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SUPPLEMENTAL INFORMATION 
 
Supplementary Figures 
 
Supplementary Figure 1. An overview of steps to produce final QC’d array genotype and WGS 
data sets. 
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Supplementary Figure 2. Comparison of genotype missing rate of individuals from imputed data 
and the genotype concordance rate between genotypes imputed by GIGI and microarray 
genotypes. Each point represents each imputed individual. Genotypes were missing if genotype 
probability from GIGI imputation was lower than the genotype probability threshold, and we 
included only individuals whose genotype missing rates were < 10% for subsequent analyses.  
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Supplementary Figure 3. Array-based CNV detection sample QC. We excluded outlying samples 
based on manual inspection of the distributions across all samples on three different intensity-
based QC metrics: (A) Log-R ratio standard deviation (LRR_SD), a general measure of intensity 
signal to noise; (B) B-allele frequency standard deviation (BAF_SD), the deviation of 
heterozygous B-allele frequency measures from the expect value of 0.5; (C) waviness (bottom), 
which measures the waviness of signal intensities after accounting for local GC-bias. (D) 
Additionally, we removed samples with an excessive number of rare CNV calls. 
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Supplementary Figure 4. WGS CNV detection sample QC.  (A) Following genome-wide detection of deletion CNVs from WGS, we 
removed five samples with an excessive number of CNV calls or with possible sample mix-up who also all failed SNV QC prior to 
imputation in additional samples with available genotype data (see Methods). (B) Per chromosome plot of total number of CNV calls 
detected by WGS across remaining samples reveals no substantial sample outliers.  Peaks on chromosome 2 and chromosome 14 
correspond to VDJ recombination regions. CNV calls within these regions were excluded from further analysis. (C) Rate of 
Mendelian-inconsistent CNV genotype calls across 67 complete trios available from all 449 sequenced individuals. The average rate 
of inconsistent sites across all genotyped sites was 0.0026±0.00067. 
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Supplementary Figure 5. Enrichment z-scores of heritability of BP in 10 different cell type 

groups using the stratified LD score regression. The horizontal dotted line is the threshold for 

significant enrichment. CNS: central nervous system. GI: Gastrointestinal.  
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Supplementary Figure 6. Manhattan plot of genome-wide two-point parametric heterogeneity 

linkage analysis with 99,446 SNVs (circles) and 85,813 STRs (triangles). The horizontal line at 

HLOD=4.1 represents genome-wide significance. 
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Supplementary Figure 7. An example of a pedigree for the segregation analysis. In this family, 

among 10 individuals, only the latest offspring (individuals 9 and 10) are affected while all 

others have a missing phenotype, which generates the maximum Srare statistic of 2. The p-value 

of Srare statistic of 2 is much more significant when the top founder (founder 1) is Frv (founders 

with a rare variant) compared to when a parent of individuals 9 and 10 (founder 8) is Frv. The 

fact that the rare variant is inherited in every generation and shared among the two affected 

individuals in the last generation is a more rare event than when the rare variant is directly 

inherited from a parent and hence yields a more significant p-value. 
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Supplementary Figure 8. First two dimensions of a PCA analysis of founders from the BP1 WGS 

data set, using 1000 Genomes phase 3 samples as reference. 
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Supplementary Figure 9. Comparison of global estimates of admixture proportions between 

BP1 individuals and controls. Admixture proportions were compared for African, European, and 

Native American ancestries separately.   
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Supplementary Figure 10. The number of rare SNVs passing the three different filters. The first 

filter (F1) is the number of rare variants with genotype missing rate < 5% and in which at least 

two affected individuals in a family share the variant. The second filter (F2) is the number of 

rare variants for which all founders have high-quality genotypes (the highest genotype 

probability among the three probabilities from GIGI imputation > 0.8). The third filter (F3) is the 

number of rare variants for which all founders except a pair of top founders have high-quality 

genotypes. The “Passing F1 & (F2 or F3)” filter is the number of rare variants that we analyzed 

in the segregation analysis. 
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Supplementary Figure 11. The number of rare CNVs passing the three different filters. The first 

filter (F1) is the number of rare variants with genotype missing rate < 5% and in which at least 

two affected individuals in a family share the variant. The second filter (F2) is the number of 

rare variants for which all founders have high-quality genotypes (the highest genotype 

probability among the three probabilities from GIGI imputation > 0.8). The third filter (F3) is the 

number of rare variants for which all founders except a pair of top founders have high-quality 

genotypes. The “Passing F1 & (F2 or F3)” filter is the number of rare variants that we analyzed 

in the segregation analysis. 
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Supplementary Tables 
 

Supplementary Table 1. Summary QC metrics on SNVs to pass all QC.  Mean values are taken 

over 449 individuals with sequence data after removing five individuals with poor sequencing 

quality and sample mix-up, and all variant sites that passed QC. NVariants: Number of Variant 

Sites; MeanDepth: Mean Depth; MeanGQ: Mean Genotype Quality; NArrayVariants: Number of 

Variant Sites seen on array chip; Pct01Discordant: Percent of markers with 0 or 1 discordant 

genotypes compared to array data; PctMissingMT01: Percent of markers missing more than 1% 

of data; Pct01ME: Percent of markers with 0 or 1 Mendelian transmission errors in 67 trios; 

PctHWELT104: Percent of markers with HWE p-value <0.0001. 

 

CHR NVariants MeanDepth MeanGQ NArrayVariants Pct01Discordant PctMissingMT01 Pct01ME PctHWE 

1 1,597,894 36.49 93.19 142,772 99.45% 1.57% 99.89% 0.01% 

2 1,747,882 36.76 93.70 152,091 99.45% 1.42% 99.88% 0.01% 

3 1,490,005 36.89 93.92 128,855 99.45% 1.30% 99.84% 0.01% 

4 1,476,620 37.07 94.12 119,880 99.44% 1.29% 99.89% 0.01% 

5 1,327,700 36.85 93.91 113,159 99.44% 1.29% 99.93% 0.00% 

6 1,294,148 36.94 93.87 113,983 99.36% 1.57% 99.83% 0.02% 

7 1,196,061 36.64 93.33 101,483 99.43% 1.71% 99.84% 0.01% 

8 1,167,413 36.79 93.72 99,111 99.40% 1.30% 99.93% 0.02% 

9 865,972 36.55 93.32 80,725 99.40% 1.51% 99.89% 0.00% 

10 1,026,662 36.59 93.31 94,758 99.44% 1.52% 99.91% 0.01% 

11 994,937 36.62 93.38 89,614 99.48% 1.54% 99.87% 0.01% 

12 971,757 36.66 93.45 87,546 99.43% 1.65% 99.90% 0.01% 

13 735,365 37.00 94.01 65,846 99.38% 1.34% 99.89% 0.00% 

14 641,845 36.71 93.38 58,817 99.46% 1.90% 99.88% 0.00% 

15 584,891 36.61 93.21 56,091 99.38% 1.60% 99.79% 0.00% 

16 654,306 36.20 92.26 59,621 99.33% 1.73% 99.89% 0.05% 

17 566,990 35.61 91.65 51,786 99.25% 1.92% 99.89% 0.02% 

18 577,069 36.82 93.79 54,736 99.41% 1.39% 99.90% 0.01% 

19 470,547 35.00 90.28 36,853 99.19% 2.90% 99.54% 0.01% 

20 460,660 36.07 92.61 45,241 99.42% 1.65% 99.90% 0.01% 

21 280,646 36.81 93.36 25,354 99.47% 1.58% 99.89% 0.01% 

22 266,920 35.16 90.97 26,531 99.27% 2.37% 99.83% 0.02% 

X 510,990 29.61 77.52 34,376 99.99% 0.02% 100.00% 0.00% 
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Supplementary Table 2.  Average GQ and DP of genotypes that were changed and unchanged by Polymutt. Mode 0 is a case where 
Polymutt did not change the original genotypes. Mode 1 is a case where Polymutt changed genotypes. Mode 2 is a case where 
Polymutt imputed genotypes. A genotype is Mendelian inconsistent if it belongs to a trio or a pair with an Mendelian error on the 
variant. It is Mendelian consistent otherwise. 
 

Mode Original 
Genotype 

After 
Polymutt 

Average GQ of 
Mendelian consistent 

genotypes 

Average GQ of 
Mendelian inconsistent 

genotypes 

Average DP of 
Mendelian consistent 

genotypes 

Average DP of 
Mendelian inconsistent 

genotypes 
0 A/A A/A 93.06 81.14 36.47 32.6 
1 A/A A/C 51.89 53.65 18.61 25.02 
2 Missing A/A 8.97 6.13 28.81 25.33 
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Supplementary Table 3. False Discovery Rate (FDR) of CNV detection by WGS. CNV_LOCI: The 
total number of CNV loci considered for FDR estimation; IRS_FDR: The genome-wide estimate 
of FDR, calculated using an intensity rank-sum test on available array data. 
 

MINIMUM_SIZE (KB) CNV_LOCI IRS_FDR 

0 8768 0.0397 
1 6480 0.0270 

2 4311 0.0207 
3 3198 0.0181 

4 2484 0.0185 

5 2010 0.0179 
6 1618 0.0175 

7 1297 0.0069 
8 1117 0.0080 

9 975 0.0068 

10 832 0.0053 
15 526 0.0043 

20 399 0.0000 
   

MINIMUM_PROBES CNV_LOCI IRS_FDR 
1 4949 0.0397 

2 3432 0.0097 

3 2491 0.0067 
4 1888 0.0077 

5 1514 0.0083 
6 1209 0.0104 

7 1002 0.0063 

8 853 0.0074 
9 741 0.0085 

10 649 0.0097 
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Supplementary Table 4. A summary on different types of genetic variants analyzed in this study. 
The Polymutt row indicates whether Polymutt was applied to a type of variant, and the 
Imputed row indicates whether GIGI imputation was applied to a type of variant. # of samples, 
BP1 individuals, controls, and variants is after QC. PRS: polygenic risk scores, RV: rare variant. 
 

 WGS SNV Array SNP WGS CNV Array CNV STR 

Software GATK GenomeStudio GenomSTRiP 
PennCNV, 
QuantiSNP 

lobSTR 

Polymutt Yes No No No No 

Imputed Yes No Yes No No 

# of 
samples 

782 838 782 782 449 

# of BP1 
subjects 

190 206 190 189 143 

# of 
controls 

130 NA 130 128 NA 

Type of 
allele 

Bi-allele Bi-allele 
Bi-allele 

(deletion) 
Deletion and 
duplication 

Bi-allele and 
multi-allele 

# of 
variants 

20,396,290 
2026257  

(99,446 for 
linkage) 

8,768 5,437 86,601 

QC 
VQSR + 

classifier 
Pagani et al. 
PNAS 2016 

CNV QC 
Huang et al. Neuron 

2017 

Comparison to 
electrophoresis 

STR calls 

Analysis 
PRS, RV 

burden and 
segregation 

Linkage 
RV burden and 

segregation 
RV burden Linkage 
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Supplementary Table 5.  Results of parametric linkage and non-parametric linkage (NPL) 
analyses. For parametric linkage, SNVs and STRs with heterogeneity LOD score (HLOD) 
exceeding 4.1 are shown, and for NPL, markers with empiric p-values < 4.9e-05 are shown. 
Empiric p-values were initially tested with 250,000 simulations and also with 1,000,000 
simulations. To check overlap between parametric linkage and NPL analyses and also between 
SNVs and STRs, we looked 1Mb to either side of each linkage peak to obtain the maximal 
evidence for linkage from other types of analysis or genetic variant. All BP positions are on build 
37, hg19. 
 

Parametric Linkage – SNV 
rsID CHR BP HLOD Alpha Min NPL 

p-value 
Max STR 

HLOD 
 kgp5681631 2 206823264 4.71 1 

0.00036 2.04 kgp1040292
4 

2 228285348 4.5 1 

kgp2684721 16 79556425 4.13 0.88 
0.00032 2.39 

rs8058020 16 83739599 4.59 0.92 
Parametric Linkage – STR 

rsID CHR BP HLOD Alpha Min NPL 
p-value 

Max SNV 
HLOD 

STR 1 247103258 5.03 0.72 0.0024 2.73 
STR 15 35265465 4.32 0.62 0.03327 0.71 

NPL – SNV 
rsID CHR BP emp_pvalu

e 250,000 
simulations 

emp_pvalu
e 1,000,000 
simulations 

Max STR 
HLOD 

Max SNV 
HLOD 

rs804129 1 15183309 2.80E-05 2.80E-05 0.54 1.86 
rs3820546 1 43398085 3.20E-05 3.90E-05 1.13 1.97 

kgp1031668
4 

1 182297222 8.00E-06 1.10E-05 1.16 3.39 

rs10056131 5 28302858 1.20E-05 2.20E-05 0.63 0.64 
kgp9442190 6 31055539 2.80E-05 3.10E-05 1.16 2,42 
rs12444317 16 77705268 0 2.00E-06 0.84 2.5 
kgp3613333 21 23959348 8.00E-06 2.00E-06 

1.39 3.15 kgp1071479
6 

21 24623957 1.60E-05 1.80E-05 

NPL – STR 
rsID CHR BP emp_pvalu

e 250,000 
simulations 

emp_pvalu
e 1,000,000 
simulations 

Max STR 
HLOD 

Max SNV 
HLOD 

STR 18 72256481 4.00E-05 2.60E-05 0.99 2.59 
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Supplementary Table 7. A summary on types of variants (common or rare), the number of tests, and the type of multiple testing 
correction applied to each analysis in this study. LMM: linear mixed models.  
 

Analysis Question of interest Type of 
variants The number of tests Type of multiple testing 

correction 

Admixture   3 None 

PRS - BP1 summary statistic Genetic architecture Common 5 None 

PRS - SCZ summary statistic Genetic architecture Common 5 None 

Partitioned heritability using LD score regression   10 Bonferroni 

Rare variant burden - SNV Genetic architecture Rare 4 None 

Rare variant burden - CNVs in gene set Genetic architecture Rare 5 None 

Rare variant burden - overall # of CNVs Genetic architecture Rare 2 None 

Rare variant segregation - SNVs Specific locus Rare 6,421 Bonferroni 

Rare variant segregation - CNVs Specific locus Rare 314 Bonferroni 

Linkage analysis - parametric Specific locus Common 99,446 SNPs and 
85,813 STRs Lander-Kruglyak 1995 

Linkage analysis - nonparametric Specific locus Common 99,446 SNPs and 
85,813 STRs Lander-Kruglyak 1995 
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Supplementary Table 8. Comparison of Polygenic risk score estimated from PGC SCZ GWAS summary statistic between BP1 
individuals and controls. P-values are computed using linear and logistic regression models by taking into account relatedness; BP: 
coefficients and p-values for BP1 status; AdMix: coefficients and p-values for global admixture proportions of European ancestry; 
LM: Linear model; LR: Logistic regression; QNPRS: quantile-normalized polygenic risk scores. 
 

GWAS 
Threshold 

NSNPs LM Beta 
(BP) 

LM P-
value (BP) 

LM Beta 
(AdMix) 

LM P-
value 
(AdMix) 

LR Log OR 
(QNPRS) 

LR P-value 
(QNPRS) 

OR for 1-
unit 
increase 
in QNPRS 

LR Log OR 
(AdMix) 

LR P-value 
(AdMix) 

0.01 24346 0.13 0.1247 -4.98 3.88E-13 0.22 0.0910 1.247 5.34 1.80E-04 
0.001 6141 0.07 0.4552 -4.17 1.14E-08 0.14 0.2698 1.146 4.79 4.13E-04 

0.0001 1874 0.02 0.8166 -3.10 4.68E-05 0.06 0.6361 1.057 4.43 7.30E-04 
0.000001 337 0.00 0.9867 -0.40 6.27E-01 -0.02 0.8277 0.976 4.27 7.85E-04 

0.00000005 143 -0.01 0.8765 0.36 6.67E-01 -0.07 0.5514 0.936 4.28 7.48E-04 



 20 

Supplementary Table 9. Burden analysis of rare CNVs. CNV Type denotes the category of CNVs tested; No. of CNVs: the total number 
of CNVs detected; No. of BP1 CNVs: the number of CNVs affecting BP1 genes; BP: coefficients and p-values for BP1 status; AdMix: 
coefficients and p-values for global admixture proportions of European ancestry; LM: Linear model; LR: Logistic regression; 
QNBurden: quantile-normalized burden score. 
 

CNV Type No. of 
CNVs 

No. of 
BP1 

CNVs 

LM 
Beta 
(BP) 

LM P-
value 
(BP) 

LM Beta 
(AdMix) 

LM P-
value 

(AdMix) 

LR Log OR 
(QNBurden) 

LR P-value 
(QNBurden) 

OR for 1-unit 
increase in 
QNBurden 

LR Log 
OR 

(AdMix) 

LR P-
value 

(AdMix) 
SNP 

DEL+DUP 
2186 705 0.29 0.0130 -0.21 7.30E-01 0.29 0.0180 1.342 4.64 1.02E-

03 
SNP DUP 873 368 -0.05 0.6700 -0.57 3.50E-01 -0.05 0.6600 0.949 4.58 1.16E-

03 
SNP DEL 1313 337 0.35 0.0022 0.37 5.40E-01 0.36 0.0038 1.440 4.48 1.73E-

03 
WGS DEL 4436 737 0.27 0.0220 -0.23 7.00E-01 0.27 0.0330 1.305 4.37 1.59E-

03 
WGS 

DEL+10SNPs 
1511 363 0.32 0.0061 -0.36 5.40E-01 0.33 0.0087 1.392 4.43 1.51E-

03 
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Supplementary Table 10. The number of rare variants with genotype missing rate < 5% and at 
least two affected individuals sharing the variant in a family. 
 

Family SNV CNV 
CO10 241 17 
CO14 386 16 
CO15 289 21 
CO18 278 28 
CO23 499 27 
CO25 451 32 
CO27 314 24 
CO4 400 25 
CO7 1152 64 
CO8 218 14 

CR001 206 14 
CR004 718 41 
CR006 128 17 
CR007 44 2 
CR008 295 26 
CR009 487 40 
CR010 204 15 
CR012 218 22 
CR014 282 22 
CR016 273 20 
CR201 1782 101 
CR277 131 16 
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Supplementary Table 11. Segregation results of rare SNVs for three different tests. #RV: the 
number of rare variants in a gene. All BP positions are on build 37, hg19. 
 

  CHR BP Gene FamilyID #RV P-value 
Gene-
level 

2 98271420 ACTR1B CR201 1 0.000518 
2 205409707 PARD3B CO23 1 0.001046 
6 24803787 FAM65B CO23 1 0.001338 

12 49418435 MLL2 CO7,CR004,CR012,CR016 4 0.0015042 
12 53876078 MAP3K12 CR001,CR004 1 0.00151346 
4 128553137 INTU CR004,CR201,CR277 1 0.0017158 

11 118063479 AMICA1 CR006 1 0.001958 
17 36921648 PIP4K2B CO23,CR201 1 0.00220019 
1 223281759 TLR5 CO7,CR010 2 0.00247749 
6 117072450 FAM162B CO14,CO7,CR001 1 0.00267978 

Variant
-level 

2 98275876 ACTR1B CR201 1 0.000518 
1 228482059 OBSCN CO7 1 0.000818 
6 90371215 MDN1 CO23,CR004 1 0.0009749 
2 196681435 DNAH7 CO23 1 0.001046 
2 205986458 PARD3B CO23 1 0.001046 

12 49434801 MLL2 CR004 1 0.001241 
6 24848287 FAM65B CO23 1 0.001338 

12 53876573 MAP3K12 CR001,CR004 1 0.00151346 
4 128626819 INTU CR004,CR201,CR277 1 0.0017158 

11 118067537 AMICA1 CR006 1 0.001958 
Family-

level 
6 117083172 FAM162B CO7 1 0.000377 
2 98275876 ACTR1B CR201 1 0.000518 
1 228482059 OBSCN CO7 1 0.000818 
3 140401440 TRIM42 CR012 1 0.000972 
2 196681435 DNAH7 CO23 1 0.001046 
2 205986458 PARD3B CO23 1 0.001046 

12 49434801 MLL2 CR004 1 0.001241 
12 53876573 MAP3K12 CR004 1 0.001241 
6 24848287 FAM65B CO23 1 0.001338 

17 36935737 PIP4K2B CR201 1 0.001602 
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Supplementary Table 12. Segregation results of rare CNVs for three different tests. #RV: the 
number of rare variants in a gene. All BP positions are on build 37, hg19. 
 

  CHR BP Gene FamilyID #RV P-value 
Gene-level 5 32161816 GOLPH3 CO27 1 0.000789 

21 40594759 BRWD1 CO7 1 0.008174 
7 1495145 MICALL2 CO23,CR201 1 0.014247 

18 72672166 ZNF407 CR004 1 0.014854 
3 147155005 ZIC1 CO15,CO7 1 0.025583 
3 183433723 YEATS2 CR010 1 0.031282 

10 18670518 CACNB2 CO18 1 0.031311 
1 1223477 SCNN1D CO4 1 0.034854 
3 52614424 PBRM1 CO14,CO18,CR008 2 0.040371 

22 43974737 EFCAB6 CO23,CO7 2 0.040386 
Variant-

level 
5 32161816 GOLPH3 CO27 1 0.000789 

21 40594759 BRWD1 CO7 1 0.008174 
22 43974737 EFCAB6 CO23 1 0.012922 
7 1495145 MICALL2 CO23,CR201 1 0.014247 

18 72672166 ZNF407 CR004 1 0.014854 
3 147155005 ZIC1 CO15,CO7 1 0.025583 
3 183433723 YEATS2 CR010 1 0.031282 

10 18670518 CACNB2 CO18 1 0.031311 
12 99818192 ANKS1B CO27 1 0.032181 
1 1223649 SCNN1D CO4 1 0.034854 

Family-
level 

5 32161816 GOLPH3 CO27 1 0.000789 
21 40594759 BRWD1 CO7 1 0.008174 
22 43974737 EFCAB6 CO23 1 0.012922 
18 72672166 ZNF407 CR004 1 0.014854 
3 147155005 ZIC1 CO15 1 0.015621 
6 16259314 GMPR CR004 1 0.031155 
6 159419156 RSPH3 CO7 1 0.031242 
3 183433723 YEATS2 CR010 1 0.031282 
3 52669549 PBRM1 CO18 1 0.031311 
3 52669566 PBRM1 CO18 1 0.031311 
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Supplementary Table 13. The distribution of a segregation statistic and its p-value for the rare 
variant (rs141238033) present in the top gene (ACTR1B) from the SNV segregation analysis. This 
variant appears in family CR201 from founder ID 48. The observed Srare statistic is 46, which 
has p-value of 5.18E-04. 
 
 

Statistic Count Pvalue 
36 28 1 
37 906 0.999972 
38 8764 0.999066 
39 58461 0.990302 
40 180615 0.931841 
41 429062 0.751226 
42 219269 0.322164 
43 78690 0.102895 
44 19987 0.024205 
45 3700 0.004218 
46 464 5.18E-04 
47 52 5.40E-05 
48 2 2.00E-06 
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Supplementary Table 14. The distribution of a segregation statistic and its p-value for the rare 
variant (DEL_P0095_217) present in the top gene (GOLPH3) from the CNV segregation analysis. 
This variant appears in family CO27 from founder ID 18. The observed Srare statistic is 14, 
which has p-value of 7.89E-04. 
 

Statistic Count Pvalue 
3 9 1 
4 480 0.999991 
5 4665 0.999511 
6 20958 0.994846 
7 58634 0.973888 
8 108181 0.915254 
9 139165 0.807073 

10 445765 0.667908 
11 161155 0.222143 
12 48242 0.060988 
13 11957 1.27E-02 
14 731 7.89E-04 
15 58 5.80E-05 
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Supplementary Text 

Ascertainment and Phenotypic Assessment of Study Sample 
 
The study sample consisted of members of 26 pedigrees, 15 from CR and 11 from CO, each 
ascertained based on multiple members who had previously been clinically diagnosed with BP1. 
Our group has studied three of the CR families1, 2 and several of the CO families3 in past linkage 
studies of BP1, however the composition of the families changed somewhat as we recruited 
new individuals. We increased the number of families for study by recruiting family members of 
BP1 individuals individually recruited for population-level mapping studies4, 5. We expanded 
each family by systematically evaluating first degree relatives of the BP1 proband, and included 
other branches as we encountered individuals with suspected BP1. The ascertainment and 
phenotyping strategy employed in expansion of these pedigrees was previously reported in 
Fears et al.6. Due to the way the pedigree was expanded, with an emphasis on collecting 
equivalent numbers of BP1 individuals and their unaffected relatives, and with systematic 
preferred expansion of branches with BP1 individuals, the BP1 phenotype itself is not heritable 
in this pedigree collection. 
 
Diagnostic interviews were conducted using the Mini International Neuropsychiatric Interview 
(M.I.N.I)7 and a Spanish version of the DIGS; the CO clinical team developed this translated and 
validated8 version and made it publicly available at 
https://www.nimhgenetics.org/interviews/digs_3.0_b/. Interviews were performed by bilingual 
psychologists or psychiatrists extensively trained in the use of these instruments. Among CR 
individuals newly recruited for this study, only those who answered positively to M.I.N.I 
questions related to mood or psychotic symptoms were targeted for the complete DIGS 
interview. All available CO family members received a DIGS interview. Six research psychiatrists 
or psychologists, at the University of California, San Francisco (VR), University of California, Los 
Angeles (CEB, JGF, JM), University of Antioquia (CLJ), and Rutgers University (JE), who are 
experts in the diagnosis of mood disorders reviewed all available clinical material for the cases 
(DIGS interview, medical records, hospital notes), with at least one expert rater reviewing each 
case. Prior to beginning Best Estimate (BE) procedures each diagnostician established reliability 
(diagnostic agreement of 90% or better) with the Chair of the BE group (VR). Individuals 
designated as BP1 had a BE diagnosis of BP1, unipolar mania, or schizoaffective disorder, 
bipolar type. Control individuals were those who went through the complete psychiatric 
evaluation and were found to have no mental illness, as well as those who answered negatively 
to all M.I.N.I.7 questions related to mood or psychotic symptoms, and were >60 years of age. 
 
Results of quality of variant calling and QC of WGS data 
 
Variant calling: Illumina performed WGS of 454 individuals using HiSeq 2000 with 36x overall 
coverage. Illumina performed initial variant calling using their internal variant caller, CASAVA, to 
obtain SNV calls in the VCF format. BAM files were also made available after the CASAVA 
variant calling pipeline. To improve accuracy of variant calls, we re-aligned and re-called the 
WGS data using the GATK best practices9. We converted the original BAM files to FASTQ files, 
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and used the Churchill pipeline10, which is an efficient and scalable implementation of the GATK 
best practices pipeline. We used the HaplotypeCaller of GATK (version 3.5-0-g36282e4). First, 
each individual was called separately to generate a GVCF file, and all individuals were joint-
called using the GenotypeGVCFs tool in GATK. The variant calling was performed in the high 
performance cluster at UCLA called the Hoffman2 cluster. Variant calling resulted in 26.15 
million (M) SNVs on autosomes and the X chromosome.  
 
Individual-level QC of WGS Data: Before checking sequencing quality of each individual, we first 
removed variants that failed Variant Quality Score Recalibration (VQSR) in the GATK pipeline 
and we set each genotype whose genotype quality (GQ) score was ≤ 20 to missing. Additionally, 
all multi-allelic SNVs (0.44% of all SNVs after the VQSR filter) were excluded. In the remaining 
variants, for each sequenced individual we assessed genotype missing rate, the number of 
singletons and WGS genotype concordance with array genotypes, verified agreement between 
reported sex and sex determined from X chromosome markers, and compared empirical 
estimates of kinship with theoretical estimates. We also performed principal component 
analysis (PCA) using 1000 Genomes (1KG) Phase 3 as a reference panel11. We used 
EIGENSTRAT12 for PCA, and included only founders from WGS data, and used independent 
common SNVs present in both BP1 WGS and 1KG Phase 3. We identified three individuals with 
poor sequencing quality who had high genotype missing rate (> 5%) or an excessive number of 
singletons and subsequently excluded the WGS data of these individuals. In comparison with 
array genotype data, we discovered two possible sample mix-ups, and WGS data from these 
samples were excluded. In the remaining subjects, all empirically derived kinship coefficients 
were consistent with theoretical kinship and genetic sex agreed with reported sex. In PCA plots, 
all founders from BP WGS were mapped close to Admixed American (AMR), especially in close 
proximity to Colombians from Medellin, Colombia (CLM).11  
 
Variant-level QC of WGS Data: In doing variant-site QC, rather than using fixed thresholds for 
missingness, HWE, etc. to filter out poor quality variant sites, we used logistic regression to 
predict the probability of variant sites being of good or poor quality, with prediction based on 
mean and standard deviation of variant sequencing depth and genotype quality and a fraction 
of individuals meeting certain thresholds for depth and quality. We trained the regression 
model on a set of variants deemed to be of obvious good and poor quality using several QC 
measures such as genotype missing rate, HWE p-value, and the number of Mendelian errors. 
We assessed the accuracy of the model using cross validation (see the next section for details).  
 
Genotype Refinement Using Pedigree-Aware Variant Calling Algorithm: We used the pedigree-
aware variant calling method Polymutt13 to refine genotypes of variant sites that passed QC. 
This method takes a VCF file with genotype likelihood generated from GATK and pedigree 
structure as input and generates a VCF file that refines genotype calls based on their likelihood 
and pedigree structure. To use Polymutt, some of large pedigrees had to be trimmed to remove 
inbreeding loops and reduce pedigree complexity. Among the 20,907,280 SNVs with good 
quality after applying the classifier, the number of Mendelian Errors (MEs) among all trios and 
pairs before application of Polymutt1313131313(13)(Li et al., 2012) was 157,028, whereas the 
number of MEs after application of Polymutt was 266. Polymutt mostly changed genotypes 
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causing MEs; it changed 36.57% of genotypes that caused MEs while it changed 0.02% of 
genotypes that did not cause MEs. Genotypes changed by Polymutt had much lower GQ and DP 
than genotypes unchanged by Polymutt on average.  
 
Imputation of Sequenced Sites into Genotyped Individuals: The 454 individuals in 22 of the 26 
CO/CR families who underwent WGS were selected with the goal of imputing the rest of 334 
family members who were genotyped on the Omni 2.5 chip, but not directly sequenced 
(Supplementary Figure 1). We used the imputation software GIGI14, an approach designed to 
impute genotypes on large extended pedigrees. First, we obtained a genetic map of variant 
sites using the Rutgers genetic map interpolator15. We then used MORGAN16 to obtain pedigree 
IVs based on independent common SNP array genotype data of individuals in 22 families with 
WGS data. GIGI used these IVs to impute WGS variants identified in the directly sequenced 
individuals into the pedigree members with only SNP genotype data. GIGI also imputed 
sequence data for pedigree members who were neither sequenced nor genotyped in the Omni 
2.5 chip. GIGI imputed each family separately, and we further divided each chromosome into 
10 Mb intervals to perform efficient imputation by utilizing parallelization in the high 
performance cluster. After imputation, GIGI generated the probability of each imputed 
genotype and we used the threshold-based calling with the default threshold to call genotypes 
for the rare variant burden analysis while we used the most likely genotype calls for the rare 
variant segregation analysis. For the threshold-based calling approach, only genotypes with 
probability in excess of 80% were called, genotypes that did not meet this threshold were set to 
missing. After the GIGI imputation, there were 782 individuals who were either sequenced or 
imputed with the high quality in 22 pedigrees. Among them, 190 are BP1 and 130 are controls. 
 
Measuring accuracy of imputation: One measure to assess the imputation quality is the number 
of MEs after imputation. Considering all SNVs, we observed no MEs with the threshold-based 
calling and 239 MEs with the most likely genotype calls. Another measure is the missing rate of 
imputed genotypes in individuals without WGS data, as the higher missing rate indicates the 
lower imputation quality. One subject among the 334 imputed individuals had missing rate > 
10% and was excluded (Supplementary Figure 1). For SNVs, 37.23% of common variants (MAF > 
3%) and 0.37% of rare variants (MAF < 3%) had missing rate > 10% (computed from 334 
imputed subjects). Another measure for imputation quality is to check genotype concordance 
between SNV genotype data and imputed data for SNVs. A majority of SNVs in the Omni 2.5 
chip were present in WGS data and imputed during the GIGI imputation process. Excluding the 
individual who had the high imputation missing rate, all individuals with the SNV genotype data 
had genotype concordance rate > 97.93% between the Omni 2.5 chip and GIGI imputation data 
for non-missing calls in both datasets. Among those individuals, 80.48% had genotype missing 
rate < 10% for imputed data on SNVs present in Omni 2.5 chip. The genotype concordance rate 
between SNV and imputed data and the genotype missing rate of imputation had high negative 
correlation as expected (r=-0.877) (Supplementary Figure 2).  
 
Building a logistic regression model to predict the quality of variants 
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In genetic studies, a few quality control (QC) measures are assessed to filter out variants with 
poor quality. For example, we may discard a variant if its genotype missing rate among 
genotyped individuals is > 10% or its Hardy Weinberg equilibrium (HWE) p-value is < 1E-7. 
These variants may represent sequencing or genotyping errors and may cause spurious 
findings. It is not, however, straightforward to choose the right threshold values for the QC 
measures, and they are often chosen arbitrarily. This approach may include variants with poor 
quality in analysis or may exclude variants with good quality.  
 
In this paper, we aimed to build a classifier based on a logistic regression model to predict 
whether a variant has good or poor quality using its sequencing quality measures. First, we 
chose a set of variants that clearly have good and poor quality to train the classifier. SNV 
variants with good quality needed to meet all following criteria: 0 Mendelian errors (MEs) 
among all trios and pairs, genotype missing rate < 0.5%, HWE p-value > 0.01, and 0 or 1 
discordant genotype to Omni 2.5 chip if variants were typed in Omni 2.5 chip. There were 
20,314,194 SNV variants (94.10% of total variants) with good quality that satisfied all these 
criteria. Variants have clearly poor quality if they meet all of the following criteria depending on 
their minor allele frequency (MAF). For common variants (MAF > 3%), # of MEs > 5 and 
genotype missing rate > 3% and HWE p-value < 5E-4. For rare variants (MAF < 3%), # MEs > 3 
and genotype missing rate > 2% and HWE p-value < 5E-3. If variants were typed in Omni 2.5 
chip, they needed to have more than 6 discordant genotypes to Omni 2.5 chip to be considered 
to have poor quality. There were 4,957 SNVs (0.02% of total variants) with poor quality using 
these criteria, and 1,268,616 SNVs (5.88% of total variants) with uncertain quality. Our aim is to 
predict whether the 1,268,616 SNVs have good or poor quality using our classifier.  
 
We used the following six sequencing quality measures of those variants with good and poor 
quality to train the classifier: 1) average sequencing depth (DP), 2) average genotype quality 
(GQ), 3) standard deviation of DP, 4) standard deviation of GQ, 5) a fraction of individuals 
whose DP is < 34 for SNVs, and 6) a fraction of individuals whose GQ is < 99 for SNVs. The 
rationale for using these quality measures is that variants with better quality are likely to have 
higher average DP and GP, lower SD of DP and GQ, and the lower fraction of individuals with DP 
and GQ < the thresholds. The thresholds (34 and 32 for DP and 99 and 81 for GQ) were chosen 
because they corresponded to the first quartile of the distribution of DP and GQ of genotypes 
that do not cause Mendelian errors for SNVs and are consistent with genotypes in Omni 2.5 
chip for SNVs on chromosome 1. These sequencing quality measures were computed over the 
449 subjects after removing five individuals with poor quality sequencing and sample mix-up. 
 
To determine how accurately these six sequencing quality measures predict the quality of 
variants, we performed 10-fold cross validation in which we divided a set of variants with good 
and poor quality into 10 subsets. We trained a classifier using 9 subsets and tested it on the 
remaining set. We measured the accuracy of the classifier, which is the fraction of correct 
classifications on the 1/10 of variants. We repeated this procedure for all 10 subsets and 
measured accuracy and regression coefficients of each subset. Because the number of variants 
with good quality is much greater than that with poor quality (20M vs. 4,957 variants for SNVs), 
we randomly chose the same number of variants with good quality as the number of variants 
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with poor quality. We found that the average accuracy of our classifier using the 10-fold cross 
validation is 99.17% for SNVs.  
 
We built the classifier by using the average regression coefficients estimated from the 10-fold 
cross validation and applied it to the set of variants with uncertain quality. We found, however, 
that some of those variants had extremely poor quality measures on one or two criteria, and 
we decided to mark them as outliers that would be considered as variants with poor quality. A 
variant was an outlier if it failed one of the following QC; # of discordant genotypes to Omni 2.5 
chip > 20 for SNVs typed in Omni 2.5 chip, # of MEs > 10 and > 8 for common and rare variants, 
respectively, genotype missing rate > 10% and 8% for common and rare variants, respectively, 
and HWE p-value < 1E-8 and < 0.001 for common and rare variants, respectively. The number of 
outlier variants was 406,840 (32% among variants with uncertain quality) for SNVs. We applied 
the classifier to the rest of variants with uncertain quality to obtain the probability of them 
having good quality, and we considered them as variants with good quality if this probability 
was > 80%. We found that 68.82% of SNVs with uncertain quality were predicted to have good 
quality. In the end, there were 20,907,280 SNVs with good quality (96.85% of total SNVs) and 
680,477 SNVs with poor quality (3.15%). Summary QC statistics for these 20.91M SNVs can be 
found in Supplementary Table 1. 
 
CNV calling using genotyping arrays 
 
SNP genotyping was performed in three separate batches. In order to obtain the most accurate 
intensity measures and reduce inter-batch variability, we first produced an initial set of 
intensity measures and genotyping calls using the canonical cluster file (*.egt) in Beeline 2.0 
(Illumina). We excluded all assays with an LRRSD > 0.30 and a genotype call rate < 98%, and 
generated custom cluster files generated for each genotyping batch individually in 
GenomeStudio 2.0 (Illumina). These cluster files were then used to generate new LRR and BAF 
values. We then restricted our analysis to the 2,364,179 SNP assays common across all versions 
of the Omni2.5 arrays and ran two separate CNV calling algorithms, PennCNV17 and 
QuantiSNP.18 PennCNV was run as recommended by the developer with waviness correction19 
and a custom *.pfb file generated from all samples. QuantiSNP 2.0 was run using default 
settings including GC-based correction of LRR. Calls from both algorithms were compared on 
the sample level, and retained only if they were called by both algorithms (based on any 
overlap) and of the same relative type (gain or loss). For these overlapping calls, we retained 
the CNV boundaries as defined by PennCNV. 
 
We removed intensity outliers (mean +/- 3 SD or by visual inspection) based on three different 
metrics extracted from QC logs produced by PennCNV (Supplementary Figure 3): LRR standard 
deviation (LRR_SD), BAF standard deviation (BAF_SD), and waviness factor (WF). Samples were 
excluded if they had an LRR_SD > 0.21, a BAF_SD > 0.054 or |WF| > 0.02. We then performed 
post-segmentation cleaning of fragmented CNV calls using PennCNV’s “clean_cnv.pl” script. 
Adjacent calls of the same type were merged if the number of intervening markers was less 
than 20% of the combined segment. We removed calls in regions known to produce spurious 
CNV calls. Calls were removed if they spanned or were contained within centromeric regions 
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(+500K), or if they overlapped with telomeric regions (+100K), VDJ recombination regions, or 
segmental duplications by more than 50% of their length. After filtering for rare events (see 
Methods) spanned by a minimum of 10 SNPs and > 5kb in length, we also removed samples 
with excessive CNV load, both in terms of the number of CNV segments (n > 50) and total 
autosomal CNV length (>5Mb). 
 
CNV calling using WGS 
 
We used GenomeSTRiP v2.00.174720 to detect and genotype CNVs across all samples with WGS. 
Alignment files were first preprocessed using a reference metadata bundle adapted from the 
Broad’s HG19 version (ftp://ftp.broadinstitute.org/pub/svtoolkit/reference_metadata_bundles) 
using a 100bp alignability mask. Our aim was to impute CNVs detected in the subset of samples 
with WGS. Therefore, we focused on deletions only, since deletions are most reliably imputed20 
and also because our imputation method relies on the availability of discrete genotype calls. To 
discover deletions, we ran the SVDiscovery pipeline script to in two different batches to 
discover variants of different size ranges: 100bp-100kbp and 100kbp-10Mb. Sites from both 
discovery runs were filtered using recommended parameters established by the Genome of the 
Netherlands Consortium.21 Discovery sites with an alpha-satellite fraction of >0.9 were also 
excluded. We excluded outlying samples with an excessive number of autosomal discovery 
CNVs (Supplementary Figure 4), and genotyped all remaining samples using read-depth on a 
total of 10,609 putative deletions events. 
 
Inspection of the resultant genotypes in available trios (n=68) demonstrated consistently low 
levels of Mendelian inconsistencies across these candidate loci (0.0026±0.00067, 
Supplementary Figure 4). All genotyped sites were further refined based genotype calls using 
the following criteria: (i) duplicate sites with a 50% overlap and discordance LOD score greater 
than zero, (ii) non-variant sites without confident (GSNONVARSCORE ≥ 13) non-reference 
genotype calls, (iii) sites with cluster means deviating from expected values (GSM1 < 0.5 or > 
2.0), and (iv) sites with poor cluster separation (GSCLUSTERSEP ≤ 2). Using an Intensity Rank 
Sum test on available SNP-array intensity data, we estimated a genome-wide FDR for the entire 
callset ranging from 0.04 (all deletions) decreasing to 0.018 (deletions ≥ 5kb) and lower, 
depending on the size-cutoff used. 
 
Prior to performing imputation, we removed all monomorphic CNVs and CNVs with a genotype 
missing rate > 5% after setting Mendelian inconsistent genotypes to missing. We also removed 
CNVs failing within VDJ recombination regions. We then imputed CNVs across all samples using 
the same imputation pipeline for SNVs. We restricted our final callset to the set of samples with 
SNP genotyping data and kept only samples that were also well-imputed for SNVs. 
 
We retained well-imputed CNVs using the threshold-based calling approach where a genotype 
with the highest probability needs to be > 80% and used a custom Perl scripts to convert our 
imputed callset to PLINK’s native CNV format and annotate imputed CNV calls for their overlap 
with the Omni2.5 array. To make our callset comparable to 1000 Genomes data, we also 
removed all CNVs that had <200bp of uniquely-alignable sequence as defined by the 35-mer 
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alignability mask used by Phase 3 of the 1000 Genomes Project. To completely remove 
redundancy at the sample level (which could bias subsequent burden analysis), we also 
combined all strictly overlapping CNV calls within the same individual by taking the union of 
segment boundaries. We then used frequency information defined by 1000 Genomes Phase 3 
Structural variant callset22 to define a final set rare, imputed CNVs as described in the Main 
Methods. 
 
Linkage analysis 
 
Overview: Several of the 26 pedigrees are large and complex, with multiple inbreeding or 
marriage loops. Such pedigrees pose a significant challenge to analysis, as standard multipoint 
approaches that employ the Lander-Green algorithm fail in this setting. Possible solutions 
would include trimming and cutting pedigrees into smaller units, however we found that 
applying this approach in these pedigrees led to a reduced capability to resolve phase, and 
therefore resulted in substantially reduced power. We also considered MCMC approaches23, 
however given the density of markers in a genome-wide setting, such approaches are 
exceedingly slow, and we found it difficult to evaluate if we had reached convergence. We 
evaluated linkage in our pedigrees using a two-point parametric linkage on both SNPs and 
multi-allelic STRs identified from the WGS data using LobSTR24, as well as a non-parametric 
method proposed specifically for use in large, complex pedigrees25. 
 
Quality control of microarray data: A subset of samples was repeated in each batch to enable 
concordance checks. A total of 2,026,257 SNPs were polymorphic and passed all QC 
procedures, including the evaluation of call rate, testing for Hardy Weinberg equilibrium, and 
Mendelian error. For linkage studies we used 99,446 SNPs with MAF>0.35, that had been LD-
pruned to have r2<0.5. During QC procedures, allele frequency calculations, calculations of 
HWE, and estimates of LD were performed using only unrelated (founder) individuals. Further 
pedigree-wide Mendel checks were performed on the set of 99,446 SNPs used in linkage 
analysis; 0.7% of markers had 1 or more errors in Mendelian inheritance in these additional 
checks and all data for the marker in the family that generated the error was set to missing. 
Individual-level QC checks included verifying the pedigree structure by comparing theoretical 
kinship with empirical estimates, assessing missing rate, and verifying that the genetic sex 
agreed with the reported sex. 
 
Identification and QC of STRs: We detected STRs with the lobSTR software24 (version 4.0.0) that 
uses sequencing data to call STRs. The BAM files aligned with BWA-MEM that were generated 
during the variant calling process were used as input to lobSTR, which then generated VCF files 
for STR loci. To measure the accuracy of STR calls from the lobSTR software, we compared 
lobSTR STR calls to STR data previously collected for 19 individuals in one family; STRs were 
detected with electrophoresis. The previous STR data had 367 genome-wide STRs. Based on the 
filtering script that the lobSTR software provides, we developed different filtering strategies. 
For each filter, we measured the number of STRs passing the filter, the genotype concordance 
between the lobSTR STR calls and the previous STR data, and also the number of Mendelian 
inconsistencies using PedCheck software26. We then identified the filter that achieves greater 
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than 95% genotype concordance between the two STR calls and fewer than 0.1 Mendelian 
inconsistencies per STR. This filter removed 1) monomorphic STRs, 2) STRs with repeats of one 
nucleotide, 3) STRs with ambiguous repeating nucleotides, 4) STRs with call rate < 95%, 
coverage < 5x, or Q-score < 0.95. After applying the filter to lobSTR calls detected in all families, 
we retained 86,601 high-quality STR calls. Among them, 37,472 STRs (43.27%) are multi-allelic 
with more than two alleles. 
 
Two-point Parametric Linkage Analysis: We used the software Mendel27 to estimate allele 
frequencies in the 26 pedigrees, performing these estimates separately for the CR and CO 
samples, and accounting for pedigree relationships. Two-point parametric linkage with 
heterogeneity was done in Mendel for autosomes, the very large pedigree CR201 had to be 
broken into four non-overlapping sections in order to do this analysis. Our parametric model 
used disease frequency to be 0.003, and penetrance parameters: P(BP1|DD)=0.9, 
P(BP1|DN)=0.81 and P(BP1|NN)=0.01; where “D” represents the disease allele and “N” 
represents the normal allele. Individuals are considered either affected with BP1 or phenotype 
unknown, that is, we designate no individuals as controls. This is the same model employed in 
McInnes et al.1 and Herzberg et al.3 
 
The null hypothesis of no linkage was evaluated using the LOD (logarithm of odds) score, which 
is the log 10 of the ratio of the likelihood of linkage, given the estimated recombination 
fraction, to the likelihood given the null value for the recombination fraction (0.5). Traditionally, 
a LOD score of 3 (p=0.0001) was considered significant linkage, however Lander & Kruglyak28 
suggested LOD=3.3 (p=4.9E-05) was a more appropriate threshold. The HLOD (LOD with 
heterogeneity), tests 2 parameters: the recombination fraction and proportion of linked 
pedigrees. The HLOD score has traditionally been evaluated using a combination of chi-square 
distributions with 1 and 2 degrees of freedom29. By this metric, an HLOD of 3.6-3.7 corresponds 
to p~0.0001; using the Lander and Kruglyak p-value threshold of 4.9E-05 corresponds to an 
HLOD of 4.1.  
 
Non-parametric Linkage Analysis: We used Rapid25 for non-parametric analysis of allele-sharing 
of SNPs among BP1 individuals in our pedigrees. Rapid is designed for use in large complex 
pedigrees, where estimation of identity by descent (IBD) can be computationally demanding. 
Rapid evaluates significance using an approximation to the empiric p-value, which Abney et al.25 
states is conservative. After the first genome-wide scan to identify promising results using the 
approximation, we re-analyzed markers with –log10(P) > 3.5 with 250,000 simulations to obtain 
a true empiric p-value. Markers with p<4.9e-05 were then evaluated with 1,000,000 simulations 
to obtain a more accurate p-value. 
 
Results: Four microarray SNPs displayed HLODs exceeding 4.1 (Supplementary Figure 6, 
Supplementary Table 5); two SNPs on 2q33 and 2q36 (kgp5681631 at 206.8 Mb and 
kgp10402924 at 228.3 Mb, with HLODs of 4.71 and 4.50, respectively) and two SNPs on 16q23 
(kgp2684721 at 79.5 Mb and rs8058020 at 83.7 Mb, with HLODs of 4.13 and 4.59, respectively). 
There was no heterogeneity for the linkage results on 2q33 and 2q36, and on 16q23 the 
estimate of the proportion of linked families (denoted as a) was 0.90. The HLOD for two STRs 
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exceeded the threshold of 4.1, one on 1q44 (247.1 Mb, HLOD=5.03, a = 0.72), and one on 
15q14 (35.3 Mb, HLOD=4.32, a = 0.62). While these results at five loci are suggestive, our 
simulation studies indicate that the evidence in favor of linkage is not as strong as it might 
appear. We carried out simulations under the null hypothesis of no linkage to BP1 anywhere in 
the genome using two different strategies. In one case, we kept fixed the phenotype 
information and used gene dropping to generate genotypes for markers with allele frequencies 
corresponding to the one observed in our sample; in the other case, we kept the observed 
genotypes and permuted the phenotype values (with appropriate consideration of family 
structure). Considering all sets of simulations, HLODs of 4.1 or greater were seen in 80% of 
replicate genome screens, suggesting that, in these pedigrees, 4.1 is likely not an appropriate 
threshold for declaring genome-wide significant linkage. 
 
In the NPL analysis, we approximated the empiric p-values using Rapid, and 13 SNPs and 156 
STRs resulted in –log10(P)>3.5. These SNPs and STRs were re-analyzed with 250,000 simulations 
to obtain a true empiric p-value, and among those, eight SNPs and one STR had p<4.9e-05, 
which corresponds to the HLOD threshold > 4.1. We re-analyzed those eight SNPs and one STR 
with 1,000,000 simulations, and empiric p-values from this round of simulations ranged from 
2e-06 to 3.9e-05, including two SNPs with p=2e-06, one on 16q23 (at 77.7 Mb) and one SNP on 
21q21 (at 23.9 Mb) (Supplementary Table 5). 
 
Identification of genes for burden and segregation analyses for rare variants  
 

We highlighted genes for burden and segregation analysis of rare variants from three sources: 
(1) genes in regions that demonstrated evidence of enrichment of BP1 heritability, as evaluated 
in the PGC BP1 GWAS data set (summary GWAS statistics); (2) genes near PGC BP1 GWAS 
peaks; (3) genes within 1Mb of our linkage peaks. We only consider genes where there is at 
least one deleterious SNV in our BP1 dataset. 
 
We identified regions with enrichment of BP1 heritability using PGC GWAS summary statistics 
and 220 epigenetic profiles that originated from 100 individual cell types or tissues. The 
epigenetic annotation came from cell-type specific histone modification (ChIP-seq) data 
generated by the NIH Roadmap Epigenome Project30. H3K4me1, H3K4me3 and H3K9ac data 
were post-processed by Trynka et al.31 The definition of annotations used in our analysis have 
been previously described.32, 33 Briefly, peaks were called using MACS v.1.4. For each cell-type 
and specific histone mark, start and end position of identified regions (i.e. called peaks) were 
determined and together define an annotation. H3K27ac data were post-processed separately 
by Hnisz et al.34, also using MACS v.1.4. The 220 cell type-specific annotations were then 
divided into 10 groups by taking a union of the cell type-specific annotation within each group, 
following Finucane et al.33 Within all regions marked for a specific tissue group, we evaluated 
the possible enrichment of BP1 heritability using PGC BP1 GWAS summary statistics and 
Stratified LD Score Regression, a statistical method that partitions SNP-based h2 from GWAS 
summary statistics.33 For tissue groups that demonstrated significant BP1 heritability in the 
PGC, we then highlighted for further analysis in our BP1 families all genes within regions 
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marked by the annotation process; that is, all genes overlapping intervals defined by start and 
end positions of identified regions (peaks).  
 
For each cell-type group annotation, we first estimated partitioned LD scores using the ldsc.py -
-l2 function with MAF > 5%, a 1 centimorgan (cm) window, and the 1000 Genomes European 
reference panel (CEU) to estimate LD matched to the population of the PGC GWAS. We next ran 
sLDSR (ldsc.py --h2) for each cell-type group while accounting for the overall heritability that is 
distributed across 53 baseline annotations (baseline model), as recommended by the 
developers. If a cell-type group annotation is associated with increased h2, LD to SNPs in that 
annotation will increase the χ2 statistic of a SNP more than LD to SNPs outside of that cell-type 
annotation. To determine if this effect is significant, it estimates the contribution of that 
annotation to the per-SNP h2 while accounting for the baseline model. We evaluate the Z-
scores of the contribution of each annotation, which is calculated using standard errors that are 
obtained via a block jackknife procedure. 
 
We also specifically targeted genes near genome-wide significant association signals in the PGC 
BP1 GWAS. The PGC BP1 GWAS summary statistics were clumped in PLINK, using our BP1 
genotype data as the LD reference (founder genotypes only). Clumps were formed in windows 
of 250 Kb and using an r2 threshold of 0.1. Among the resultant clumps, if the lead SNV was 
genome-wide significantly associated to BP1 in the PGC data (p<5e-08), we determined the 
physical extent of the SNVs that were in the same clump as the lead SNP, and considered for 
further analysis all genes within such regions. 
 
Lastly we targeted genes within 1 Mb of linkage peaks (both parametric and non-parametric) 
identified in our BP1 pedigrees. Linkage peaks were defined as parametric HLOD>4.1, or non-
parametric p-value <4.9e-05. 
 
Identifying founders who carried a rare variant in the segregation method 
 
To detect Frv, founders who introduced the rare variant into a family, we used the results of 
GIGI imputation. GIGI generated the probability of imputed genotypes for everyone in a family, 
even those who were not genotyped with the microarray (including all founders). Assuming bi-
allelic variants, GIGI generated three probabilities for three genotypes (1/1, 1/2, and 2/2 where 
1 and 2 are two alleles). We had two strategies to identify Frv. In the first strategy, if the highest 
genotype probability among the three probabilities of a founder was > 0.8, we considered this 
founder to have a high-quality genotype. If all founders in a family had high-quality genotypes, 
we included this rare variant for analysis and identified Frv who had a rare variant. We used the 
second strategy when all founders except a pair of top founders had high-quality genotypes. A 
pair of top founders was a couple who did not both have parents in the pedigree structure, and 
they were not usually sequenced or imputed well. In some cases, GIGI assigned about 0.5 
probability of having a rare variant to both top founders. This indicated that a rare variant was 
inherited from one of the couples, but GIGI was not able to accurately identify which founder 
introduced the variant. Assuming that both top founders were neither sequenced nor imputed 
well, and they did not contribute to the Srare statistic, the segregation p-value would be the 
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same regardless of which of the founders carried the rare variant. Hence, we randomly 
assigned the rare variant to one of the top founders in the second strategy. We ignored rare 
variants in which there was more than one pair of top founder in a family who did not have the 
high-quality genotypes as well as rare variants in which founders carried two alleles of a rare 
variant. We analyzed rare variants with low genotype missing rate (< 5%) that at least two 
affected individuals shared in a family as we were not interested in rare variants present in one 
or zero affected individuals. 
 
Performance of the segregation method for rare SNVs and CNVs 
 
To measure the performance of the segregation method for rare SNVs and CNVs, we generated 
simulation data following the simulation framework of Sul et al.35. We used a modified version 
of the wide pedigree structure in Sul et al.; the original wide pedigree structure had 30 
individuals where there were two founders in the first generation, two founders and two 
nonfounders in the second generation, and 24 nonfounders in the third generation (see Figure 
S1 in Sul et al.). We doubled the number of nonfounders in this simulation to simulate a larger 
pedigree structure. We used COSI software to generate haplotypes of unrelated individuals 
assuming European ancestry and assigned them to founders such that only one founder had a 
rare variant. We then generated haplotypes of nonfounders using a gene dropping procedure 
from founders (refer to Sul et al. for detailed descriptions of simulation framework). To 
measure the false positive rate (FPR) of the segregation method, we generated the null 
simulation dataset by randomly assigning affected and unaffected status to individuals in 
pedigrees. To measure the power, affection status of each individual was determined with the 
following logistic regression model. 

!(# = 1) = '()(*+ + -.*)
1 + '()(*+ + -.*)

 

P(A=1) was the probability that individual A was affected, and *+ = log	(3/(1 −3)) where W 
was the baseline prevalence, which is 20% in our simulation. X was the genotype vector where 
1 means carrying a rare variant. * = log	(67) and we used odds ratio (OR) of 4, 6, 8, 10 and 12. 
We used large odds ratio to simulate the perfect segregation or nearly perfect segregation in a 
family. We generated 10,000 replicates for the false-positive simulation and 2,000 replicates for 
power simulation for each OR. We generated 20 families in each replicate, and the minimum 
number of affected individuals was 19 and the maximum number was 37 in each family. We 
performed 100,000 random IV sampling to estimate a p-value of each segregation, and we only 
tested family-level p-values in this simulation. We included only variants that were shared by at 
least two affected individuals in a family, which is consistent with how we tested segregation of 
rare variants for the CO/CR families. FPR was measured as a fraction of p-values < a = 0.1 and 
0.05 among all p-values calculated (the number of families with a rare variant in all replicates), 
and the power was similarly calculated at a = 0.05. Results show that FRP was 0.088 at a = 0.1 
and 0.039 at a = 0.05, which indicates our method had slightly lower FPR than expected. The 
power of our method was 0.54, 0.75, 0.84, 0.89, and 0.92 for OR of 4, 6, 8, 10 and 12, 
respectively. These results indicate that our method has the appropriate power to detect a rare 
variant with strong effect in a large family.  
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