Supplementary Information

Repurposing protein degradation for optogenetic modulation of protein activities

Payel Mondal[†], Vishnu V. Krishnamurthy[†], Savanna R. Sharum[†], Neeka Haack[†], Huiwen Zhou[†], Jennifer Cheng^{†,‡}, Jing Yang[#], Kai Zhang^{†,‡,§,¶,*}

[†]Department of Biochemistry, [‡]Center for Biophysics and Quantitative Biology, [§]Neuroscience Program, and [¶]Beckman Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.

[#]Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S Lincoln Ave, Urbana, Illinois 61802, United States.

⁴ Current address: Feinberg School of Medicine, Northwestern University, Ward 9-250, 303 E Chicago Ave, Chicago, Illinois 60611, United States.

Corresponding Author

* Kai Zhang, kaizkaiz@illinois.edu

Supplementary Methods

Supplementary Figures

Figure S1. Degron functions normally with the fusion protein HA-MKP3.

Figure S2. Absence of LEXY shows increased stabilization of MKP3 and reduced PC12 differentiation ratio in the dark.

Figure S3. Absence of eLOV in MKP3-tevS-deg abolishes light-dark contrast for MKP3-reduced PC12 cell differentiation.

Figure S4. The total amount of proteins remains consistent between light-stimulated sample and the dark control upon inhibition of new protein synthesis with cycloheximide.

Figure S5. Light illumination for 30 min in PC12 cells transfected with GLIMPSe-CA MEK is sufficient to induce significant neurite outgrowth.

Figure S6. Absence of eLOV in CA MEK-tevS-deg abolishes light-dark contrast for PC12 cell differentiation.

Figure S7. Long-term light exposure does not cause cell death.

Figure S8. DNA and amino acid sequences of GLIMPSe.

Supplementary Methods

Reagents

Phusion DNA polymerase master mix (M0530L) was purchased from NEB. In-Fusion HD Cloning Plus kit was from Takara (638909). DreamTaq PCR Master Mix (2×) (K1081), Turbofect (R0532) and Pierce Protease and Phosphatase Inhibitor Mini Tablets (A32959), F12K (21127-022) medium, and horse serum (26050088) were from Thermo Fisher Scientific. Fetal bovine serum (F1051), RIPA Lysis Buffer, 10× (20-188) was from Millipore Sigma. PBS (21-040-CV), DMEM (10-017-CV), Penicillin-streptomycin solution (30-002-CI), Trypsin EDTA (0.25% Trypsin, 0.1% EDTA) 1× (25-053-CI) was from Corning. Precast protein gels (456-1024) and ECL substrate (170-5060) were from Bio-Rad. Antibodies used in this work are Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell Signaling Technology, 9101S, 1:1000), p44/42 MAPK (Erk1/2) (Cell Signaling Technology, #9102S, 1:1000), HA-Tag (C29F4) (Cell Signaling Technology, #3724S, 1:1000), GAPDH (14C10) (Cell Signaling Technology, 7074S, 1:2000).

Plasmid construction

Constitutive active MEK (S218D, S222D) was constructed by site-directed mutagenesis. Evolved LOV (eLOV) was amplified from a synthetic gBlock from IDT based on a sequence from the previous work²⁴. The sequence of LEXY was amplified from NLS-mCherry-LEXY (Addgene, catalog #72655). The full sequence of GLIMPSe was shown in Figure S8.

Cell culture and transfection

HEK293T cells were cultured in DMEM supplemented with 10% fetal bovine serum and penicillinstreptomycin. PC12 cells were cultured in F12K medium supplemented with 15% horse serum and 2.5% FBS. All cell cultures were maintained in a standard incubator at 37 °C with 5% CO₂. HEK293T and PC12 cells were seeded in 12 well plates, and cells were transfected once they reached 60% - 80% confluency. Transfection was performed using Turbofect transfection reagent following the vendor's instruction. For light-induced stabilization of MKP3 experiments, 100 ng CA MEK-EGFP, 200 ng EGFP-p2A-MKP3-eLOVtevS-deg and 700 ng of NLS-mCherry-TEV-LEXY plasmid were cotransfected in PC12 cells. For light-induced CA MEK stabilization experiments 50 ng of EGFP-p2A-CA MEK-eLOVtevS-deg and 950 ng of NLS-mCherry-TEV-LEXY plasmid was cotransfected in PC12 cells. After 3 hours of transfection, transfection medium was replaced with growth medium (F12K + 15% horse serum +2.5% FBS). After overnight recovery, the cell culture was exchanged to a low-serum medium (1.5% horse serum + 0.025% FBS) for another 24 hours to reduce the base-level ERK activity.

Western Blot

After transfection, recovery, and starvation, cells were harvested and lysed with a mixture of RIPA buffer and protease/phosphatase inhibitor cocktail. Lysates were centrifuged, and supernatants were mixed with NuPAGE[™] LDS Sample Buffer and β-Mercaptoethanol. Samples were subjected to SDS-PAGE on a precast gel, followed by overnight transfer to PVDF membrane. Two different blots were run using the same cell lysate to probe the phospho-ERK and pan ERK, respectively.

Construction of a programmable LED device

For both long-term and short-term light illumination, the LED array was constructed by assembling a 6-by-4 blue LED array with 24 blue LEDs (B4304H96, Linrose Electronics) on a breadboard. LED intensity can be continuously tuned through a tunable voltage and a current-limiting resistor.

The breadboard was hosted in an aluminum box, and a light diffuser film was positioned above the LED array to make the light intensity homogeneous in the defined area. The light intensity at the cell culture plate was measured by a power meter (PM100D, S121C, Thorlabs).

Statistical analysis

The p-values were determined by performing two-tailed, unpaired t-test, or one-way ANOVA test using the GraphPad Prism software.

Figure S1. Degron functions normally with the fusion protein HA-MKP3. In PC12 cells, the fusion of degrons at the C-terminus of HA-MKP3 resulted in a 15.7-fold reduction of protein level compared to HA-MKP3 assayed by Western blot analysis with anti-HA antibody. Values were presented by mean \pm SD (n=2).

Figure S2. Absence of LEXY shows increased stabilization of MKP3 and reduced PC12 differentiation ratio in the dark. Differentiation ratio calculated for PC12 cells transfected with CA MEK-EGFP, EGFP-p2A-MKP3-eLOVtevS-3X degron, and TEV-mRuby2. Cells were illuminated with 0.5 mW/cm² blue light or kept in the dark for 45 h before imaging. Values represent the mean \pm SD of two biological replicates (n = 2) with more than 150 cells counted per replicate. Differentiation ratio= (# of transfected + differentiated cells) / # of transfected cells.

Figure S3. Absence of eLOV in MKP3-tevS-deg abolishes light-dark contrast for MKP3reduced PC12 cell differentiation. Differentiation ratio calculated for PC12 cells transfected with CA MEK-EGFP, mRuby2-p2A-MKP3-tevS-3X degron, and NLS-mCherry-TEV-LEXY. Cells were illuminated with 0.5 mW/cm² blue light or kept in the dark for 45 h before imaging. Values represent the mean \pm SD of two biological replicates (n = 2) with more than 150 cells counted per replicate. Differentiation ratio= (# of transfected + differentiated cells) / # of transfected cells.

Figure S4. The total amount of proteins remains consistent between the light-stimulated sample and the dark control upon inhibition of new protein synthesis with cycloheximide. PC12 cells transfected with CA MEK-EGFP, EGFP-p2A-HA-MKP3-eLOVtevS-3X degron, and NLS-mCherry-TEV-LEXY were treated with 100 ng/µL cycloheximide, a translation inhibitor, 24 h after transfection. Cell were incubated in cycloheximide for 18 h followed by light exposure for different time interval. The total amount of HA-tagged protein remained consistent across different conditions as new protein synthesis was blocked.

Figure S5. Light illumination for 30 min in PC12 cells transfected with GLIMPSe-CA MEK is sufficient to induce significant neurite outgrowth. CA-MEK rescued by 30 min light treatment shows a differentiation ratio of 0.6 compared with 0.2 for the dark control. The bar graph is presented with mean \pm SD averaged over three biological replicates (n = 3) with more than 200 cells counted per replicate.

Figure S6. Absence of eLOV in CA MEK-tevS-deg abolishes light-dark contrast for PC12 cell differentiation. Differentiation ratio calculated for PC12 cells transfected with mRuby2-p2A-CA MEK-tevS-3X degron and NLS-mCherry-TEV-LEXY. Cells were illuminated with 0.5 mW/cm² blue light or kept in the dark for 45 h before imaging. Values represent the mean \pm SD of three biological replicates (n = 3) with more than100 cells counted per replicate. Differentiation ratio= (# of transfected + differentiated cells) / # of transfected cells

Figure S7. Long-term light exposure does not cause cell death. (a) PC12 cells were exposed under blue light for 45-h (0.5 mW/cm^2) followed by co-staining with Calcein AM (staining live cells). Less than 1% dead cells were observed in both light and dark conditions. Values represent the mean ± SD of three biological replicates (n = 3) with more than 500 cells counted per replicate. (b) Representative fluorescent and phase-contrast images of PC12 cells in the same field of view under light and dark treatment. Scale bar: 50 µm.

1	TCT	'AGG	GCT	ACT	ACA	CTT	GAA	CGT	'ATT	'GAG	AAG	AGT	TTT	GTC	ATT	ACT	GAC	CCA	AGA	TTG
1	S	R	A	Т	Т	L	Е	R	Ι	Е	K	S	F	V	Ι	Т	D	Ρ	R	L
61	CCA	GAT	AAT	CCC	ATT	ATA	TTC	GTT	TCC	GAT	AGT	TTC	TTG	CAG	TTG	ACA	GAA	TAT	AGC	CGT
21	Ρ	D	Ν	Ρ	Ι	Ι	F	V	S	D	S	F	L	Q	L	Т	Ε	Y	S	R
121	GAA	GAA	ATT	TTG	GGA	AGA	AAC	TGC	AGG	TTT	CTA	CAA	GGT	CCT	GAA	ACT	GAT	CGC	GCG	ACA
41	Ε	Е	Ι	L	G	R	Ν	С	R	F	L	Q	G	Ρ	E	Т	D	R	A	Т
181	GTG	AGA	AAA	ATT	AGA	GAT	GCC	АТА	GAT	'AAC	CAA	ACA	GAG	GTC	ACT	GTT	CAG	CTG	ATT	AAT
61	V	R	K	Ι	R	D	A	Ι	D	Ν	Q	Т	Ε	V	Т	V	Q	L	Ι	Ν
241	TAT	ACA	AAG	AGT	GGT	AAA	AAG	TTC	TGG	AAC	CTC	TTT	CAC	TTG	CAG	CCT	ATG	CGA	GAT	CAG
81	Y	Т	K	S	G	K	K	F	W	Ν	L	F	Η	L	Q	Ρ	Μ	R	D	Q
301	AAG	GGA	GAT	GTC	CAG	TAC	TTT	ATT	'GGG	GTT	CAG	TTG	GAT	GGA	ACT	GAG	AGG	GTC	CGA	GAT
101	K	G	D	V	Q	Y	F	Ι	G	V	Q	L	D	G	Т	Е	R	V	R	D
361	GCT	GCC	GAG	AGA	GAG	GCT	GTC	ATG	CTG	GTT	AAG	AAA	ACT	GCA	GAA	GAA	ATT	GAT	GAG	GCG
121	А	A	Ε	R	Ε	A	V	М	L	V	K	K	Т	A	E	Е	Ι	D	Е	A
421	GCA	AAA	gaq	aac	ctq	tac	ttc	caq	ato	GGT	GGA	GGC	TCT	GGT	AGA	CTC	TAT	GAA	TTT	AGG
141	A	K	Е	Ν	L	Y	F	Q	М	G	G	G	S	G	R	L	Y	Ε	F	R
481	TTG	ATG	ATG	ACC	TTC	TCC	GGG	CTC	AAT	'CGC	GGT	TTT	GCA	TAC	GCA	.CGG	TAC	AGT	GGA	TCC
161	L	Μ	Μ	Т	F	S	G	L	Ν	R	G	F	A	Y	A	R	Y	S	G	S
541	GCT	AGC	GGT	AGA	CTC	TAT	GAG	TTT	'AGA	CTG	ATG	ATG	ACA	TTC	TCT	GGA	CTT	AAC	AGA	GGG
181	A	S	G	R	L	Y	Е	F	R	L	Μ	Μ	Т	F	S	G	L	Ν	R	G
601	TTC	GCC	TAT	GCC	CGA	TAT	TCT	GGA	TCC	GGT	AGG	CTT	TAT	GAG	TTT	CGC	CTG	ATG	ATG	ACA
201	F	A	Y	A	R	Y	S	G	S	G	R	L	Y	Ε	F	R	L	Μ	Μ	Т
661	TTT	TCC	GGG	TTG	AAC	AGG	GGC	TTC	GCT	'TAT	GCT	CGC	TAC	TCA	tag					
221	F	S	G	L	N	R	G	F	A	Y	A	R	Y	S	*					
	Evolved LOV (eLOV) TEV recognition site (tevS)																			
	Degron								Degron							Degron				

Figure S8. DNA and amino acid sequences of GLIMPSe. The domain of evolved LOV domain, tevS, and three codon-optimized degron are marked in distinct colors. The protein of target (e.g., MKP3 and CA MEK) were fused at the N-terminus of GLIMPSe.