1 Supplementary Information

- 2 The structural basis of fungal glucuronoyl esterase activity on natural substrates
- 3 Ernst et al.

С		Rg _{Guinier} (Å)	Rg _{P(r)} (Å)	D _{max} (Å)	MW _{BSA} (kDa)	MW _{BI} (kDa)	MW _{theo} (kDa)
	d∆S270A	20.1 +/- 0.8	20.5	60	33	35 (32-35)	42.7
	dWT	31.9 +/- 2.9	32.2	110	55	45 (43-47)	50.9

6 Supplementary Figure 1 – SAXS data

a) Experimental SAXS scattering profiles from d Δ S270A measured at different concentrations. Insert:

8 Guinier fit to the 3.6 mgmL⁻¹ data. **b**) Experimental SAXS scattering profiles from dWT. **c**) Summary of

9 parameters from the primary SAXS data analyses. Two different approaches are included for MW

10 estimation. MW_{BSA} is the classical approach, being concentration dependent and based on measurements

of Bovine Serum Albumin (BSA) as reference. MW_{BI} is a recent addition to PRIMUS, being concentration

12 independent and based on Bayesian Inference¹. Confidence intervals are given in parentheses. Source data

13 for panel a and b are provided as a Source Data file.

17 Supplementary Figure 2 – CuGE-CBM1 homology model

- a) Homology model of *Cu*GE-CBM1 (residues 3-38) made with SWISS-MODEL² using the structure of 1CBH³
- as template. The CBM1 domain is wedge-shaped with approximate dimensions 28 Å x 12 Å (thick end) x 20
- 20 Å. The fold is stabilized by two disulfide bridges (green) and three conserved aromatic residues (orange)
- 21 create a flat binding site expected to be implicated in binding of insoluble substrates. **b**) Multiple sequence
- 22 alignment of CBM1 domains from functionally characterized fungal CE15 enzymes. Conserved residues
- 23 forming the flat binding site are marked by orange triangles for aromatic residues and open triangles for
- 24 polar residues. Cysteines involved in disulphide bridges are marked by green numbers.

27 Supplementary Figure 3 – CuGE crystal packing and two distinct active site environments

a) Illustration of the crystal packing in the tetragonal space group *P*4₁2₁2. The two crystallographically

29 independent molecules A (black) and B (white) differ in crystal packing environments and accessibility to

30 the active site. To illustrate the location of the active site, the catalytic residues are shown as red spheres

and the ligand from the Δ S270A:XU^{m4}XX^{-OH} complex is shown in orange. Note that the active site in

32 molecule A is partly occluded due to contacts in the crystal with a symmetry related molecule (A'), whereas

the binding site in molecule B is solvent-exposed and easily accessible. **b**) Superposition of molecules A

34 (black) and B (white) shown as C_{α} -traces. Molecule A and B superimpose with an RMSD of 0.32 Å for 359

aligned C_{α} atoms (apo-dDS270A), reflecting only minor structural variations. The main difference concerns

36 the β -turnb2-b3 (residues 159-163), which is affected by crystal packing of molecule B.

38 Supplementary Figure 4 - Structure-based sequence alignment of all structurally characterized CE15 enzymes. 39 Secondary structure elements are shown for MZ0003 (6EHN)⁴ and CuGE (6RTV) as representatives for subgroups CE15-40 A and CE15-B, respectively. The major secondary structure elements are labelled according to the topology diagrams in 41 Fig. 3 d-f in the main text. Residues comprising the catalytic triad are indicated with triangles: nucleophile (serine) in 42 green, base (histidine) in blue and acid (glutamate/aspartate) in red. The two different structural locations of the acidic 43 residue are labeled A_A or A_B , with reference to the configuration in α/β -hydrolase group A and B, respectively. The three 44 major "inserts" in the bacterial structures are labelled I1, I2 & I3, green numbers indicated disulfide bridges and cyan 45 hexagons symbolize glycosylation sites observed in the CuGE structures. The CE15-signature sequence "GxSRxGK" is 46 highlighted with an orange box. PDB codes for all structures in the alignment: CuGE 6RTV; Cip2 3PIC; StGE2 4G4G; 47 OtCE15A 6GS0; SuCE15C 6GRY; TtGE15A 6HSW, MZ0003 6EHN.

Supplementary Figure 5 Multiple sequence alignment (MSA) of functionally characterized fungal CE15-A and CE15-B 50 enzymes. The alignment comprises sequences included in the nomenclature paper by Dilokpimol et al. on fungal CE15 51 GEs (subgroups G1-G8)⁵ and the AfuGE sequence from Mosbech et al.⁶ Catalytic residues are indicated with triangles as 52 in Fig. 3 and Supplementary Fig. 4. Other residues within 5 Å from the XU^{m4}X moiety in the CuGE:ligand complexes are 53 marked with black triangles. Residues forming the putative monolignol docking site are marked with open squares. The 54 two different structural locations of the acidic residue, that differentiate the subgroups CE15-A and CE15-B, are labeled 55 A_A and A_B, respectively. Secondary structure elements from the CuGE structure (6RTV) are included for reference. The 56 MSA suggests that the fungal CE15-A enzymes, apart from the distinct location of the acidic catalytic residue, display 57 considerable structural similarity to their CE15-B counterparts. Two of the three disulfide bridges (green numbers) are 58 conserved. Moreover, the loop between β 4 and β 5 is only a few residues longer in fungal CE15-A enzymes implying that 59 these enzymes also lack I2 and the α A-helix and thus are predicted to have a relatively open binding site similar to fungal 60 CE15-B enzymes.

Hyspul_1 114752 Eutha113629 AEO60465.1 Spoth2 2119719 Chagl_111918 Thite2 2055580 Podan2 25 Aurde3_1 1325771 Glab1685 Copcil14157 CBX90574.1 Lepmu1 12448 AB06204.1 Hetan2 64706 Botbo1 533049 Dicsq1 58498 Gansp1 41841 Trave1 34910 Formme1 132657	1 1 1 1 1 1 1 1 1 1 1 1 1 1	D	1 V.C. ROPE EILN FLOE VOYG YY PDHS KETWITTESG WC.RAPE ELUQLIGE VOFG YY PDHSLETWITTESG KC.ROPE ILQLIGE VOYG YY PDHSLEK KEATSG KC.ROPE ILUMG EV VOYG YY PDHSLETWOATSSG YOCROPE ILUMG EV VOYG YY PDHSLETWOATSSG YOCROPE ILUMG EV VOYG YY PDHSLE KEATSG YOCROPE ILUF ILUMG EV VOYG YY PDHSLE KEATSG YOCROPE ILUF ILUF EV VOYG YY PDHSLE KEATSG YOCROPE ILUF ILUF EV VOYG YY PDHSLE KEATSG YOCROPE ILUF ILUF EV VOYG YY PDHSLE TWOATSSG YOCROPE ILUF ILUF EV VOYG YY PDHSLE TWOATSG YOCROPE ILUK FLOEV VOYG YY PDHSLE TWITTESG YOCROPE ILUK FLOEV VOYG YY PDHSLE TWITTESG YOCROPE ILUK LUE VOYG YY PDHSLE TWITTESG VOCROPE ILUK LUE VOYG YY PDHSLE TWISTESG ACRASE IF KLUE VOYG YY PDHSLE TWISTESG ACRASE IF KLUE VOYG YY PDHSLE TWISTESG
Hyspu1_1/114752 Euta13629 AE060465.1 Spoth2/2119719 Chag/_111918 Thite2/2055580 Podan2/25 Aurde3_1/1325771 Glab1685 Copcil/4157 CBX90574.1 Lepmu1/12448 AB06204.1 Hetan2/64706 Botbo1/53049 Dicsq1/58498 Gansp1/41841 Trave1/34910 Formme1/132657	TTL S Q VA - AGG K TTTVK AS I N L P S G TS TG VS VE VS - AGG K TG R T AQLS L P AG AS NTL NI VVT - AGG K QG S R AT I S L P SG AS NTL NI VVT - AGG K QG S R AT I S L P SG AS TTL NI AVT - AGG K TG R S ATVT L P SG AS TTL NI AVT - AGG K TG K S ATVT L P SG AS TTL NI AVT - AGG K TG K S ATTL L P SG AS NT NI A ATVT - AGG K TG G C L L P SG AS N S I S VA - AGS K TG C TG AQLL P SG AS N S I S VA - AGS K TG C C TG AQLL P SG AS N S I S VA - AGS K TG S TT L P SG AS N S I TL A - YG K S S S F K ATTL P SG AS N L T I T N A - YG K S S S F K AT L L P SG AS N L T I T N A - AGG K TA S I A ATL T P SG AS N L T I T A - AGG K TA S I A ATL T P SG AS N L T I T N A - GG K TA S I A ATL T P SG N L T I T V A - AGG K TA S I A ATL T P SG N L N I T VS - VG R AS P A TL F P N VT N L S I S VS - AGG K TG S P ATL F P N VT N L S I S VS - AGG K TA S P AN T - P P AS S Q I T N I S - VG E N S S F P ATL F P P R N A S Q I T N I S - VG E N S S F P ATL F P P R N A S Q I T N I S - VG E N S S F P ATL F P P R N A		S S V A D S N S K T G S F W D L Y K G Q D I G V L T AW AWG F H R V L D G T T A V A P D S N A K S G A F W A L Y N G R D I G V L T AW AWG F H T L D A T T Y S P D S N A K T G A F W S L Y N G R D I G V L T AW AWG F H T L D A T T Y S P D S N A K T G A F W S L Y N G R D I G V L T AW AWG F H T L D A T T Y S P D S N A K T G A F W S L Y N G R D I G V L T AW AWG F H T L D A T T Y S P D S N A K T G A F W S L Y N G R D I G V L T AW AWG F H T L D A T T Y P D S N S K T G A F W S L Y N G R D I G V L T AW AWG F H T L D A T T Y P D S N S K T G A F W S L Y N G R D I G V L T AW AWG F H T L D A T T Y P D S N S K T G A F W S L Y N G R D I G V L T AW AWG F H T L D A T T Y P D S N S K T G A F W A L Y N G R D I G V L T AW AWG F H T L D A T T Y P D S N S K T G A F W A L Y N G R D I G V L T AW AWG F H N V L D A T T Y P D S N S K T G A F W A L Y N G R D I G V L T AW AWG F H N V L D A T T Y A D S N S K S S S F W T L Y N G R D I G V L T AW AWG F H N V L D A T T Y A D S N S K S S S F W T L Y N G R D I G V L T AW AWG F H N V L D A T T Y A D S N S K S S S F W T L Y N G R D I G V L T AW AWG F H N V L D G T T Y A D S N S K S S S F W T L Y N G R D I G V L T AW AWG F H N V L D G T T A A D S N S K S S S F W T L Y N G R D I G V L T AW AWG F H N V L D G T T A A D S N S K S S S F W T L Y N G R D I G V L T AW AWG F H N V L D G T T A A D S N S K S S S F W T L Y N G R D I G V L T AW AWG F H N V L D G T T A A D S N S K S S S F W T L Y N G R D I G V T AWW AWG F H N V L D G T T A A D S N S K T G A F W L Y D G D D D T C T AWW AWG F H N V L D A T A A D S N S K T G A F W L Y D G D D D I G M T AWW AA E S K L D A L R Y A N S Y A R T G A F W L Y D D D D D I G M T AWW AA E S K L D A L R Y A N S S A R T G A F W L Y D D D D D D T C T AWG W F H N V D A T N Y A D S A A R T G A F W L Y D D D D D T I T AWG W G F H N V D A T N Y A D N A A N T Y P G A A W D L Y S G R D I G V T A W AWG F H N V D A T N Y A D N A A N T Y P G G A W D L Y S G R D I G V T A W AWG F H N V D A T N Y A D S A A N N Y P G G A W D L Y S R R D G V T A W W A G S K L D A L T N Y Y D S A A N N Y P G G A
Hyspu1_1/114752 Euta13629 Ac060465.1 Spoth2/2119719 Chag/_1/19719 Podan2/25 Aurde3_1/1325771 Gla01665 Copcil/14157 CBX00574.1 Lepmu1/12448 A606204.1 Hetan2/64706 Both01/530498 Gansp1/41841 Formme1/132657	GXSRXGK	FD T R I T V T M P MS S G VQG L G P Y R YH AL S - G Q D E T L E FD C R I AL TM P MS S G VQG L G P Y R YH AL S - G Q D E T L E FD R R I T M P M S S G VQG L G P Y R YH AL S - G Q D E T L E FD R R I T M P M S S G VQG A P Y R YH MS - G Q G E L E FD R R I T M P M S S G VQG A P Y R YH MS - G Q E C L E FD R R I T M P M S S G VQG A P Y R YH MS - G Q E C L E FD R I T M P M S S G VQG A P Y R YH MS - G Q E C L E FD R I T M P M S S G VQG A P Y R YH MS - G Q E C L E FD R I T M P M S S G VQG A C P Y R YH MS - G Q E L E FD R I T M P M S S G VQG A C P YR YH MS - G Q E C L E FD R I T M P M S S Q Q G L C P YR YH N S - G Q G E L E FD R I T M P M S G VQG A G C P YR YH S - G Q G E L E FD R I T M P M S G VQG A C P YR YH S - G Q G E L E FD R I T T M P M S G VQG A C P YR YH S - S Q G E L E FD R I L T M P M S G VQG A C P YR YH S - S Q G E L E FD R I L T M P M S G VQG A C P YR YH S - S Q G E L E FD R I L T M P M S G VQG A C P YR YH S - S Q G E L E FD R I L T L M S D L E G V G P M F YY S G A A R N N FD R I L T L M S G A C I G P M F YY S G Q A A E N N FD R I K L M S S G A E I G P M F YY S G Q A A E N N FD R N K L M S S G A E I G P M K YY S Q Q A A E N N FD R N K L M S S G A E I G P M K YY S Q Q A A E N N FD R N K L M S S G A E I G P M K YY	S KSC AGWYTD S V I SQ F VG KS EQ L P YD AH T I AMA I AP S KSC AGWYTD S V I SQ F VG H AEN L P F D AH T I AMA I AP S KQC AGWYTS S KUC T F VN H AQN L P YD AH T I VAAI AP S KQC AGWYTS S KUC T F VN H AQN L P YD AH T I VAAI AP S KQC AGWYTS S KUC T F VN H AEN L P YD AH T I AAAI AP S KQC AGWYTS S KUC T F VN H AEN L P YD AH T I AAAI AP S KQC AGWYS S S KUC T F VN H AEN L P YD AH T I AAAI AP S KQC AGWYS S S T UC T F VN H AEN L P YD AH T I AAAI AP S KQC AGWYS S S T UC T F VN H AEN L P YD AH T I AAAI AP S KQC AGWYS S S T UC T F VN VAEN L P YD AH T I AAAI AP S KQC AGWYS S S T UC T F VN VSEN L P YD AH T I AAAI AP S KQC AGWYS S S T UC T F VN VSEN L P YD AH T I AAAI AP S KQC AGWYS S S S T UC T F VN VSEN L P YD AH T I AAAI AP AK S G AGWYS S S S I S G F VC KS T U F YD AH T I AAAI AP AK S G AGWYS S G I S G F VC KS S Q L P YD AH T I AAAI AP AK S G AGWYS S R S I S G F VC ARKL P F D AH T I AAAI AP T T K YG WYS T F L WK F D V T G N S T R Y F D AH S I AAY I AP I T T K YG WS T F L WK F D N YT G N S T R Y F D AH E V S L AP T T T K YG WS T F L WK F D N YT G N S T R Y F D AH E V S L AP T T K YG WS T T L WK F D N YT G N S T R Y F D AH E V S L AP T T K YG WN S T T U G F V N N T H G I F D AH E V S L AP
Hyspu1_1/114752 Euta113629 AEO60465.1 Spoth2/2119719 Chaq1_111918 Thite2/2055580 Phaa11/7987 Podan2/25 Aurde3_1/1325771 Glab1685 Copci1/4157 CB¥00574.1 Lepmu1/12448 AB06204.1 Hetan2[64706 Botbo1]53049 Botbo1]53049 Botbo1]53049 Cansp1/4841 Trave1]34910 Trave1]34910 Formme1132657	RAL I I DOG CO DO FINSK GTA I VVY PPAK RAL I I DOG CO DO FINSK GTA I VVY PPAK RAL I DOG TCD AFINSK GTA I VVY PPAK RAV I DOG TCD PF VNSK GTAV VVY PAK RAV I DOG TCD PF VNSK GTAV VVY PAK RAV I DOG TCD QF VNSK GTAV VVY PAK RAL VI DOG TCD QF VNSK GTAV VVY PAK RAL VI DOG TCD QF VNSK GTAV VVY PAK RAL VI DOG TCD QF VNSK GTAV VY PAK RAL VI DOG CD PY NSK GTAV VY PAK RAL VI DOG CD PY NSK GTAV VY PAK RAL VI DOG CD QF VNSK GTAV VY PAK RAV I SON SCOQ FTO SC TAQI TF SAF RAV I SON SCOQ FT SAF RAV I SON SCOQ FT SAF	H2 VYNWLG VGDQ IGMAIRSGCH CDNSG YTNVLPF VYEULGAEDRIGNS VRGGAH CDLSG TSVLPF VYDWLGAENIGIS VRGGCH CDLSG YTAILPY VDWLGAENIGIS VRGGCH CDLSG YTAILPY VDWLGAENIGIS VRGGCH CDMSG TFSVLPF VTWUG VGDQ IANS VRSGCH CDMSG TFSVLPY VDWLG VCDQ IANS VRSGCH CDMSG TFSVLPY VTWLG VCD IANS VRSGCH CDMSG TFSVLPY VKVLG VCD IANS VRSGCH CDMSG TSVLPF VKVLG VCD IANS VRSGCH CDMSG TSVLPF VKVLG VCD IANS VRSGCH CDMSG TSVLPF VKVLG VCD IANS VRSSFH CONSG TSVLPF VSVLG VGC KLG VSVLPFSFH CONSG TSVLPF VSVLG VGC KLG VSVLPF	V A K I L K G T P T T R N Y D D L T PW - T AM T T A Y PW S T D I P K A A T K I L Q N G T I T K D Y D D L S C Y G G PM T T A Y PW AT A I P A Y P VOK I F F G T P T D K D Y N N L G S Y G S P V S S A F PW AT A Y C G - Y O K I F F G T P T D K D Y N N L G S Y G S P V S S A F PW AT A Y C A - VOK I F F G T P T K K D Y N N L G S Y G S P I T T A Y PW AT A Y K K A - VOK I F G T P T N K D Y N N L G S Y G S P I T T A Y PW AT A T K K A VOK I F G T P T N K D Y N S L G S Y G S P I T T A Y PW AT A T K Y A A V G I L Q G K A I T OD Y N N L G S Y G S P I T A Y PW AT A T K Y A A T S V G I L Q G K A I T OD Y N N L G S Y G S P I T A Y P W AT A T C Q A K Q V L Q Y A T T T K N P H S L G T Y N T P L A T S Y P WAT A Y C Q A V Q I L Q G K A T T K N Y D L T PW - N AM S T A Y PW S N I C L P V I K I F K G T A T T K N Y D L K T W A AM P E A Y PW G T D L R L P V O K V L Q G K S T T R Y D D L K T W - K AM F E A Y PW G T D L R L P V O K V L Q G K S T T R Y D D L K T W - K AM F E A Y PW G T D L R L P V O K V L Q G K S T T R Y D D L K T W - K AM F E A Y PW G T D L R L P V O K V L Q G K S T T R Y D D L K T W - K AM F E A Y PW G T D L A M K I F G K T P S X N S S T S P S - A H T E T H W A S S L P A M K I F G K T P S X N S S T S S Y - A H T E T H W A S S L P A M K I F G K T P S X N S S T S P S - P A H P E A Y PW AT S L P A M K I F G K T P S X N S S T S P S - P A H P E A Y PW AT S L P A M K I F G T P T V N S D I S P F - P A H P E A Y PW AT L A T K Y H A N O F G T P T O N N S D I S P F - P A H P E A Y PW AT L A T K Y H A N O F G C T P T O N N S D I S P F - P A H P E A Y PW AT L A T K Y H A N O F G C T P T O N N S D I S P F - P A H P E A Y PW AT L A T K Y H A N O F G C T P T O N N S D I S P F - P A H P E A Y PW AT L A T M C H W

61

64 in Dilokpimol *et al.*⁵ were included in the alignment. This small fungal subgroup appears highly conserved at sequence

65 level, except for an insert present in the N-terminal region of some members only. Based on the structures of

66 *Cu*GE:ligand complexes it is predicted that the substrate binding site is formed by the catalytic triad (colored triangles)

67 and residues at the positions marked by black triangles. The natural substrate(s) of fungal CE15-enzymes remains

AbGE1	GGPPSTTTPPTTTPPTTTPPTSSDPPTSTD
HsGE1	GAATTVSTTLVPPTITPTTPPT
DsGE2	AVASPTTT
ShGE1	G S A P A P T S T P V S S S S S A S G T
CuGE	GAAPAPARTTAAPPPPPATTAAPPPPTT SAPTG S SPVAGA
TrGE	S T Q A S S S I A S T T L V T S F T T T T A T T T S A S T P P A S S T G A G G A T
PiGE1	GTAT STTTRTS S STTLTP S S S S S
AaGE1	GGGP SPPPT SPPT S
PaGE1	G S G P T T A Q P Q V P T T T A R P T T T L V T S V V S S T T S P S G P V V T N P P V N P G T
AiGE1	GGP S S S S TTT ST STYTPPP VQTTTPPTTTTTGGTTPQPT STGTPGV
	Linker

- 70 Supplementary Figure 7: Multiple sequence alignment of linker regions between catalytic and carbohydrate binding
- 71 modules of fungal CE15 enzymes. Linker regions from functionally characterized two-domain CE15 enzymes
- 72 display significant variation in length and amino acid composition. Putative hinge regions at either end of
- the linker are indicated.

74 Supplementary Table 1 – Crystallization and soak conditions for the *Cu*GE structures

	apo-d∆S270A	apo-∆*dWT	d∆S270A:U ^{m4} X	d∆S270A:U ^{m4} XX ^{-OH}	d∆S270A:XU ^{m4} XX ^{-OH}	∆*dWT:U ^{m4} XX ^{-OH}
PDB accession code	6RTV	6RU2	6RU1	6RV7	6RV9	6RV8
Vapor diffusion setup	Hanging drop	Sitting drop	Hanging drop	Sitting drop	Sitting drop	Sitting drop
Reservoir condition	0.1 M HEPES pH 7, 0.1 M KCl, 25 % w v ⁻¹ SOKALAN CP7	0.1 M ammonium acetate, 0.1 M bis-tris pH 5.5, 17 % w v ⁻¹ PEG10000	0.1 M HEPES pH 7, 0.1 M KCl, 25 % w v ⁻¹ SOKALAN CP7	0.1 M phosphate- citrate pH 4.2, 0.1 M KCl, 20 % w v ⁻¹ PEG8000	0.1 M phosphate- citrate pH 4.2, 0.2 M KCl, 20 % w v ⁻¹ PEG8000	0.1 M ammonium acetate, 0.1 M bis-tris pH 5.5, 17 % w v ⁻¹ PEG10000
Drop volume (μL)	2	0.4	3	0.4	0.4	0.4
Ratio (protein:reservoir)	1:1	3:1	2:1	3:1	3:1	3:1
Temperature (°C)	4	4	4	4	4	4
Ligand			U ^{m4} X	Um4XX- ^{OH}	XU ^{m4} XX ^{-OH}	U ^{m4} XX ^{-OH} covalent intermediate
Product ID			O-AMX	O-UXXR	O-XUXXR	O-UXXR
Manufacturer			Megazyme	Megazyme	Megazyme	Megazyme
Soak condition			Ligand stock (25 mg mL ⁻¹) in reservoir solution was added 1:1 to the drop	Ligand stock (252 mM in 0.1 M Na ₃ -citrate pH 5.5, 0.2 M KCl, 20 % w v ⁻¹ PEG8000) was added 7:1 to the drop	Ligand stock (305 mM in 0.1 M Na ₃ -citrate pH 5.5, 0.2 M KCl, 20 % w v ⁻¹ PEG8000) was added 7:1 to the drop	Ligand stock (253 mM) in reservoir solution was added was added 1:1 to the drop
Soaking time (min)			60	45	50	60
Cryo condition	Reservoir condition supplemented with 26 % glycerol	Reservoir condition supplemented with 26 % glycerol	Ligand stock supplemented with 26 % glycerol	Ligand stock supplemented with 26 % glycerol	Ligand stock supplemented with 26 % glycerol	Ligand stock supplemented with 26 % glycerol

77 Supplementary Table 2 – Data collection and refinement statistics for the *Cu*GE structures

	apo-d∆S270A	apo-∆*dWT	d∆S270A:U ^{m4} X	d∆S270A:U ^{m4} XX ^{-OH}	d∆S270A:XU ^{m4} XX ^{-OH}	∆*dWT:U ^{m4} XX ^{-OH}
PDB accession code	6RTV	6RU2	6RU1	6RV7	6RV9	6RV8
Data collection						
Space group	P 41212	P 41212	P 41212	P 41212	P 41212	P 41212
Cell dimensions	1 1	1 1	± ±	1 1	1 1	1 1
a=b. c (Å)	84.27.261.13	84.45, 262.24	84.24. 260.82	84.78. 260.38	84.48.261.73	84.75. 261.06
Resolution (Å) a	44.0 - 1.46 (1.51 - 1.46)	44.2 - 1.96 (2.03 - 1.96)	42.1 - 1.39 (1.44 - 1.39)	49.3 - 1.73 (1.79 - 1.73)	44.5 - 1.64 (1.70 - 1.64)	44.1 - 1.85 (1.92 - 1.85)
R _{merge} ^b	0.158 (0.827)	0.252 (0.852)	0.103 (0.844)	0.167 (1.04)	0.081 (0.867)	0.106 (0.859)
$\langle I / \sigma I \rangle$	7.99 (1.90)	6.64 (1.72)	11.96 (1.78)	10.39 (1.56)	13.85 (1.68)	28.48 (3.78)
Wilson B-value (Å ²)	11.5	20.1	12.5	20.0	23.3	24.6
Unique reflections	163501 (16134)	68186 (6594)	188193 (18515)	99921 (9775)	116768 (11435)	80254 (6618)
Completeness (%)	100.0 (100.0)	98.2 (97.1)	99.5 (99.3)	99.8 (100.0)	99.5 (99.4)	97.6 (82.0)
Redundancy	9.7 (8.8)	8.7 (8.5)	7.4 (7.3)	7.0 (7.1)	8.1 (7.6)	24.9 (19.3)
CC _{1/2}	0.997 (0.555)	0.989 (0.665)	0.996 (0.693)	0.997 (0.675)	0.998 (0.683)	0.999 (0.856)
Refinement						
Resolution (Å)	44.0 - 1.46	44.2 - 1.96	42.1 - 1.39	49.3 - 1.73	44.5 - 1.64	44.1 - 1.85
No. reflections	163458 (16133)	67954 (6564)	188018 (18507)	99779 (9773)	116315 (11427)	80246 (6618)
Rwork / Rfree	0.182/0.199	0.178/0.204	0.163/0.177	0.166/0.194	0.186/0.209	0.150/0.181
No. atoms						
Protein	5936	5764	5954	5780	5738	5771
Ligand/ion	79	87	107	92	82	135
Water	757	542	734	518	527	579
B-factors (Å ²)						
Protein	13.7	20.1	14.7	22.9	31.0	25.6
Ligand/ion	24.6	39.0	23.7	30.5	31.9	47.1
Water	24.7	26.7	25.6	29.3	33.2	34.2
R.m.s. deviations ^c						
Bond lengths (Å)	0.01	0.01	0.01	0.03	0.03	0.03
Bond angles (°)	1.2	1.1	1.2	1.6	1.6	1.6
Ramachandran (%)						
Favored	96	96	96	96	96	96
Allowed	4	4	4	4	4	4
Outliers	0	0	0	0	0	0
Number of TLS groups	10	17	11	8	10	13

78 One crystal was used for each structure. *Values in parentheses are for the highest-resolution shell. ${}^{b}R_{merge} = \sum_{hkl} \sum_{i=1}^{n} |I_i(hkl) - \bar{I}(hkl)| / \sum_{hkl} \sum_{i=1}^{n} I_i(hkl)$. CR.m.s. deviations from the ideal

79 values reported by Engh & Huber⁷

81 **REFERENCES**

- Hajizadeh, N. R., Franke, D., Jeffries, C. M. & Svergun, D. I. Consensus Bayesian assessment of
 protein molecular mass from solution X-ray scattering data. *Sci. Rep.* 8, 7204 (2018).
- Waterhouse, A. *et al.* SWISS-MODEL: homology modelling of protein structures and complexes.
 Nucleic Acids Res 46, W296–W303 (2018).
- Kraulis, J. *et al.* Determination of the three-dimensional solution structure of the C-terminal domain
 of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and
 hybrid distance geometry-dynamical simulated annealing. *Biochemistry* 28, 7241–7257 (1989).
- 4. De Santi, C., Gani, O. A., Helland, R. & Williamson, A. Structural insight into a CE15 esterase from the
 marine bacterial metagenome. *Sci. Rep.* 7, 17278 (2017).
- Dilokpimol, A. *et al.* Fungal glucuronoyl esterases: Genome mining based enzyme discovery and
 biochemical characterization. *N. Biotechnol.* 40, 282–287 (2018).
- Mosbech, C., Holck, J., Meyer, A. & Agger, J. W. Enzyme kinetics of fungal glucuronoyl esterases on natural lignin-carbohydrate complexes. *Appl. Microbiol. Biotechnol.* **103**, 4065–4075 (2019).
- Engh, R. A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement.
 Acta Crystallogr. Sect. A 47, 392–400 (1991).