S1 Appendix - Detailed calculations for optimizing anisotropic
similarity between two sets of paired points

S1.1

Let R be a rotation matrix. Then, an associated unit quaternion ¢ is defined such as if Rz = ¢ * = * q. Thus:
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S1.2

If p is a vector, the associated quaternion is pure: p; = 0 which implies that ), and P, are skew-symmetric.
Yet y} and &; are vectors, thus:
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S1.3

If p is a vector, the associated quaternion is pure: p; = 0 which implies that @, and P, are skew-symmetric
and QIQ) = Pp2 = —pTply.
Yet y} and &; are vectors, thus:
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Thus:
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E;; being the matrix with a 1 at the intersection of the 4t row and the j* column and 0 elsewhere.
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