Supplementary Information

Visible Light-Driven *p*-Type Semiconductor Gas Sensors Based on CaFe₂O₄ Nanoparticles ⁺

Qomaruddin ^{1,2,3,*}, Olga Casals ¹, Andris Šutka ⁴, Tony Granz ², Andreas Waag ², Hutomo Suryo Wasisto ², Joan Daniel Prades ^{1,*} and Cristian Fàbrega ^{1,*}

- ¹ MIND-IN2UB, Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Barcelona 08028, Spain; ocasals@el.ub.edu (O.C.)
- ² Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Braunschweig 38106, Germany; t.granz@tu-braunschweig.de (T.G.); a.waag@tu-braunschweig.de (A.W.); h.wasisto@tu-braunschweig.de (H.S.W.)
- ³ Research Center for Physics, Indonesian Institute of Sciences (LIPI), Tangerang Selatan 15314, Indonesia
- ⁴ Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga 1048, Latvia; andris.sutka@rtu.lv
- * Correspondence: qomaruddin@el.ub.edu (Q.); cfabrega@el.ub.edu (C.F.); dprades@el.ub.edu (J.D.P.)

Figure S1. Dynamic responses of CaFe₂O₄ towards NH₃ reducing gas in varied vapor concentrations (i.e., 10, 20, 30, 50, and 100 ppm) under light activation from (**a**) blue (465 nm), (**b**) green (520 nm), (**c**) yellow (590 nm), (**d**) red (640 nm) LEDs and (**e**) in dark condition (without illumination). (**f**) Comparison of the sensor sensitivity under visible light exposures and dark condition for NH₃ sensing.

Figure S2. Dynamic responses of CaFe₂O₄ towards NO₂ gas in varied vapor concentrations (i.e. 1, 2, 3, 5, and 10 ppm) under light activation from (**a**) blue (465 nm), (**b**) green (520 nm), (**c**) yellow (590 nm), (**d**) red (640 nm) LEDs and (**e**) in dark condition (without illumination). (**f**) Comparison of the sensor sensitivity under visible light exposures and dark condition for NO₂ sensing.