1 Supplementary Information

2

3 Genome editing retraces the evolution of toxin resistance in the monarch butterfly

- 4 Karageorgi, M., Groen, S. C., Sumbul, F., Pelaez, J. N., Verster, K. I., Aguilar, J. M., Hastings,
- A. P., Bernstein, S. L., Matsunaga, T., Astourian, M., Guerra, G., Rico, F., Dobler, S., Agrawal,
 A. A. & Whiteman, N. K.
- 7

8 Contents

9	Supplementary Text	Page 2-5
10	Additional References Supplementary Text	Page 6
11	Supplementary Table 1	Page 7-8
12	Supplementary Table 2	Page 9-13
13	Supplementary Table 3	Page 14
14	Supplementary Table 4	Page 15
15	Supplementary Table 5	Page 16
16	Supplementary Table 6	Page 17-19
17	Supplementary Table 7	Page 20
18	Supplementary Table 7	Page 21
19	Additional References Supplementary Tables	Page 22-29

24 Supplementary Text

25

Ancestral sequence reconstruction of coevolving sites in ATPα, and associations with feeding/sequestration

28

29 Insect supertree reconstruction

30 To study the evolution of organismal traits and of ATPa sites associated with 31 specialization on cardiac glycoside-containing plants, we first estimated a phylogeny of insect 32 species adapted to feeding on plants that produce cardenolides and/or bufadienolides⁶, the non-33 adapted close relatives of these insects, and two vertebrate outgroups, Sus scrofa and Squalus 34 acanthias. Phylogenetic relationships between all surveyed species were obtained from previous 35 studies (see **Suppl. Table 1** for references) using a supertree approach. These phylogenetic 36 studies used overlapping but non-identical molecular markers, and thus, branch lengths were 37 estimated on this fixed species topology. We used the full-length coding sequences of $ATP\alpha$, and 38 the COI gene that codes for the mitochondrial cytochrome c oxidase subunit 1 and is widely used 39 in phylogenetic studies, which were available for most species (see Suppl. Table 2 for ID 40 numbers). The data was implemented in the IQ-TREE web server version $1.6.6^{31}$, in which all 41 settings were left to default, with the exception of using the FreeRate heterogeneity model^{55,56}. 42 The output tree was used for all subsequent analyses. We obtained $ATP\alpha$ sequences and 43 information on the level of specialization on cardiac glycoside-producing host plants, including 44 presence/absence of feeding on plants producing cardiac glycosides and presence/absence of 45 cardiac glycoside sequestration from the literature (no new data was collected, see Suppl. Table 3 for references)^{7-11,28,57-60}. Even though the aphid *Myzus persicae* has been reported to 46

47 (passively) sequester cardiac glycosides, this species has a wide host range and is not a specialist
48 on cardiac glycoside-producing host plants like the aphid *Aphis nerii*⁶⁰. Therefore, we decided
49 not to categorize *M. persicae* with insects that are specialized on cardiac glycoside-producing
50 host plants for ASR (see below).

51 Based on the literature cited, we assumed that amino acid substitutions in the H1-H2 52 extracellular loop of ATP α are fixed substitutions in the included species. Data for multiple 53 individuals per species were only available for some of the *Danaus* and *Drosophila* species, and 54 polymorphic non-synonymous substitutions were only detected in *D. subobscura*²⁷. Because 55 some studies did not include closely related non-cardiac glycoside-specialized species, additional 56 sequences from close relatives were downloaded from PDB, GenBank, LepBase, and InsectBase 57 for the Coleoptera, Diptera and Lepidoptera, when sequences of $ATP\alpha$ were available. These 58 sequences included those from additional species of Diptera to reconstruct the evolution of resistance in this group^{7,27,59}. Additional Coleoptera and Lepidoptera species were included to 59 60 reconstruct the four separate instances of the evolution of cardiac-glycoside resistance in each order^{9,10,57,58}. A complete list of sequences included, along with their source databases, ID 61 62 numbers, and references, can be found in Suppl. Table 2.

63

Associations between sequence evolution of ATPα residues and feeding on cardiac glycoside producing plants and toxin sequestration

We focused our analyses on the first extracellular loop (H1-H2 domain) of ATPα, and,
using TraitRateProp³⁷, identified residues whose rate of amino acid sequence evolution was
associated with changes in character states for feeding on cardiac glycoside-producing plants.
The joint likelihood framework of TraitRateProp tests the hypothesis of an association between a

trait and the evolutionary rate of a sequence, and where an association is found, it computes the site-specific Bayes factor between the rate of sequence evolution at each site and the trait. This analysis required an ultrametric rooted tree, a multi-sequence alignment, and trait data. The ultrametric tree was constructed using the makeChronosCalib function in the ape package in R³³, using a calibration range of 346-401 MYA for the origin of Hemiptera + Thysanoptera, given by the confidence interval estimated from Misof *et al.*⁶¹. Trait data can be found in **Suppl. Table 3**.

77 Epistasis/co-evolution of ATPα amino acid sites

78 To detect candidate intramolecular epistatic interactions or co-evolution between amino 79 acid sites within the H1-H2 loop of ATP α that might constrain or enable the evolution of TSI to cardiac glycosides, we used the Spidermonkey/Bayesian graphical model (BGM) method in 80 HyPhy version 2.3.14^{35,38}. We used the default substitution models (HKY85 nucleotide and 81 82 Muse-Gaut codon substitution models) and assumed a maximum of two parents per node. The 83 MCMC chain was run for 100,000 iterations, with 10,000 burn-in, and sampled every 1,000 84 iterations. Sites in this analysis were filtered based on a minimum number of five substitutions 85 across the phylogeny. Interactions between sites with a marginal posterior probability (PP) > 0.586 were considered statistically significant. For the full results of this analysis, see **Extended Data** 87 **Fig. 1**.

88

89 ASR of amino acid sequence and feeding/sequestering states

ASR of amino acid sequences of the H1-H2 extracellular loop of ATPα was performed
 using joint maximum likelihood methods implemented in HyPhy version 2.3.14^{34,35}. A custom
 code to execute this analysis was generously provided by Art Poon and is available³⁸. ASR of

93 cardiac glycoside feeding and sequestration was performed using the ace function of the ape 94 package in R³³, with feeding and sequestering considered as one ordinal trait. Three models for 95 discrete character evolution were considered (equal rates, symmetric, and all rates different). 96 Statistical significance between likelihoods for each model was tested using a chi-square test. 97 The amino acid sites identified as coevolving and significantly associated with feeding and 98 sequestering were 111, 119, and 122. The number of substitutions at these three sites that 99 occurred across each branch based on the ASR of the H1-H2 loop was then mapped onto the insect tree, along with ancestral states of feeding and sequestering, and visualized using the 100 101 Interactive Tree Of Life (iTOL)³⁶.

102 Additional References for Supplementary Text

- 104 55. Soubrier, J., Steel, M., Lee, M. S., Der Sarkissian, C., Guindon, S., Ho, S. Y. & Cooper, A.
- 105 The influence of rate heterogeneity among sites on the time dependence of molecular rates. Mol.
- 106 Biol. Evol. **29,** 3345-3358 (2012).
- 107 56. Yang, Z. A space-time process model for the evolution of DNA sequences. Genetics 139,
 108 993-1005 (1995).
- 109 57. Dobler, S., Petschenka, G., Wagschal, V. & Flacht, L. Convergent adaptive evolution how
- 110 insects master the challenge of cardiac glycoside-containing host plants. Entomol. Exp. Appl.
- 111 **157,** 30-39 (2015).
- 112 58. Labeyrie, E. & Dobler, S. Molecular adaptation of *Chrysochus* leaf beetles to toxic
- 113 compounds in their food plants. Mol. Biol. Evol. 21, 218-221 (2004).
- 114 59. Schneider, M., Wunder, C., Reuss, E., Toennes, S. W. & Mebs, D. Evading plant defence:
- 115 infestation of poisonous milkweed fruits (Asclepiadaceae) by the fruit fly Dacus siliqualactis
- 116 (Diptera: Tephritidae). Toxicon **139**, 13-19 (2017).
- 117 60. Züst, T. & Agrawal, A. A. Population growth and sequestration of plant toxins along a
- 118 gradient of specialization in four aphid species on the common milkweed Asclepias syriaca.
- 119 Func. Ecol. **30**, 547-556 (2016).
- 61. Misof, B., *et al.* Phylogenomics resolves the timing and pattern of insect evolution. Science
 346, 763-767 (2014).
- 122
- 123
- 124

125 Supplementary Tables 1 – 8

126 Supplementary Table 1. Phylogenetic relationships used in reconstruction of the insect

- 127 supertree.
- 128

Clade	References for insect species phylogeny reconstruction					
Pterygota (winged insects)	Misof, Science, 2014					
	Rainford, PLoS ONE, 2014					
	Wiens, Nat Commun, 2015					
Hemiptera	Bramer, Proc R Soc B, 2015					
	Dobler, PNAS, 2012					
	Li, Sei Rep, 2015					
	Rainford, PLoS ONE, 2014					
	Thorpe, BMC Genomics, 2016					
	Wiens, Nat Commun, 2015					
	Zhen, Science, 2012					
Hymenoptera	Boevé, BMC Evol Biol, 2013					
	Dobler, PNAS, 2012					
	Dobler, Entomol Exp et Appl, 2015					
	Peters, Curr Biol, 2017					
	Rainford, PLoS ONE, 2014					
	Wiens, Nat Commun, 2015					
Coleoptera	Dobler, PNAS, 2012					
	Gómez-Zurita, PLoS ONE, 2007 Hunt, Science, 2007					
	Hunt, Science, 2007					
	Labeyrie and Dobler, Mol Biol Evol, 2004					
	McKenna, Syst Entomol, 2015					
	Wiens, Nat Commun, 2015					
	Zhen, Science, 2012					
Lepidoptera	Aardema, Evolution, 2016					
	DaCosta, Ann ESA, 2006					
	Espeland, Curr Biol, 2018					
	Heikkilä, Proc R Soc B, 2012					
	Kawahara, Proc R Soc B, 2014					
	Kunte, Evolution, 2009					
	Mitchell, Syst Entomol, 2006					
	Petschenka, Evolution, 2013					
	Wiens, Nat Commun, 2015					
	Zahiri, Zool Scripta, 2011					
	Zaspel, PLoS ONE, 2014					
Diptera	Pegueroles, Sci Rep, 2016					
	Petschenka Am Nat 2017					

	San Jose, Mol Phylogenet Evol, 2017	
	Seetharam, PeerJ, 2013	
	Schneider, Toxicon, 2017	
	Virgilio, Mol Phylogenet Evol, 2015	
	Wiegmann, PNAS, 2011	
129	Wiens, Nat Commun, 2015	
130		
131		
132		
133		
134		
135		
136		
137		
138		
139		
140		
141		
142		
143		
144		
145		
146		
147		
148		
149		
150		
151		

Supplementary Table 2. List of $ATP\alpha$ and *COI* sequences used for molecular evolution analyses (when multiple paralogs are present the copies used in the phylogeny are highlighted in

yellow).

Clade	Species	ATP α Copy	<i>ATPα</i> Source	<i>ATPα</i> ID Number	Reference	<i>COI</i> ID Number from GenBank
Vertebr ata	Sus scrofa	1A1	PDB	3N23_A	Yatime et al, J Struct Biol, 2011	КТ372092.1
	Squalus acanthias	1A1	PDB	3A3Y_A	Ogawa et al, PNAS, 2009	KP192399.1
Hemipt era	Oncopeltus fasciatus	1C	GenBank	JQ771518.1	Zhen et al, Science, 2012	KR565226.1
	Oncopeltus fasciatus	1B	GenBank	JQ771519.1	Zhen et al, Science, 2012	KR565226.1
	Oncopeltus fasciatus	1A	GenBank	JQ771520.1	Zhen et al, Science, 2012	KR565226.1
	Lygaeus kalmii	1C	GenBank	JQ771515.1	Zhen et al, Science, 2012	KR581102.1
	Lygaeus kalmii	1B	GenBank	JQ771514.1	Zhen et al, Science, 2012	KR581102.1
	Lygaeus kalmii	1A	GenBank	JQ771513.1	Zhen et al, Science, 2012	KR581102.1
	Largus sp.	1	GenBank	HE956738.1	Dobler et al, PNAS, 2012	Not available
	Pyrrhocoris apterus	1	GenBank	HE956739.1	Dobler et al, PNAS, 2012	KM023058.1
-	Halyomorpha halys	1	GenBank	XM_014416433.2	i5K Consortium, J Hered, 2013	KR070751.1
	Boisea trivittata / Leptocoris trivittatus	1	GenBank	JQ771499.1	Zhen et al, Science, 2012	KR035416.1
	Cimex lectularius	1	GenBank	XM_014394882.2	i5K Consortium, J Hered, 2013	KR044731.1
	Nilaparvata lugens	1	GenBank	XM_022328639.1	Xue, Genome Biol, 2014	JN391181.1
	Aphis nerii	1	GenBank	JQ771496.1	Zhen et al, Science, 2012	KR581182.1
	Acyrthosiphon pisum	1	GenBank	XM_016802834.1	International Aphid Genomics Consortium, PLoS Biol, 2010	AB506719.1
	Myzus persicae	1	GenBank	XM_022311823.1	Mathers, Genome Biol, 2017	KR575138.1
	Bemisia tabaci	1	GenBank	XM_019041062.1	Chen, BMC Biol, 2016	LN614545.1
Psocod ea	Pediculus humanus	1	GenBank	XM_002427669.1	Kirkness, PNAS, 2010	AY695985.1
Hymen optera	Apis mellifera	1	GenBank	XM_006564160.2	Honeybee Genome Sequencing Consortium, Nature, 2006	KX051673.1
	Camponotus floridanus	1	GenBank	XM_011260609.3	Bonasio, Science, 2010	AY334397.1
	Cephus cinctus	1	GenBank	XM_015729628.2	i5K Consortium, J Hered, 2013	KR879345.1
	Monophadnus latus	1	GenBank	LN736262.1	Dobler, Entomol Exp Appl, 2015	Not available
	Pachyprotasis variegata	1	GenBank	LN736263.1	Dobler, Entomol Exp Appl, 2015	LN736268.1
	Pachyprotasis rapae	1	GenBank	LN736264.1	Dobler, Entomol Exp Appl, 2015	LN736267.1
Coleopt era	Rhyssomatus lineaticollis	1A	GenBank	JQ771524.1	Zhen et al, Science, 2012	Not available
	Rhyssomatus lineaticollis	1B	GenBank	JQ771523.1	Zhen et al, Science, 2012	Not available
	Dendroctonus ponderosae	1	GenBank	XM_019913697.1	Keeling, Genome Biol, 2013	JQ308436.1
	Cyrtepomistus castaneus	1	GenBank	JQ771502.1	Zhen et al, Science, 2012	Not available, but also not in original phylogeny
	Tetraopes tetrophthalmus	1	GenBank	JQ771526.1	Zhen et al, Science, 2012	KR485899.1
	Anoplophora glabripennis	1	GenBank	XM_018706533.2	McKenna, Genome Biol, 2016	AB439154.1

	Megacyllene robiniae	1	GenBank	JQ771517.1	Zhen et al, Science, 2012	KU255678.1
	Alticinae sp.	1	GenBank	HE956742.1	Dobler et al, PNAS, 2012	Not available for this submitted individual
	Labidomera clivicollis	1	GenBank	JQ771511.1	Zhen et al, Science, 2012	KR486314.1
	Leptinotarsa decemlineata	1	GenBank	XM_023161024.1	Schoville, Sci Rep, 2018	AY165708.1
	Gastrophysa viridula	1	GenBank	HE956744.1	Dobler et al, PNAS, 2012	MH323135.1
	Plagiodera versicolora	1	GenBank	JQ771522.1	Zhen et al, Science, 2012	KM448255.1
	Chrysochus auratus	1B	GenBank	JQ771501.1	Zhen et al, Science, 2012	AY165728.1
	Chrysochus auratus	1A	GenBank	JQ771500.1	Zhen et al, Science, 2012	AY165728.1
	Chrysochus cobaltinus	1B	GenBank	AJ549438.1	Labeyrie and Dobler, Mol Biol Evol, 2004	Not available
	Chrysochus asclepiadeus	1	GenBank	HE956740.1	Dobler et al, PNAS, 2012	KP306805 1
	Chrysochus chinensis	1	GenBank	AJ617744.1	Labeyrie and Dobler, Mol Biol Evol, 2004	KU188478.1
	Platycorynus sauteri	1	GenBank	AJ617746.1	Labeyrie and Dobler, Mol Biol Evol, 2004	Not available
	Aethina tumida	1	GenBank	XM_020018205.1	i5K Consortium, J Hered, 2013	KC966652.1
	Tenebrio molitor	1	GenBank	KY921817.1	Moreira, J Insect Physiol, 2017	KR915361.1
	Agrilus planipennis	1	GenBank	XM_018472182.1	i5K Consortium, J Hered, 2013	KT250504.1
Lepido ptera	Plutella xylostella	1	GenBank	XM_011549930.1	You, Nat Genet, 2013	KM588487.1
	Papilio glaucus	1	GenBank	JQ771498.1	Zhen et al, Science, 2012	GU089129.1
	Papilio xuthus	1	GenBank	XM_013315255.1	Nishikawa Nat Genet, 2015	EU105383.1
	Paplio machaon	1	GenBank	XM_014516575.1	Li, Nat Commun, 2015	MH420066.1
	Papilio polytes	1	GenBank	XM_013283743.1	Nishikawa Nat Genet, 2015	KC158441.1
	Lerema accius	1	LepBase	lerema_accius_v1x1 _core_32_85_1_pr otein_lac1010.8.m RNA	Cong, BMC Genomics, 2015	GU089979.1
	Pieris rapae	1	GenBank	XM_022259192.1	Shen, F1000Res, 2016	EU105237 1
	Pieris napi	1	LepBase	pieris_napi_pnv1x1 _core_32_85_1_pr oteinPIENAPT00 000006454	Meslin, PNAS, 2017	GU013649.1
	Phoebis sennae	1	LepBase	phoebis_sennae_v1x 1_core_32_85_1_p rotein_pse2358.15	Cong, Genome Biol Evol, 2016	MF547337.1
	Calycopis cecrops	1	LepBase	calycopis_cecrops_v 1x1_core_32_85_1_ _protein_cce3094. 7.mRNA	Cong, Sci Rep, 2016	GU089704.1
	Mechanitis polymnia	1	GenBank	HF945460.1	Petschenka, Evolution, 2013	EU068852.1
	Lycorea halia	1	GenBank	JQ771512.1	Zhen et al, Science, 2012	GQ864788.1
	Idea leuconoe	1	GenBank	HF945457.1	Petschenka, Evolution, 2013	GQ864778.1
	Euploea phaenareta	1	GenBank	HF945456.1	Petschenka, Evolution, 2013	Not available
	Euploea mulciber	1	GenBank	HF945466.1	Petschenka, Evolution, 2013	MF804644.1
	Euploea core	1	GenBank	HF945455.1	Petschenka, Evolution, 2013	GU012616.1
	Amauris tartarea	1	GenBank	HF945450.1	Petschenka, Evolution, 2013	DQ071867.1
	Ideopsis juventa	1	GenBank	HF945458.1	Petschenka, Evolution, 2013	KP007720.1
	Parantica aglea	1	GenBank	HF945461 1	Petschenka Evolution 2013	
	i al altitea agrea	1	Genbank	111 745401.1	reischenka, Evolution, 2015	GU012559.1

Tirumala septentrionis	1	GenBank	HF945464.1	Petschenka, Evolution, 2013	KU183736.1
Tirumala limniace	1	GenBank	HF945462.1	Petschenka, Evolution, 2013	HO990432.1
Danaus chrysippus	1	GenBank	LN880853.1	Pierce, Biol J Linn Soc, 2016	HO990426.1
Danaus gilippus	1	GenBank	JQ771506.1	Zhen et al, Science, 2012	MF547087.1
Danaus genutia	1	GenBank	HF945453.1	Petschenka, Evolution, 2013	GU012555.1
Danaus erippus	1	GenBank	LN880851.1	Pierce, Biol J Linn Soc, 2016	MF547376.1
Danaus plexippus	1	GenBank	JQ771507.1	Zhen et al, Science, 2012	KT133515.1
Limenitis archippus	1	GenBank	JQ771509.1	Zhen et al, Science, 2012	KT127045.1
Heliconius melpomene melpomene	1	LepBase	heliconius_melpome ne_melpomene_hme 12_core_32_85_1 protein_HMEL005 691g1.t2	Heliconius Genome Consortium, Nature, 2012	KJ174931.1
Heliconius erato demophoon	1	LepBase	heliconius_erato_de mophoon_v1_core_ 32_85_1_protein_ evm.model.Herato0 801.124.5	Van Belleghem, Nat Ecol Evol, 2017	KP074780.1
Junonia coenia	1	LepBase	junonia_coenia_jc10 _core_32_85_1pr oteinJC_0012304 -RA	Zhang, PNAS, 2017	GU089963.1
Melitaea cinxia	1	LepBase	melitaea_cinxia_cor e_32_85_1_protein MCINX014373- PA	Ahola, Nat Commun, 2014	MH420044.1
Bicyclus anynana	1	GenBank	XM_024099163.1	Nowell, GigaScience, 2017	KR139591.1
Plodia interpunctella	1	LepBase	plodia_interpunctell a_v1_core_32_85_1 proteinmaker- scaffold13- augustus-gene-0.99- mRNA-1	Challis, bioRxiv, 2016	KT145708 1
Amyelois transitella	1	GenBank	XM_013336683.1	i5K Consortium, J Hered, 2013	Not available
Saucrobotys futilalis	1	GenBank	HE956749.1	Dobler et al, PNAS, 2012	KT148281.1
Chilo suppressalis	1	InsectBase	CSU- MIDGUT012369	Ma, PLoS ONE, 2012	KT055025 1
Trichoplusia ni	1	LepBase	trichoplusia_ni_hi5v 02_core_32_85_1_ proteinevm.model .Scaffold82.5	Fu, eLife, 2018	KX862206.1
Spodoptera frugiperda	1	LepBase	spodoptera_frugiper da_sf21v02_core_3 2_85_1_protein_e vm.model.Scaffold3 29.10	Kakumani, Genomics, 2014	MF197868.1
Trichordestra legitima	1	GenBank	JQ771525.1	Zhen et al, Science, 2012	GU094372.1
Helicoverpa armigera	1	GenBank	XM_021340407.1	Pearce, BMC Biol, 2017	GU686955.1
Empyreuma pugione	1	GenBank	LN736266.1	Dobler, Entomol Exp Appl, 2015	MF924216.1
Lophocampa caryae	1	GenBank	JQ771510.1	Zhen et al, Science, 2012	MF924301.1
Cycnia oregonensis	1	GenBank	HE956750.1	Dobler et al, PNAS, 2012	GU091040.1
Cycnia tenera	1	GenBank	JQ771504.1	Zhen et al, Science, 2012	GU093833.1
Euchaetes egle	1	GenBank	JQ771508.1	Zhen et al, Science, 2012	GU092329.1
Pygoctenucha terminalis	1	GenBank	HE956753.1	Dobler et al, PNAS, 2012	MF924291.1
Lerina incarnata	1	GenBank	HE956754.1	Dobler et al, PNAS, 2012	MF922623.1

	Operophtera brumata	1	LepBase	operophtera_brumat a_v1_core_32_85_1 protein_OBRU0 1_04616-PA	Derks, Genome Biol Evol, 2015	HQ649012.1
	Bombyx mori	1	GenBank	XM_004921770.3	International Silkworm Genome Consortium, Insect Biochem Mol Biol, 2008	AB649195.1
	Manduca sexta	1	GenBank	S51591.1	Holzinger, FEBS Lett, 1992	JN678236.1
	Daphnis nerii	1	GenBank	LN736265.1	Dobler, Entomol Exp Appl, 2015	MK188140.1
Siphon aptera	Ctenocephalides felis	1	GenBank	S66043.1	Reeves and Yamanaka, Insect Biochem Mol Biol, 1993	KY048350.1
Diptera	Anopheles gambiae	1	GenBank	XM_003436221.1	Holt, Science, 2002	DQ465336.1
	Aedes aegypti	1	GenBank	XM_021837787.1	Nene, Science, 2007	KX420491.1
	Mayetiola destructor	1	EnsemblM etazoa	Mdes001311-RA	i5K Consortium, J Hered, 2013	KR742285.1
	Rhagoletis zephyria	1	GenBank	XM_017619496.1	Ragland, Mol Ecol, 2015	KU511175.1
	Ceratitis capitata	1	GenBank	XM_004535986.3	i5K Consortium, J Hered, 2013	EU733510.1
	Zeugodacus cucurbitae	1	GenBank	XM_011190816.1	Sim and Geib, G3, 2017	MH751503.1
	Bactrocera oleae	1	GenBank	XM_014232491.1	i5K Consortium, J Hered, 2013	KY111512.1
	Bactrocera latifrons	1	GenBank	XM_018929031.1	Peterson, PLoS ONE, 2009	JX129505.1
	Bactrocera dorsalis	1	GenBank	XM_011214825.2	Zheng, BMC Genomics, 2016	KX051723.1
	Dacus siliqualactis	1	Publicatio n	10.1016/j.toxicon.20 17.09.011	Schneider, Toxicon, 2017	EU679328.1
	Liriomyza eupatoriae	1	GenBank	LT795109.1	Petschenka, Am Nat, 2017	LT795097.1
	Liriomyza sp. Mexico	1	GenBank	HE956748.1	Dobler et al, PNAS, 2012	HE862404.1
	Liriomyza asclepiadis	1	GenBank	HE956747.1	Dobler et al, PNAS, 2012	HE862403.1
	Napomyza lateralis	1	GenBank	LT795079.1	Petschenka, Am Nat, 2017	EF104710.1
	Napomyza scrophulariae	1	GenBank	LT795080.1	Petschenka, Am Nat, 2017	LT795091.1
	Chromatomyia horticola	1	GenBank	LT795081.1	Petschenka, Am Nat, 2017	LT795089.1
	Phytomyza crassiceta	1	GenBank	LT795078.1	Petschenka, Am Nat, 2017	KR747618.1
	Phytomyza digitalis	1	GenBank	LT795083.1	Petschenka, Am Nat, 2017	LT795093.1
	Phytomyza ilicis	1	GenBank	LT795077.1	Petschenka, Am Nat, 2017	EU367541.1
	Phytomyza fallaciosa	1	GenBank	LT795082.1	Petschenka, Am Nat, 2017	EU367595.1
	Phytomyza hellebori A	1A	GenBank	LT795110.1	Petschenka, Am Nat, 2017	LT795095.1
	Phytomyza hellebori B	1B	GenBank	LT795111.1	Petschenka, Am Nat, 2017	LT795095.1
	Drosophila grimshawi	1	GenBank	XM_001993757.1	Drosophila 12 Genomes Consortium, Nature, 2007	GU597459.1
	Drosophila virilis	1	GenBank	BK008742.1	Carvalho and Clark, Genome Res, 2013	DQ471577.1
	Drosophila mojavensis	1	GenBank	BK008743.1	Carvalho and Clark, Genome Res, 2013	DQ383730.1
	Drosophila willistoni	1	GenBank	XM_015177397.2	Drosophila 12 Genomes Consortium, Nature, 2007	JN705934.1
	Drosophila ananassae	1	GenBank	XM_001953862.2	Drosophila 12 Genomes Consortium, Nature, 2007	JQ679117.1
	Drosophila erecta	1	GenBank	XM_001979324.2	Drosophila 12 Genomes Consortium, Nature, 2007	JQ679121.1
	Drosophila yakuba	1	GenBank	XM_002096454.2	Drosophila 12 Genomes Consortium, Nature, 2007	KJ767248.1
	Drosophila melanogaster	1	GenBank	NM_169936.3	Adams, Science, 2000	KJ767244.1

Drosophila sechellia	1	GenBank	XM_002044256.1	Drosophila 12 Genomes Consortium, Nature, 2007	KJ426007.1
Drosophila simulans	1	GenBank	XM_002102615.2	Drosophila 12 Genomes Consortium, Nature, 2007	KT112992.1
Drosophila persimilis	1	GenBank	XM_002013682.1	Drosophila 12 Genomes Consortium, Nature, 2007	AF451101.1
Drosophila pseudoobscura	1	GenBank	XM_001358575.3	Richards, Genome Res, 2005	AF519412.1
Drosophila madeirensis	1	GenBank	JN882377.1	Pegueroles, Heredity, 2013	U51613.1
Drosophila subobscura (O3+4)	1	GenBank	JN882412.1	Pegueroles, Heredity, 2013	AF519409.1
Drosophila subobscura (O3+4+1)	1	GenBank	KT318951.1	Pegueroles, Sci Rep, 2016	AF519409.1
Drosophila subobscura (O3+4+7)	1	GenBank	KT318959.1	Pegueroles, Sci Rep, 2016	AF519409.1

190 Supplementary Table 3. References for ASR of cardiac glycoside feeding and sequestration.

Clade	References for ancestral state reconstruction of cardiac glycoside feeding and sequestration.
Hemiptera	Bramer, Proc R Soc B, 2015
	Dobler, PNAS, 2012
	Zhen, Science, 2012
	Züst and Agrawal, Func Ecol, 2016
Hymenoptera	Boevé, BMC Evol Biol, 2013
	Dobler, PNAS, 2012
	Dobler, Entomol Exp et Appl, 2015
Coleoptera	Dobler, PNAS, 2012
	Labeyrie and Dobler, Mol Biol Evol, 2004
	Zhen, Science, 2012
Lepidoptera	DaCosta, Ann ESA, 2006
	Dobler, PNAS, 2012
	Dobler, Entomol Exp et Appl, 2015
	Petschenka, J Insect Physiol, 2012
	Petschenka, Evolution, 2013
	Zaspel, PLoS ONE, 2014
	Zhen, Science, 2012
Diptera	Dobler, PNAS, 2012
	Kearney, Entomol Exp et Appl, 1983 Pequeroles, Sci Rep. 2016
	Petschenka Am Nat 2017
	Schneider, Toxicon, 2017

210 Supplementary Table 4. Sequences of gRNAs for generation of knock-in fly lines.

	sgRNA1_Round 1	GCAGGGTCTAAGTCACGCCAAGG (+ strand)
	sgRNA2_Round1	GTTCGCCACCGTCATCCGCGAGG (+ strand)
	sgRNA1_Round 2	GAGAGGGATAATATCGTTAGTGG (- strand)
	sgRNA2_Round 2 Protospacer in vellow: PA	GAAACTCACGCTGCGCGCTGAGG (+ strand) M in blue: underlined base in each of the seRNAs of the second round were altered in the donor
	sequence to avoid retarget	ing of the newly formed allele.
211		
212		
213		
214		
215		
216		
210		
217		
210		
21)		
220		
221		
222		
223		
224		
223		
220		
227		
228		
229		
230		
231		
232		
233		
234		
235		
236		
237		
238		
239		
240		
241		
242		
243		
244		
245		
246		
247		
248		
249		

251 Supplementary Table 5. Primer sequences for screening and validating knock-in fly lines.

Primers for Screening by GV	Sequence (5'-3")	Purpose
For Deletion Line		
Δ_5'Arm_F	AAGGAAATATGGCCTTGTACTAATACCAAG	Validate sequence of 5' homology arm
Δ_5' Arm_Junction GFP_R	AAGTCGCCATGTTGGATCGACT	
Δ_3' Arm_ Junction GFP_F	CCTGGGCATGGATGAGCTGT	Validate sequence of 3' homology arm
Δ_3' Arm_R	CCTCGGTTTCGTGGATGGAC	
For Knock-in Lines		
PrimerF_GV_Screen	TGTCGGCTAATGGGTCTCGC	
PrimerR_GV_Screen	AAGTTGCGCGCCTCGATGAT	
For Validating Sequence of Knock-in Lines (Flanking Homology Arms)		
Fw1_left/right arm:	ATTCGCTATGTATAACGATGGCC (65 °C)	
Fw2_left/right arm:	CACTGGCGAAATGTTTACAGCG	
Rv1_left/right arm:	CATGTAGGCATTGTTGAACGCC (68 °C)	
Rv2_left/right arm:	CTCCTCGTCCAGAACCTTCTCC	

254 255

259

264

Supplementary Table 6. Sequences of knock-in and w^{1118} control (QAN*) fly lines. 276

r	
QAN*	$>QAN* (w^{1/18} wild type)$ Sequenced ATPa region
- Exons in	A ITTICGAATCICCATICATTAAAGAATATATATIGTICAACGAGATATAGGCCTIGTACTAATACCAAGCAGTTTTIGTCTTTCCATGCATGCCAGGAGTCCCAGCAGCCC
green	ACAATGACGTCAGAGAGCAAAAAATCACTGCCCGTGCGTCTTGAAAAAAAGAGAACACTTATAGACACTGTTAAAGATAGAATGC
	CAGACACTAGACAGCTGCTAAGACTATATATATATATATA
	AGTTACTTTCATTTATTTTTCGTATTTAATTTATTTTAGTTCGTTGGTTG
	GTATAATTGCTTGATGTTTTGTTTGTGCACCTCAATTCATTTACGTGCTCTTCTCATTTCGATCGGGAGCGTCATTTAGCGCGCATT
	TTGCATGCCTTAGATTGCGATTACTAGAGCTTTACGTATCACAGAGGTCGTTTTGAATATTCTCACGCTCGAAACTCATTTCGGAATG
	GGTLGGCCCAAGTCTATAACCAACCCCGGGCACAGGTLCGGAAAATCACTGACAGTAGTAAAATTAAGTCGGGTAAGTAGT
	TICAGTGCAAACCTATCGTAAACTCTTCTCTATCCACTTCCTCTGTAACCAATCCCAAAACACACTGGTAATATTGAATACTTTCAATCCTTTACG
	CCTITITITGAAAGGCCTAACCAAGGCATGAAGTAATCGAATTTTGGTCGGCTAATGGGTCTGCTGCAGTGCATCATTAACTICC
	GCACTAAACGATATTATCCTCTCTAACCAACGACAGACGCCAAGTICCCAAGTIAATAAAAGGAGAATTAGATAGAGGACGATCCGAAGAGACGACGATTGGATTGGATTGGATTGGATGGA
	TGCAGCATTTGAGTAAATGGTATCCCATTCGATATGTGAACTTATACGTTTTTGATCTTCCGCAGGGTCTAAGTCACGCCAAGGCCA
	AGGAAAACTI GGAGCGCGA I GGTCCCAA I GCGE I GACGCC ACCCAAGCAGCACCCCGAA I GGG I GAAG TI E IGTAAGAACCI G TI CGGTGGCTCCCCC AT GTTGCTGTGGATCGGTGCTATTCTCTGCGCTTATCTCAGCCAGC
	CGACGATAATTIGTATCTGGGTATTGTACTTTCCGCTGTCGTCATCGTGACGGGCATTTTCTCATACTATCAGGTATGTGTCCCTCA
	AATCTGAGCAGCTAAAGATCGGCTTACTAACTGTGGTATGTGTTCCGAGCAGCGAATCGTTCTAAGATCGTTCAAA
	AACA IGGTGAACTCCACHTCACCCCCCTCACCGCGAGGGAGCAACTCACGCCGCCACTTCAAGGTGGACACTCCCGCGGACGTCACCGCCGCGCGCCACTCCAGGTGGACGTCGCCGCCGCCGCGCGCCACTCCAGGTGGACCACTCCCGCCGCGCGCCCCCCCGCGGCGCCCCCCCC
	GCGAGTCGGAGCCGCAGTCCCGCGGTGCCGAGTTCACCCATGAGAATCCGCTGGAGACCAAGAATCTGGCCTTCTTCTCCACCAAC
	GCCGTCGAGGGCACTGCCAAGGGTGTGGTCATCAGCTGCGCGGATCACACCGTCATGGGCCGCATTGCTGCCCCCGGTCT AGACCGCCGGGGCGCGCGCCTTGCCCCCGGCCTTGCTCCCGCGCGCGCGCGCGCGCGCGCCGC
	TCTTCGTGATTGCCTTCATCGGGCTACCACTGCCTGGCCGCGTGTCATCTTTTGATCGGTATCATCGTCATCGTCATCGTCATCGTGCCCGAGGTGCCCGGCGCGCGC
	GTCTGCTGGCCACCGTAACTGTGTGCCTGACCCTTACCGCCAAGCGTATGGCCTCAAAGAACTGTCTGGTGAAGAATCTGGAGGCC
	GIGGAGACCCIIGGCICCACAICGACCAICIGCICCGAIAAGACCGGCACCCIACCCAGAACCGAAIGACGGIGCCCACAIGIG GTICGATAATCAGATCATCGACGACCGAICACCACIGAIGAGTAGTCAGTCGGCGCTCTTCAATACGATAGCAACCGCCIGGGATTCAACGGCG
	CT LTS THAT THE TRANSPORT OF THE TRANSPORT
	AGATGCCTCCGAGGCTGCTCGCTCAAGTGCATGGAACTGGCTGG
QAN	>QAN (engineered control) Sequenced ATPa region
- Homology	CGCTATGTATAACGATGGCCAATAATAATGTCATAAATATGGCCATTTTTGAATATCTCGGAGTTTATTTTCGAATCTCCATTCATT
arms	AAAGAATATATTATTGTTCAAGGAAATATGGCCTTGTACTAATACCAAGCAGTTTTTGTCTTTGCTCGAATAAAGTTTTCCA AAAGAAACAGGAGGTTCAACTAGTTGTTGTTTCTCCATTGCTTGC
underlined	AAAAATCACTGCCCGTGCGCTCTTGAAAAAAAGAGAACACTTATAGACACTGTTAAAGATAGCAAAGCCAGACACTAGACAGCTGC
- Exons in	AAGACTATATATATATATATATATATTTTGAATCCACATATATTTTATTTA
green	A TICAAAGGETTICGAGGTCAGCGAAIGCAAIGCIAAAICTAAIATTIGGTIGGACGAACGAAGGTACTAATTGCTTGATGCTTT TTTCGTATTTAATTTCTTTTTAGTTCCTTTGGTTTTCGTAGCGTAGCAATGGTAGGAAGAAAGTTGGTATAATTGCTTGGATGTTTT
- Point	GTTTTGTGCACCTCAATTCATTTACGTGCTCTTCTCATTTCGATCGGGAGCGTCATTTAGCGCGCGATTTTGCATGCCTAGATTGCGA
mutations to	TTACTAGAGCTITACGTATCACAGAGGTCGTITTGAATATTCTCACGCTCGAACTCATTCGGAATGGGTCGCCCCAAGTCTATACC
prevent Cas9	
retargeting in	AACTCTTCTCTATCCACTTCGTAACCAATCCCAAAACACACTGGTAATATTGAATCCTTTACGCCTTTTTTGAAAGGCCTAAC
blue	CAGGCATGAAGTAAATCGAATTTGGGCGCTAATGGGCTAATGGGTCGCCTGCAGTGCATCATTAACTTCCGCCCCATGACGATATTATCC
	CTGTCTTTCATAAAATCTCCCCGAGAATGTATCAGCGCCTTCAGACATCCCGAAAATGTAAGTGCAGCATTTGATAAATG
	GTATCCCATTCGATATGGAACTTATACGTTTTTGATCTTCCGCAGGGTCTAAGTCAAGGCAAGGCAAAAGGCAAAACTTGGAGCCCC
	a fource character independent and a contract of the second s
	GGTATTGTACTTTCCGCIGTCGTCATCGTGACCGGCATTTTCTCATACTATCAGGTATGTGTCCCTCAAATCTGAGCAGGTAAGAT
	CGGCTTACTAACTGTGGTATGTGTTCCCGAGGAGACCGAGGAGGTCGTGGGGAGGTCAGGAACCATGGTGAGGTGAGGTGAGGTCGGGGG
	CCGTATCCCCGCTGATATCCGCATCATCGAGGCGCGCAACTTCAAGGTGGACAACTCCTCGCTGACCGGCGAGTCGGAGCCGCAGT
	$\underbrace{cccccq}{cccc} \underbrace{cccc}{ccc} \underbrace{cccc}{ccc} \underbrace{cccc}{ccc} \underbrace{cccc}{ccc} \underbrace{cccc}{ccc} \underbrace{ccccc}{cccc} \underbrace{ccccc}{cccc} \underbrace{ccccc}{cccc} \underbrace{ccccc}{cccc} \underbrace{ccccc}{cccc} \underbrace{ccccc}{cccc} \underbrace{ccccc}{cccc} \underbrace{ccccc}{cccc} \underbrace{cccccc}{ccccc} \underbrace{cccccc}{ccccc} \underbrace{cccccc}{ccccc} \underbrace{ccccccccccc}{ccccc} \mathsf{ccccccccccccccccccccccccccccccccccc$
	A A GOLOGICA A GATICA CONTRACTA CONTRACTA DI CONTRACTA CONTRA
	CCTGGGCTACCACTGGCTGGACGCTGTCATCTTTTTGATCGGTATCATCGTCGCCAACGTGCCCGAGGGTCTGCTGGCCACCGTAA
	CIGIGIGE LIGACEELTA CEGEZA AGEGIATIGE LICAA GAA LIGTEIGUIGA GAALA LIGGA GEGIGGAGA CEGIGGAGA ACCAGA GEGIGGA AGA CEGIA C
	CGAGGCCGACACAACTGAGGATCAGTCGGGTGTTCAATACGATAGAACCAGCCCTGGATTCAAGGCGCTCTCTCGCATTGCCACTC
	${\tt CTGTAACCGTGCCGAGTTCAAGGGAGGCCAAGATGGCGTCCCAATCCTCAAGAAGAAGTCGTGGGGGGGCCCCCGGGGCGCCCCCGAGGCTGCCCAGGCCGCCCCCCGAGGCCGCCCCCCGAGGCCGCCCCCC$
	TCCACCAACAATACCAAGTGTCCATCCACGAAACCGAGGATACCAAGGATCCCGCTACTTGCTGCAATG
LAN	>LAN Sequenced $ATP\alpha$ region
- Homology	TTTTGATATCTCGGAGTTTATTTTCGAATCTCCATTCATT
arms	AGCAGTITITIGETETTTGCTCGATTTAAAAGTITTCCAAATGAACAGGAGTICAACTAGTGTTGTTTTTCCATTGGTCGTCGTCAACAACAACAACAACAACTAACT
underlined	ACTGTTAAAGATAGAATGCCAGACACTAGACAGCTGCTAAGACTATATATA
- Exons in	GAATICICTITICITITICCTICITATITITITITATITIGGCCAATICAAAGGCTTICGAGGCAAGGCA
green	ATGTTAGGACGAAGAAGATGTTTGTATAATTGCTTGCTTG
- Point	AGCGTCATTTAGCGCGCATTTTGCATGCCTTAGATTGCGATTACTAGAGCTTTACGTATCACAGAGGTCGTTTTGAATATTCTCACG
mutations to	CICGAACICATTICGGAATGGGTTCGCCCAAGTCTATAACCACATCCCCGTGCACAGGTTCGGAAAATCACTTGACAAGTAGTAAA
prevent Cas9	
retargeting in	GGTAATATTGAATCCTTTACGCCTTTTTTGAAAGGCCTAACCAAGGCATGAAGTAAATCGAATTTTGTGTCGGCTAATGGGTCTCG
blue	UIGUAGIGUAIUAITAAUTICUGTCACAACGGATATIAICUCICICAACACGTCAAGACGCAAGATGCCGGCCAAGGTTAAT
- Point	GACACATCCCGAAAAATGTAAGTGCAGCATTTGAGTAAATGGTATCCCATTCGATATGTGAACTTATACGTTTTTGATCTTCCGCAG
mutation for	GGTCTAAGTCACGCCAAGGCCAAGGAAAACTTGGAGCGCGATGGTCCCAATGCGCTGACGCCAAGCAGACGCCCGAATGG
QIIIL in red	GCCAGCACCAGCGAGGAGCCGGCCGACGATAATTGTATCTGGGTATTGTACCTGCCGCGCGTGTCGTCGTCGTCGTCGCGGGCATTTTCTC
	A FACTA TCAGG TATGTGTCCCTCAAATCTGAGCAGCTAAAGATCGGCTTACTAACTGTGGTATGTGTTCCGCAGG AATCGAAAAGT

	AAGGTGGACAACTCCTCGCTGACCGGCGAGTCGGAGCCGCAGTCCCGCGGTGCCGAGTTCACCCATGAGAATCCGCTGGAGACCA AGAATCTGGCCTTCTTCTCCACCAACGCCGTCGAGGGCACTGCCAAGGGTGTGGTCATCAGCTGCGGCGATCACACCGTCATGGGC CGCATTGCTGGCCTTGCCTCCGGTCTAGACACCGGCGAGACGCCCATTGCCAAGGAGATCCACCATTTCATCCACCTTATTACCGG
	CGTGGCCGTGTTCCTGGGCGTCACCTTCTTCGTGATTGCCTTCATCCTGGGCTACCACTGGCTGG
	TAGAACCAGCCTGGATTCAAGGCGCTCTCGCATTGCCACTCTGTAACCGTGCCGAGTTCAAGGGAGGCGAAGATGGCGTCC CAATCCTCAAGAAAGAAGTCAGTGGAGTGCCTCCGCAGGCTGCTCGCTC
LSN - Homology arms underlined - Exons in green - Point mutations to prevent Cas9 retargeting in blue - Point mutations for Q111L and A119S in red	>LSN Sequenced ATPa region TITTCGAATCTCCATTCAATAAGAATATATTATTGTTCAAGGAAATATGGCCTTGTACTAATACCAAGCAGTTTTTGCTTTGCTTGC
VSN - Homology arms underlined - Exons in green - Point mutations to prevent Cas9 retargeting in blue - Point mutations for Q111V and A119S in red	AGAIGCTIC CAGE GALE IC IECTEAATIGCATEGAACTEGE IC IEGECCATE IEGAEGAAATTECAAEATICCAAECTAATAAGAACATTE SVSN Sequenced ATPa region TTTTCGAATCCAATCACCAACAGAGTGTCC CAGTGGCCTTTCAATCCAATCACAGAGAGTTCAACTAGTGTTGTTGTTTTTCATTGTTTTTCCTTGATTGCATGCA
	IGAGAIGAAAI ICGGCGACCGIAICCCCCCGCGATICACCCATGAICAICGAGGCGCCCAACIICAAGGIGGACAACICCICGCGACCC GCGGTCGGAGGCGCAGTCCCGCGGGTGCCCGAGTCACCCCATGAGAATCCGCTGGGCCGCATIGCTGGCCGCGCTIGCCCCGGGCT AGACACCGGCGAGACCGCCATIGCCAAGGAGATCCACCATITCATCCGCCTTATIACCGGCGTGGCCGGGCTGCCCGGGGC TCTICGTGATIGCCTICATCCGGGCTACCACCGGACGCTGTCATCITTITACCGGCGTGGCCGGGCCG
VSH - Homology arms underlined - Exons in green - Point mutations to prevent Cas9 retargeting in blue	>VSH Sequenced <i>ATPa</i> region CGAATCTCCATTCATTAATGATATTATTGTTCAAGGAAATATGGCCTTGTACTAATACCAAGCAGTTTTTGTCTTTGCTTTGCTCGA TTTTAAAAGTTTTCCAAATGAATGAACAGGAGTTCAAGCAGTGTTGTTTTTTCCTGTGTACTAATACCAAGCAGTTTTTGCTTTGCTTTGCTCGA TGACGTCAGAGAGGCAAAAAATGATCACGCCCGTGCGTCTTGTAAAAAAGAGGAACACTTATAGACACTGTTAAAGATGCCAACAA CACTAGACAGCTGCTAAGACTATATATATATATATATATA

- Point mutations for Q111V, A119S and N122H in red	GAAAACTTGGAGCGCGATGGTCCCAATGCGCTGACGCCACCCAAGCAGACGCCCGAATGGGTGAAGTTCTGTAAGAACCTGTTCG GTGGCTTCGCCATGTGCTGTGGATCGGTGCTATTCTCGCTTTGTGGCCTTATTCTATCTTGGCCACCAGCGAGGAGCCGTCG ACGATT ATTTGTATCTGGGTATTCGCGCTTCCGCGCGCGCGCGCGC
QSN - Homology arms underlined - Exons in green - Point mutations to prevent Cas9 retargeting in blue Boiit	$> QSN Sequenced ATPa region \\ TTTTTGATATCTCGGAGTTTATTTTCGAATCTCCATTCATT$
- Point mutation for A119S in red	GACACATCCCGAAAATGTAAGTGCAGCATTTGAGTAAATGGTATCCCATTCGATATGTGAACTTATACGTTTTGATCTTCCGCAG GGTCTAAGTCACGCCAAGGCCAAGGAAAACTTGGAGCGCCATGGTCCCCATGGGCCGCGCCCCAACGAGAGCCCCCAAAGG GTGAAGTTCTGTAAGAACCTGTTCGGTGGCTTGGCCTCGGCTATCTTCGGCTATTCTGGCCTATTCTTCCAG GCCAGCACCAGCGAGGAGGAGCCGCCCCCCAAGGATAATTTGTATCTGGGTATGTTGCGCGTGTCGCCATCTGGCCTATTCTTCCAG GCCAGCACCAGCGAGGAGCCGCCCCCCAAGGACAACTTGGATCGGGCGCATGTGTGGCCTATCTTCGCCTGGCTATCTTCCGCCTGCCT
QAH - Homology arms underlined - Exons in green - Point mutations to prevent Cas9 retargeting in blue - Point mutation for	> QAH Sequenced ATPa region TGTATAACGATGGCCAATAATAATGTCATAAATATGGCCATTTTTGAATATCTCGGAGTTTATTTTCGAATCTCCATTCATAAAGA ATATTATTGTTCAAGGAAATATGGCCTTGTACTAATACGAGCAGTTTTTGGCTTTTGCCTGATTTTAAAGATTCTCCAATGA ACAGGAGTTCAACTAGTGTTGTTTTTTTCCATTTGTTTTCCTTGATTGCATGGCAACCCCAACATGACGTCAGAGGCCAAAAGA TCACTGCCCGTGCGTCTTGAAAAAAAGAGAACACTTATAGACACTGTTAAAGATAGAATGCCAGACACATGACGTCAGAGGCCAAAAGA TCACTGCCCGTGCGTCTTGAAAAAAAGAGAACACTTATAGACACTGTTAAAGATAGAATGCCAGACACTAGACGTCAGAGGCCAAAAAA TCACTGCCCGTGCGTCTTGAAAACAATGATATTTTATTT
N122H in red	CAATGGGCTGACCCACCCAAGCAGACGCCCGGAGGGGGAGACTTCTGTAAGAACCTGTTGGGTGGCTTCGGCATGGTGGG ATCGGTGCTATTCTCTGCTTTGTGGCCCTATTCTATCCAGGCGACGAGGAGGCGGCCGACGAGT GTACTTTCCGCTGTCGTCGTCGGGGGCCATTTCTATCCAGGCACCAGCCAG

281 Supplementary Table 7. Injections and number of independent lines established.

Nr of embryos injected 720		<i>ATPα</i> genotype	Deletion (GFP+)	Engineered control (OAN)	LAN	LSN	VSN	VSH	QSN	QAH
Nr of independent lines brought to homozygous state for knock-in allele 1 3 3 1 1 1 2 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 4 <th></th> <th>Nr of embryos injected</th> <th>720</th> <th>720</th> <th>1200</th> <th>720</th> <th>720</th> <th>720</th> <th>720</th> <th>720</th>		Nr of embryos injected	720	720	1200	720	720	720	720	720
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296		Nr of independent lines brought to homozygous state for knock-in allele	1	1	3	3	1	1	1	2
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316	282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316	allele								

319 **Supplementary Table 8.** Primers used for RT-qPCR.

Primer	Sequence (5' to 3')	Amplification Efficiency
Rpl32_F	ATGCTAAGCTGTCGCACAAATG	100%
Rpl32_R	GTTCGATCCGTAACCGATGT	
ATPa_F1	TGCTGTGGATCGGTGCTATTC	90%
ATPa_R1	AGCGGAAAGTACAATACCCAGA	
* Rpl32 primer	rs from Ponton et al., 2011.	

328 Additional references for Supplementary Tables 1-3

- 329
- Aardema, M. L. & Andolfatto, P. Phylogenetic incongruence and the evolutionary origins of
- 331 cardenolide-resistant forms of Na⁺, K⁺-ATPase in *Danaus* butterflies. Evolution **70**, 1913-1921
- 332 (2016).
- Adams, M. D., *et al.* The genome sequence of *Drosophila melanogaster*. Science 287, 21852195 (2000).
- Ahola, V., et al. The Glanville fritillary genome retains an ancient karyotype and reveals
- 336 selective chromosomal fusions in Lepidoptera. Nat. Commun. 5, 4737 (2014).
- 337 Bramer, C., Dobler, S., Deckert, J., Stemmer, M. & Petschenka, G. Na⁺/K⁺-ATPase resistance
- and cardenolide sequestration: basal adaptations to host plant toxins in the milkweed bugs
- 339 (Hemiptera: Lygaeidae: Lygaeinae). Proc. R. Soc. B 282, 20142346 (2015).
- 340 Boevé, J. L., Blank, S. M., Meijer, G. & Nyman, T. Invertebrate and avian predators as drivers of
- 341 chemical defensive strategies in tenthredinid sawflies. BMC Evol. Biol. 13,198 (2013).
- 342 Bonasio, R., et al. Genomic comparison of the ants Camponotus floridanus and Harpegnathos
- 343 *saltator*. Science **329**, 1068-1071 (2010).
- 344 Carvalho, A. B. & Clark, A. G. Efficient identification of Y chromosome sequences in the
- human and *Drosophila* genomes. Genome Res. 23, 1894-1907 (2013).
- 346 Challis, R. J., Sujai Kumar, S., Dasmahapatra, K. K., Jiggins, C. D. & Blaxter, M. Lepbase: the
- 347 Lepidopteran genome database. bioRxiv **doi**, 10.1101/056994 (2016).
- 348 Chen, W., et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest,
- 349 provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC
- 350 Biol. 14, 110 (2016).

- Cong, Q., Borek, D., Otwinowski, Z. & Grishin, N. V. Skipper genome sheds light on unique
 phenotypic traits and phylogeny. BMC Genomics. 16, 639 (2015).
- 353 Cong, Q., Shen, J., Borek, D., Robbins, R. K., Otwinowski, Z. & Grishin, N. V. Complete
- 354 genomes of Hairstreak butterflies, their speciation, and nucleo-mitochondrial incongruence. Sci.
- 355 Rep. 6, 24863 (2016).
- 356 Cong, Q., Shen, J., Warren, A. D., Borek, D., Otwinowski, Z. & Grishin, N. V. Speciation in
- 357 Cloudless Sulphurs gleaned from complete genomes. Genome Biol. Evol. 8, 915-931 (2016).
- 358 DaCosta, M. A., Larson, P., Donahue, J. P. & Weller, S.J. Phylogeny of milkweed tussocks
- 359 (Arctiidae: Arctiinae: Phaegopterini) and its implications for evolution of ultrasound
- 360 communication. Ann. Ent. Soc. Am. 99, 723-742 (2006).
- 361 Derks, M. F., et al. The genome of Winter Moth (Operophtera brumata) provides a genomic
- 362 perspective on sexual dimorphism and phenology. Genome Biol. Evol. 7, 2321-2332 (2015).
- 363 Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the *Drosophila*
- 364 phylogeny. Nature **450**, 203-218 (2007).
- 365 Espeland, M., *et al.* A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol.
 366 28, 770-778 (2018).
- Fu, Y., *et al.* The genome of the Hi5 germ cell line from *Trichoplusia ni*, an agricultural pest and
 novel model for small RNA biology. eLife 7, e31628 (2018).
- 369 Gómez-Zurita, J., Hunt, T., Kopliku, F. & Vogler, A.P. Recalibrated tree of leaf beetles
- 370 (Chrysomelidae) indicates independent diversification of angiosperms and their insect
- 371 herbivores. PLoS ONE **2**, e360 (2007).
- 372 Heikkilä, M., Kaila, L., Mutanen, M., Peña, C. & Wahlberg, N. Cretaceous origin and repeated
- tertiary diversification of the redefined butterflies. Proc. R. Soc. B 279, 1093-1099 (2012).

- 374 Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry
- adaptations among species. Nature **487**, 94-98 (2012).
- Holt, R. A., *et al.* The genome sequence of the malaria mosquito *Anopheles gambiae*. Science
 298, 129-149 (2002).
- 378 Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the
- 379 honeybee *Apis mellifera*. Nature **443**, 931-949 (2006).
- 380 Hunt, T., et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a
- 381 superradiation. Science **318**, 1913-1916 (2007).
- 382 International Aphid Genomics Consortium. Genome sequence of the pea aphid Acyrthosiphon
- 383 *pisum*. PLoS Biol. **8**, e1000313 (2010).
- 384 International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the
- 385 silkworm *Bombyx mori*. Insect Biochem. Mol. Biol. **38**, 1036-1045 (2008).
- i5K Consortium. The i5K Initiative: Advancing arthropod genomics for knowledge, human
- health, agriculture, and the environment. J. Hered. **104**, 595-600 (2013).
- 388 Kakumani, P. K., Malhotra, P., Mukherjee, S. K. & Bhatnagar, R. K. A draft genome assembly
- 389 of the army worm, *Spodoptera frugiperda*. Genomics **104**, 134-143 (2014).
- 390 Kawahara, A. Y. & Breinholt, J. W. Phylogenomics provides strong evidence for relationships of
- 391 butterflies and moths. Proc. R. Soc. B 281, 20140970 (2014).
- 392 Kearney, J. N. Selection and utilization of natural substrates as breeding sites by woodland
- 393 *Drosophila* spp. Entomol. Exp. Appl. **33**, 63-70 (1983).
- 394 Keeling, C. I., et al. Draft genome of the mountain pine beetle, *Dendroctonus ponderosae*
- Hopkins, a major forest pest. Genome Biol. 14, R27 (2013).

- 396 Kirkness, E. F., et al. Genome sequences of the human body louse and its primary endosymbiont
- 397 provide insights into the permanent parasitic lifestyle. Proc. Natl. Acad. Sci. U. S. A. 107,

398 12168-12173 (2010).

- 399 Kunte, K. The diversity and evolution of Batesian mimicry in *Papilio* swallowtail butterflies.
- 400 Evolution **63**, 2707-2716 (2009).
- 401 Li, H., *et al.* Higher-level phylogeny of paraneopteran insects inferred from mitochondrial
 402 genome sequences. Sci. Rep. 5, 8527 (2015).
- 403 Li, X., et al. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat.
- 404 Commun. **6**, 8212 (2015).
- 405 Ma, W., Zhang, Z., Peng, C., Wang, X., Li, F. & Lin, Y. Exploring the midgut transcriptome and
- 406 brush border membrane vesicle proteome of the rice stem borer, *Chilo suppressalis* (Walker).
- 407 PLoS ONE **7**, e38151 (2012).
- 408 Mathers, T. C., et al. Rapid transcriptional plasticity of duplicated gene clusters enables a
- 409 clonally reproducing aphid to colonise diverse plant species. Genome Biol. 18, 27 (2017).
- 410 McKenna, D. D., *et al.* The beetle tree of life reveals that Coleoptera survived end-Permian mass
- 411 extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 40, 835-880412 (2015).
- 413 McKenna, D. D., et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a
- 414 globally significant invasive species, reveals key functional and evolutionary innovations at the
- 415 beetle-plant interface. Genome Biol. **17**, 227 (2016).
- 416 Meslin, C., *et al.* Structural complexity and molecular heterogeneity of a butterfly ejaculate
- 417 reflect a complex history of selection. Proc. Natl. Acad. Sci. U. S. A. 114, E5406-E5413 (2017).

- 418 Mitchell, A., Mitter, C. & Regier, J. C. Systematics and evolution of the cutworm moths
- 419 (Lepidoptera: Noctuidae): evidence from two protein-coding nuclear genes. Syst. Entomol. 31,
 420 21-46 (2006).
- 421 Moreira, N. R., Cardoso, C., Dias, R. O., Ferreira, C. & Terra W. R. A physiologically-oriented
- 422 transcriptomic analysis of the midgut of *Tenebrio molitor*. J. Insect Physiol. 99, 58-66 (2017).
- 423 Nene, V., et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316,
- 424 1718-1723 (2007).
- 425 Nishikawa, H., et al. A genetic mechanism for female-limited Batesian mimicry in Papilio
- 426 butterfly. Nat. Genet. 47, 405-409 (2015).
- 427 Nowell, R. W., *et al.* A high-coverage draft genome of the mycalesine butterfly *Bicyclus*428 *anvnana*. Gigascience 6, 1-7 (2017).
- 429 Ogawa, H., Shinoda, T., Cornelius, F. & Toyoshima, C. Crystal structure of the sodium-
- 430 potassium pump (Na⁺,K⁺-ATPase) with bound potassium and ouabain. Proc. Natl. Acad. Sci. U.
- 431 S. A. **106**, 13742-13747 (2009).
- 432 Pearce, S. L., *et al.* Genomic innovations, transcriptional plasticity and gene loss underlying the
- 433 evolution and divergence of two highly polyphagous and invasive *Helicoverpa* pest species.
- 434 BMC Biol. **15**, 63 (2017).
- 435 Pegueroles, C., Aquadro, C. F., Mestres, F. & Pascual, M. Gene flow and gene flux shape
- 436 evolutionary patterns of variation in *Drosophila subobscura*. Heredity **110**, 520-529 (2013).
- 437 Peters, R. S., et al. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013-1018 (2017).
- 438 Peterson, B. K., *et al.* Big genomes facilitate the comparative identification of regulatory
- 439 elements. PLoS ONE **4**, e4688 (2009).

- 440 Petschenka, G., Offe, J. K. & Dobler, S. Physiological screening for target site insensitivity and
- localization of Na⁺/K⁺-ATPase in cardenolide-adapted Lepidoptera. J. Insect Phys. 58, 607-612
 (2012).
- 443 Pierce, A. A., de Roode, J. C. & Tao, L. Comparative genetics of Na⁺/K⁺-ATPase in monarch
- butterfly populations with varying host plant toxicity. Biol. J. Linn. Soc. **119**, 194-200 (2016).
- 445 Ragland, G. J., et al. Differences in performance and transcriptome-wide gene expression
- 446 associated with *Rhagoletis* (Diptera: Tephritidae) larvae feeding in alternate host fruit
- 447 environments. Mol. Ecol. 24, 2759-2776 (2015).
- 448 Rainford, J. L., Hofreiter, M., Nicholson, D. B. & Mayhew, P.J. Phylogenetic distribution of
- 449 extant richness suggests metamorphosis is a key innovation driving diversification in insects.
- 450 PLoS ONE 9, e109085 (2014).
- 451 Reeves, S. A. & Yamanaka, M. K. Cloning and sequence analysis of the alpha subunit of the cat
- 452 flea sodium pump. Insect Biochem. Mol. Biol. 23, 809-814 (1993).
- 453 Richards, S., *et al.* Comparative genome sequencing of *Drosophila pseudoobscura*:
- 454 chromosomal, gene, and *cis*-element evolution. Genome Res. **15**, 1-18 (2005).
- 455 San Jose, M., Doorenweerd, C., Leblanc, L., Barr, N., Geib, S. & Rubinoff, D. Incongruence
- 456 between molecules and morphology: a seven-gene phylogeny of Dacini fruit flies paves the way
- 457 for reclassification (Diptera: Tephritidae). Mol. Phylogenet. Evol. 121, 139-149 (2017).
- 458 Schoville, S. D., et al. A model species for agricultural pest genomics: the genome of the
- 459 Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci. Rep. 8,
- 460 1931 (2018).
- 461 Seetharam, A. S. & Stuart, G. W. Whole genome phylogeny for 21 *Drosophila* species using
- 462 predicted 2b-RAD fragments. PeerJ. 1, e226 (2013).

- 463 Shen, J., Cong, Q., Kinch, L. N., Borek, D., Otwinowski, Z. & Grishin, N. V. Complete genome
- 464 of *Pieris rapae*, a resilient alien, a cabbage pest, and a source of anti-cancer proteins. F1000Res.
- **4**65 **5,** 2631 (2016).
- 466 Sim, S. B. & Geib, S. M. A chromosome-scale assembly of the *Bactrocera cucurbitae* genome
- 467 provides insight to the genetic basis of *white pupae*. G3 7, 1927-1940 (2017).
- 468 Thorpe, P., Cock, P. J. & Bos, J. Comparative transcriptomics and proteomics of three different
- 469 aphid species identifies core and diverse effector sets. BMC Genomics 17, 172 (2016).
- 470 Van Belleghem, S. M., et al. Complex modular architecture around a simple toolkit of wing
- 471 pattern genes. Nat. Ecol. Evol. 1, 52 (2017).
- 472 Virgilio, M., Jordaens, K., Verwimp, C., White, I. M. & De Meyer, M. Higher phylogeny of
- 473 frugivorous flies (Diptera, Tephritidae, Dacini): localised partition conflicts and a novel generic
- 474 classification. Mol. Phylogenet. Evol. **85**, 171-179 (2015).
- Wiegmann, B.M., *et al.* Episodic radiations in the fly tree of life. Proc. Natl. Acad. Sci. U. S. A. **108**, 5690-5695 (2011).
- 477 Wiens, J. J., Lapoint, R. T. & Whiteman, N. K. Herbivory increases diversification across insect
- 478 clades. Nat. Commun. 6, 8370 (2015).
- Xue, J., *et al.* Genomes of the rice pest brown planthopper and its endosymbionts reveal complex
 complementary contributions for host adaptation. Genome Biol. **15**, 521 (2014).
- 481 Yatime, L., Laursen, M., Morth, J. P., Esmann, M., Nissen, P. & Fedosova, N. U. Structural
- 482 insights into the high affinity binding of cardiotonic steroids to the Na⁺,K⁺-ATPase. J. Struct.
- 483 Biol. 174, 296-306 (2011).
- 484 You, M., *et al.* A heterozygous moth genome provides insights into herbivory and detoxification.
- 485 Nat. Genet. **45**, 220-225 (2013).

- Zahiri, R., *et al.* A new molecular phylogeny offers hope for a stable family level classification
 of the Noctuoidea (Lepidoptera). Zool. Script. 40, 158-173 (2011).
- 488 Zaspel, J. M., Weller, S. J., Wardwell, C. T., Zahiri, R. & Wahlberg, N. Phylogeny and evolution
- 489 of pharmacophagy in tiger moths (Lepidoptera: Erebidae: Arctiinae). PLoS ONE 9, e101975
- 490 (2014).
- 491 Zhang, L., Mazo-Vargas, A. & Reed R. D. Single master regulatory gene coordinates the
- 492 evolution and development of butterfly color and iridescence. Proc. Natl. Acad. Sci. U. S. A.
- **493 114,** 10707-10712 (2017).
- 494 Zheng, W., Luo, D., Wu, F., Wang, J. & Zhang, H. RNA sequencing to characterize
- 495 transcriptional changes of sexual maturation and mating in the female oriental fruit fly
- 496 Bactrocera dorsalis. BMC Genomics 17, 194 (2016).