Supplementary information

Metformin-induced suppression of IFN-α via mTORC1 signalling

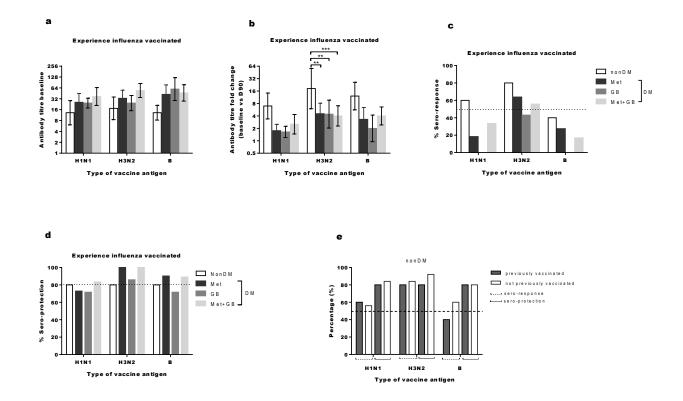
following seasonal vaccination is associated with impaired antibody responses in type 2 diabetes

<u>Wipawee Saenwongsa</u>^{1,2}, Arnone Nithichanon¹, Malinee Chittaganpitch³, Kampaew Buayai³,
Chidchamai Kewcharoenwong¹, Boonyarat Thumrongwilainet⁴, Patcharavadee Butta⁵, Tanapat
Palaga⁵, Yoshimasa Takahashi⁶, Manabu Ato⁶ and Ganjana Lertmemongkolchai¹

¹Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Thailand.

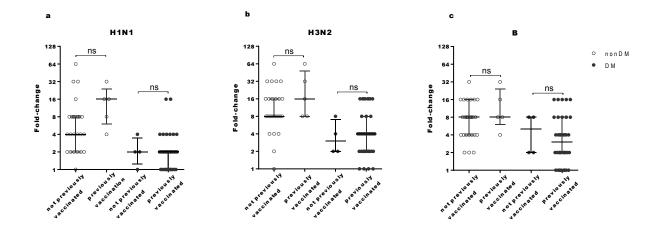
²Disease Prevention and Control Region 10th, Ubonratchathani, Ministry of Public Health, Thailand.

³National Influenza Centre, Department of Medical Science, Ministry of Public Health, Thailand.

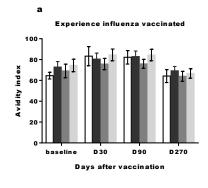

⁴Yanglum Health Promotion Hospital, Ubonratchathani, Thailand.

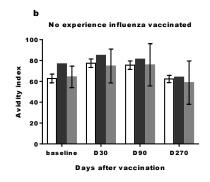
⁵Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.

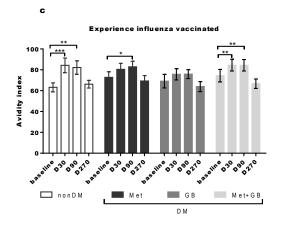
⁶National Institute of Infectious Diseases, Tokyo, Japan.

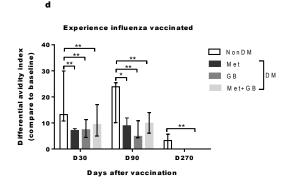

*Corresponding author: Ganjana Lertmemongkolchai, PhD. Cellular and Molecular Immunology
Unit, Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of
Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand. Tel: +66 4320
3825; fax: +66 4320 3826; email: ganja le@kku.ac.th

Diseases, Tokyo, Japan. Supplementary Figures S1-S6

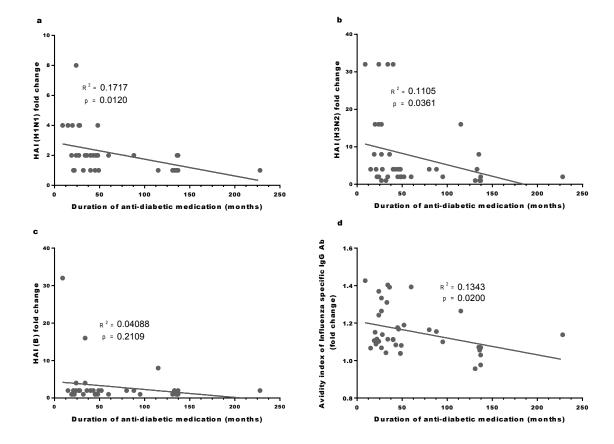

Supplementary Figure S1: History of influenza vaccination was a confounding factor for a higher baseline (but not significantly so) in DM and seemed not to enhance the HAI response in DM and non-DM.


(a) The HAI titre at baseline against three types of influenza vaccine antigens in influenza-vaccinated individuals; non-DM (n = 5), Met-DM (n = 11), GB-DM (n = 7), Met+GB-DM (n = 18). (b) HAI titre fold-change (baseline *vs.* D90) in influenza-vaccinated individuals among the four groups. Horizontal lines represent the geometric mean with 95%CI. Statistical analyses were undertaken using two-way ANOVA, **p<0.01, ***p<0.001. (c) Sero-protection or (d) sero-response in people who received seasonal vaccination using TIV among the four groups. The dotted line represents 80% or 50% of sero-protection or sero-response, respectively. (e) Percentage (%) of non-DM who reached a sero-response or sero-protection against three type of influenza vaccine antigens compared with individuals who had a history of influenza vaccination (previously vaccinated; n = 5) or who had no history of influenza vaccination (not previously vaccinated; n = 25).

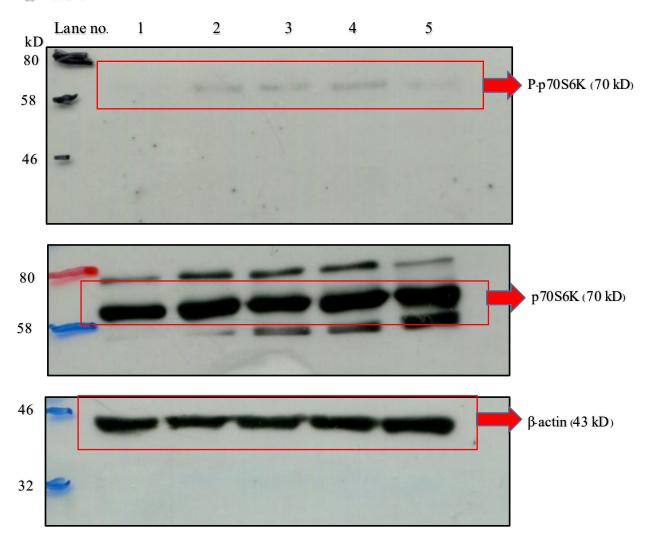


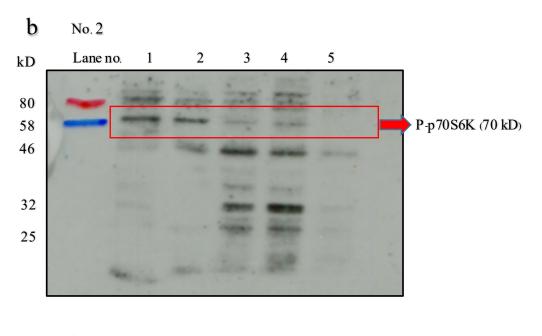

Supplementary Figure S2: History of influenza vaccination seemed not to enhance HAI titre foldchange in DM and non-DM.

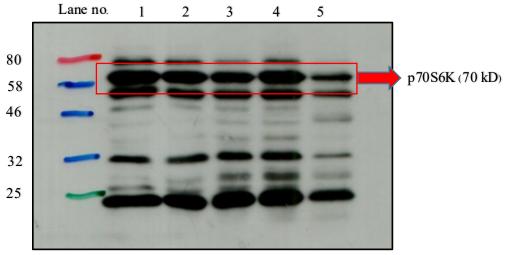
HAI titre fold-change (baseline vs. D90) in individuals who had a history of influenza vaccination (previously vaccinated, non-DM; n = 5, DM; n = 36) or had no history of influenza vaccination (not previously vaccinated, non-DM; n = 25, DM; n = 4) against (a) H1N1, (b) H3N2, or (c) B antigens. Horizontal lines represent the median with the interquartile range. Each point represents an individual. Statistical analyses were undertaken using Mann-Whitney test. ns; not significant (p \geq 0.05), ****p<0.0001.

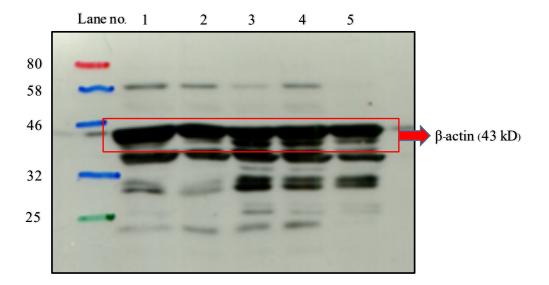


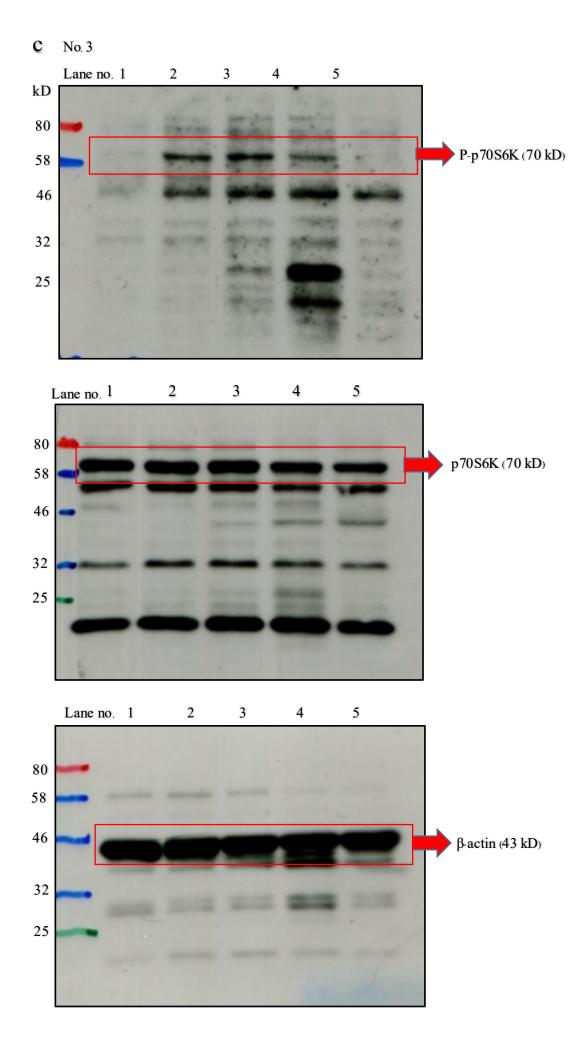
Supplementary Figure S3: The influenza-specific IgG avidity index at baseline and several time points post-vaccination was not significantly different among non-DM and DM, but Met-DM delayed the response of the IgG avidity index, whereas GB-DM decreased the response of the IgG avidity index.

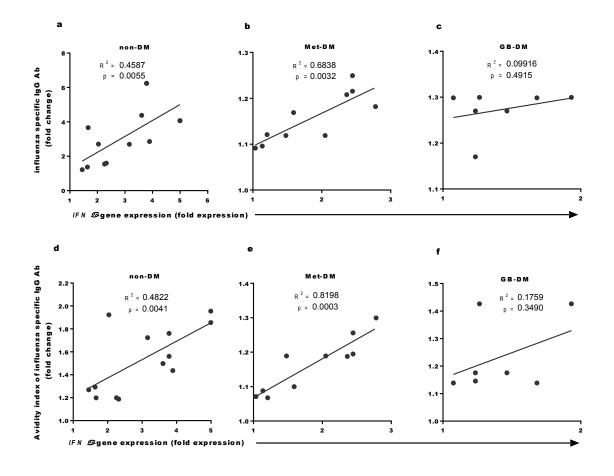

Non-DM and DM individuals (a) with (non-DM; n = 5, Met-DM; n = 11, GB-DM; n = 7, Met+GB-DM; n = 18) or (b) without (non-DM; n = 25, Met-DM; n = 1, GB-DM; n = 3) experience of seasonal influenza vaccination were determined, and the influenza-specific IgG avidity index at baseline and several time points post-vaccination were compared using ELISAs. (c) The IgG avidity index at baseline and several time points post-influenza vaccination in individuals who had experience of influenza vaccination. (d) Differential avidity index of an influenza-specific IgG antibody response compared with baseline as well as D30 or D90 or D270 post-vaccination in those who received seasonal vaccination with TIV. Horizontal lines represent the mean with 95%CI. Statistical analyses were undertaken using two-way ANOVA, *p<0.05, **p<0.01, ***p<0.001.




Supplementary Figure S4: Prolonged treatment reduced HAI antibody fold-changes and the avidity index of influenza-specific IgG antibody against seasonal TIV.


The correlation between HAI antibody fold-changes in response to (a) H1N1, (b) H3N2), (c) B antigens, or (d) the avidity index of influenza-specific IgG antibody fold-change and duration of anti-diabetic medication (months). The fold change of the response was calculated by dividing the response at D30 by that at baseline (D-7). Each point represents a DM individual (n = 40). R² and p represent the Pearson correlation coefficient and associated p-value, respectively.





Supplementary Figure S5: Full-length blots of samples of human PBMCs.

Samples of PBMCs from three non-DM individuals (a-c) were separated into five conditions: medium control (lane number 1), stimulated with influenza whole-virion (lane number 2), treated with Met (50 μ M) (lane number 3), Met (100 μ M) (lane number 4) or rapamycin (50 ng/mL) (lane number 5) before stimulation with influenza whole-virion for 3 h. Protein was extracted from cultured cells, and P-p70S6K and p70S6K determined by western blotting. β -actin was used as a loading control.

Supplementary Figure S6: Influenza-specific IgG antibody and the avidity index of the influenzaspecific IgG antibody response were positively correlated with IFN- α expression in non-DM individuals and DM individuals treated with metformin.

Using the same subjects as those shown in Figure 2, non-DM (n = 15) or DM individuals who had been treated with metformin (Met-DM, n = 10) or glibenclamide (GB-DM, n = 7) had blood samples collected 90 days post-vaccination. *IFN-α* expression against an influenza vaccine (influenza-split virion, 0.3 μg/ml) *in vitro* was determined by real-time PCR. A correlation was shown between *IFN-α* expression (fold expression) and (a) the influenza-specific IgG antibody response (fold change at D-7/D30) in non-DM or (b) in Met-DM individuals or (c) in GB-DM individuals and (d) in the avidity index of influenza-specific IgG antibody (fold change at D-7/D30) in non-DM or (e) in Met-DM individuals or (f) in GB-DM individuals. Each point represents an individual. R² and p represent the Pearson correlation coefficient and associated p-value, respectively.

Supplementary Table S1: Multivariate analysis of the host factors that affect the immune response to seasonal trivalent influenza vaccine

Category	N	OR	95%CI	P					
HAI (H1N1) fold rise <u>>4</u> (D-7/D30)									
DM	40								
Non-DM	30	4.631	0.261-82.260	0.296					
Age ≥60 years	17								
Age < 60 years	53	3.201	0.598-17.113	0.174					
Female	50								
Male	20	0.517	0.068-3.910	0.523					
BMI \geq 30 kg/m ²	7								
$BMI < 30 \text{ kg/m}^2$	63	0.215	0.022-2.049	0.182					
HbA1c <6.5%	9								
HbA1c 6.5-8.4%	15	3.057	0.349-26.743	0.313					
HbA1c≥8.5%	16	0.858	0.086-8.523	0.897					
Duration of drug use <u>>40</u> months	22								
duration of drug use <40 months	18	11.127	1.461-84.732	0.020					
Not previously vaccinated against influenza	30								
Previously vaccinated against influenza	40	1.492	0.209-10.652	0.690					

N = number of individuals, OR = odds ratio, CI = confidence interval, Likelihood ratio, logistic regression was used for analyses

Supplementary Table S2

Supplementary Table S2: Demographic characteristics of individuals participating in the study

Demographic		non-DM	new-DM	Met-DM	GB-DM	Met+GB-DM	P
Age (years)	Median (range)	53 (49-58)	52 (39-67)	52 (38-64)	56 (44-69)	55 (42-67)	a-j ^{ns}
Sex (%)	Female	77	68	62	70	65	ND
BMI (kg/m²)	Median (range)	23.4 (19.5-33.5)	26.4 (23.4-33.2)	24.6 (19.9-33.8)	24.9 (19.4-29.1)	25.6 (18.3-30.7)	a-j ^{ns}
FBS (mg%) baseline	Median (range)	90.5 (55-137) n = 30	ND	121 (95-285) n = 12	126 (89-376) n = 10	134.5 (98-435) n = 18	a-d**, h-j ^{ns}
FBS (mg%) day90	Median (range)	83.5 (68–105) n = 15	279 (180-325) n = 14	137.5 (96-217) n = 14	118.5 (95-335) n = 9	123.5 (84-427) n = 18	a****, b***, c***, d**, e_j ^{ns}
HbA _{1c} (%) baseline	Median (range)	ND	ND	7.5 (5.3–11.7), n = 12	8.2 (6.4–11.6), n = 10	7.9 (5.1–11.9), n = 18	h-j ^{ns}
HbA _{1c} (%) day 90	Median (range)	5.5 (4.7-5.9) n = 15	8.2 (7.5–10.2) n = 14	7.3 (5.8–10.6) n = 14	7.4 (6.2-9.8) n = 9	7.9 (5.7–11.4) n = 18	a****, b****, c***, d****, e-j ns

DM: diabetes mellitus; ND: not determined: FBS: fasting blood sugar.

Statistical analyses were done using one-way ANOVA. ns: non-significant;

a non-DM vs. new-DM

^b non-DM vs. Met-DM

c non-DM vs. GB-DM

 $^{^{\}rm d}$ non-DM vs. Met+GB-DM

e new-DM vs. Met-DM

f new-DM vs. GB-DM

g new-DM vs. Met+GB-DM

h Met-DM vs. GB-DM

 $^{^{\}mathrm{i}}$ Met-DM νs . Met+GB-DM

j GB-DM vs. Met+GB-DM

^{*}p<0.05, **p<0.01, ***p<0.001, ****p<0.0001