGCAAGCGCGTTA	pINT-aadB
intI1-CX-R	ATCCGGATATAGTTCCTCCTTTCAGCA	
	AAAAACC	
Primers used for DN	NA sequencing	
sgRNA-CX-F	TGTTTGTCGGTGAACGCTCTCTACTAG	plv-dCas9-R(0-6)
sgRNA-CX-R	GCGGAATATATCCCTAGGCCTGCAG	
intI1-CX-F	GAAGGATATACCATGGGCAGCAGCC	ptacINT
intI1-CX-R	ATCCGGATATAGTTCCTCCTTTCAGCA	
	AAAAACC	
Cassette-CX-F	GGCTGCTGCCCATGGTATATCCTTC	pINT-cassette

Cassette-CX-R	CACCATACCCACGCCGAAACAAGCG			
Integration-CX-F	ACGAACCCAGTTGACATAAG			
aadA1-CX-R	TCGATGACGCCAACTAC	R388-aadA1		
Integration-CX-F	ACGAACCCAGTTGACATAAG			
aadB-CX-R	GGCAGATTTCGCTCATCTG	R388-aadB		
Primers used for R	Primers used for RT-qPCR			
16S rRNA-RT-F	CCTACGGGAGGCAGCAG	-		
16S rRNA-RT-R	ATTACCGCGGCTGCTGG			
dCas9-RT-F	TGGTGGAAGAAGACAAGAA	plv-dCas9-R(0-6)		
dCas9-RT-R	CGCAGATGATAGATAGTTGGA			
intI1-RT-F	ATCGTTTGTTCGCCCAGCTT	pINT-cassette and R388		
intI1-RT-R	GTGCCGTGATCGAAATCCAG			
drfB2-RT-F	AGAAATCTGGTGCCGCTTG	R388		
drfB2-RT-R	ACTGAGCCTGGGTGGGATT			
sul1-RT-F	ACGGTGTTCGGCATTCTGA	R388		
sul1-RT-R	TCCGACTCGCAGCATTTCA			

54 Primers were designed by Primer Premier 5.0 software using sequences downloaded from NCBI 55 (http://www.ncbi.nlm.nih.gov/) as templates. The nucleotides labeled with gray background are the 56 restriction endonuclease sites.

Strains	aTc	IC ₅₀ of TMP (µg/ml)	IC50 of SUL (µg/ml)
E. coli ATCC25922	-	2	32
<i>E. coli</i> C600(R388)	-	512	4096
E. coli C600(R388+plv-dCas9-R0)	-	512	4096
	+	512	4096
E. coli C600(R388+plv-dCas9-R1)	-	512	4096
	+	64	1024
E. coli C600(R388+plv-dCas9-R2)	-	512	4096
	+	64	256
<i>E. coli</i> C600(R388+plv-dCas9-R3)	-	512	4096
	+	64	128
E. coli C600(R388+plv-dCas9-R4)	-	512	4096
	+	64	2048
E. coli C600(R388+plv-dCas9-R5)	-	512	4096
	+	64	2048
E. coli C600(R388+plv-dCas9-R6)	-	512	4096
	+	64	128

57 Table S3 IC₅₀ of TMP and SUL in recombinant *E. coli* with/without aTc induction.

58 IC₅₀, half-maximal inhibitory concentration; TMP, trimethoprim; SUL, sulfamethoxazole; aTc,
59 anhydrotetracycline.

60	1.	Stokes HW, Hall RM. 1989. A novel family of potentially mobile DNA elements encoding site-
61		specific gene-integration functions: integrons. Mol Microbiol 3:1699-1683.
62	2.	Lv L, Ren YL, Chen JC, Wu Q, Chen GQ. 2015. Application of CRISPRi for prokaryotic
63		metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB)
64		biosynthesis. Metab Eng 29:160-8.

65