SUPPORTING INFORMATION

(Tables S1-S4)

Conformational landscape of substituted prolines

Himal Kanti Ganguly* and Gautam Basu*

Department of Biophysics, Bose Institute, P-1/12 CIT scheme VII M, Kolkata – 700054, India.

* Corresponding authors

trans /cis	name	φ°	ψ^{o}	χ 2 ^{<i>a</i> o}	d ^{<i>b</i>}	$oldsymbol{ heta}$ c o	CSD code
trans							
	Ac-(2Me-Pro)-NHMe	-60	-25	36	3.00	121.8	BIJDUT10
	Ac-(2Me-Pro)-OMe	-45	-40	41	2.71	110.5	QECWON
	Cbz-(2Me-Pro)-OH	56	33	-38	2.92	115.7	NUKSES
	4-BrBz-(2Ph-Pro)-NH ₂	76	-55	43	3.27	173.5	LIVSUF
	2-CIBz-(2Ph-Pro)-NH ₂	78	-37	41	3.30	169.6	MOPKAD
	2-Fur-(2Ph-Pro)-NH ₂	78	-55	43	3.27	175.4	MOPKEH
	4-Br-PhAc-(2(4NO₂-Ph) Pro)-O ^t Bu	-49	-48	<mark>35</mark> / –27	2.72	102.4	GABWOX
	(Phe) ₂ N-CO-(2N ₃ -Pro)-OMe	-60	153	-35	2.83	94.4	ZIKNAI
	2-BrBz-(2(4Cl-Ph)-Pro)-NH ₂	81	-46	41	3.34	175.9	ZICBUK
	Tfa-(2(1-(3-Hydroxylphenyl)	59	n.d.	40	3.35	172.3	LIPGIC
	prop-2-en1-yl)-Pro-OMe	82	n.d.	40	2.94	160.4	LIPGIC
cis							
	Boc-(2Me-Pro)-OH	-52	-33	39	4.13	145.8	XETSOG
	Boc-(2Ph-Pro)-OH	42	46	-36	4.16	136.3	EVOPOU
	Boc-(2Vin-Pro)-OH	-47	-38	40	4.20	143.3	UHOLOA
	Boc-(2(2F-Bn)-Pro)-OH	-55	157	<mark>36</mark> / –34	4.11	71.8	AFIXOE

Table S1. Dihedral angles of α -substituted proline analogues in CSD.

^{*a*} The *exo* and *endo* ring puckers are shown in blue and red, respectively.

^b 'd' corresponds to the distance (in Å) between carbonyl oxygen atom (O_{i-1}) of the residue preceding Pro (or analog) and the carbon atom of the carbonyl group of Pro (or analog) >C_i=O_i.

^{*c*} θ corresponds to the angle between O_{i-1}, C_i and O_i.

compound	φ°	ψ°	χ2 ^b ο	d ^c	$oldsymbol{ heta}$ d °	CSD code	
<u>trans-(2<i>S</i>,4<i>R</i>)</u>							
Ac-Mep-NHCH₃	-78	-21	-36	3.18	120.1	CADRAE	
Boc-(4(4I-PhO-Pro)-OCH ₃	-52	-39	38	2.84	109.7	GABPEH	
Boc-Hyp-OCH ₃	-55	-32	41	2.89	116.3	INEMIX	
Ас-Нур-ОН	-60	-31	39	2.85	115.5	POKKAD	
Ac-Hyp-OCH₃	-63	156	36	2.90	92.4	RISDAY	
Ac-Hyp-OCH₃	-51	145	40	2.75	91.3	RISDAY	
Ac-Flp-OCH ₃	-55	140	38	2.75	99.1	RISDEC	
Ac-Flp-OCH ₃	-56	141	38	2.78	97.4	RISDEC	
Ac-Mop-OCH₃	-58	148	37	2.84	94.6	SODJEB	
Ac-Clp-NHCH ₃	-77	-18	-37	3.16	121.6	VEFBOZ	
Ac-Azp-OCH ₃	-60	147	36	2.85	97.7	WETNAL	
Boc-(<i>p</i> Tos-O)-Pro-OBn	-59	148	37	2.89	93.5	YEJHEC	
trans-(2S,4S)							
Ac-mep-NHCH ₃	-74	-14	34	3.14	126.8	CADREI	
Ac-mep-NHCH ₃	-71	-18	35	3.09	124.6	CADREI	
BrBz-(Boc)-Pro-O ^t Bu	-75	-14	37	3.20	125.5	HALTAR	
Tfa-(40Bn-Pro)-NHCy	-69	176	-38	3.12	77.0	KULQIT	
Tfa-(40Bn-Pro)-NHCy	-74	179	-39	3.15	79.6	KULQIT	
Ac- $(4NH_3^+$ -Pro)-OCH ₃	-74	157	-34	3.01	95.1	NAFKAJ	
Boc-(4 ^t Bu)-Pro-O ^t Bu	-76	157	-37	3.12	95.5	RARMUT	
Bz-(4MeSO ₂ O-Pro)-OH	-85	-178	-36	3.28	84.7	TUHMEO	
Ac-clp-NHCH ₃	-59	149	35	2.92	93.5	VEFBIT	
Ac-clp-NHCH ₃	-52	147	36	2.86	100.3	VEFBIT	
trans-(2R.4R)							
Ac-(CF ₃ -Pro)-OCH ₃	61	37	-36	2.89	111.2	YUCBUV	
<i>trans</i> -(2 <i>R</i> ,4 <i>S</i>)							
Tfa-hyp-NHC ₆ H ₃ F ₂	63	-139	-39	2.95	103.1	GAZGOG	
Ac-hyp-OH	61	30	-40	2.86	115.5	NAHYPL	
cis-(2S,4R)							
Boc-(4Vin-Pro)-OH	-58	-30	37	4.19	145.9	PIGYEL	
Boc-(4MeSO ₂ O-Pro)-O ^t Bu	-55	-22	39	4.37	152.8	PEQVIT	
Ac-Azp-OCH ₃	-82	173	-35	4.39	77.9	WETNAL	
Boc-(4Ph-Pro)-OH	-73	148	40	4.37	91.6	QUDVUG	
cis-(2R.4R)							
Boc- ^D Mop-OH	86	-16	41	4.42	171.19	WADVOO	
cis-(2S.4S)							
Boc-(4CF ₃ -Pro)-OH	-66	177	40	4.28	73.7	MOGOOO	
Boc-(4 ^t Bu-Pro)-OH	-75	-10	-34	4.33	67.0	RARNAA	
Boc-mop-OH	-85	18	-41	4.40	171.8	EMITIE	
Boc-cnp-OH	-78	n.d.	-32	4.31	n.d.	TALBUD	
Ac-hyp-Ome	-84	18	-38	4.41	172.7	EMITEA	
Boc-(4(4I-pho-Pro)-OH	-76	1	-38	4.38	163.1	GABNUV	
Fmoc-(4(4I-pho)-Pro)-OH	-83	177	-37	4.41	78.9	GABPAD	
Boc-Hyp-OPhAc	-65	145	38	4.26	89.6	FICZEX	

Table S2. Dihedral angles of 4-substituted proline analogues^{*a*} in CSD.

^{*a*} Stereochemistry of the 2- and the 4- positions are grouped.

^b The exo and the endo ring pucker are indicated in blue and red, respectively.

^{*c*} 'd' corresponds to the distance (in Å) between carbonyl oxygen atom (O_{i-1}) of the residue preceding Pro (or analog) and the carbon atom of the carbonyl group of Pro (or analog) >C _i=O _i.

^d θ corresponds to the angle between O_{i-1} , C_i and O_i .

Table S3. Dihedral angles of 3-substituted proline analogues in CSD.

	abs.	hydrogen		. 0	a 0	∎ b	0.0	
compound	config	replaced	φ°	ψ °	χ2ຶ	ď	θυ	CSD
L-proline/trans								
Ac-(3F-Pro)-OMe	2R,3R	3R	-56	151	37	2.81	90.8	LEWPAF
Ac-(3Me-Pro)-NHMe	2S,3R	3R	-79	146	-40	3.23	105.1	BIJFAB10
Ac-(3F-Pro)-OMe	2R,3S	3S	-71	158	-35	3.08	95.4	LEWXER
Boc-(3Ph-Pro)- ^D Phe-NHMe	2S,3R	3S	-56	127	39	2.79	106.4	BAPNEV
Ac-(3(4-Cl-Ph)-Pro)-NHR	2S,3R	3S	-51	138	41	2.72	97.0	IFAXET
Ac-(3(4-Cl-Ph)-Pro)-NHR	2S,3R	3S	-59	140	42	2.86	99.5	IFAXET
Boc-(3Ph-Pro)- ^D Phe-NHMe	2S,3R	3S	-55	131	35	2.81	103.2	BAPVEV
Ac-(3OH-Pro)-NHMe	2S,3S	3S	-79	164	-39	3.20	94.7	EHUNEA
Ac-(3Me-Pro)-NHMe	2S,3S	3S	-64	-36	41	2.94	109.7	CEDPUW
Boc-(3CF ₃ -Pro)-NHCH(CH ₃ Ph)	2S,3S	3S	-85	145	-35	3.29	109.5	SIGJUQ
Boc-(3CF ₃ -Pro)-NHCH(CH ₃ Ph)	2S,3S	3S	-73	135	-32	3.10	111.0	SIGJUQ
Boc-(3CF ₃ -Pro)-NHCH(CH ₃ Ph)	2S,3S	3S	-58	126	34	2.89	110.5	SIGJUQ
D-proline/ <i>trans</i>								
Cbz-(3iPr-Pro)-OH	2R,3S	3R	50	46	-34	2.79	101.4	AWAVUQ
Moc-(3(1-Cl-Pr)- ^D Pro)-OMe	2R,3S	3R	61	-157	-39	2.93	88.8	WEJSOT
Ac-(3(4-Cl-Phe)-Pro)-NHR	2R,3R	3S	79	-156	38	3.12	99.4	WOBLAB
L-proline/ <i>cis</i>								
Boc-(3Ph-Pro)-OBn	2S,3R	3S	-56	137	41	4.17	82.8	DOSFIB
Boc-(3OH-Pro)-OtBu	2S,3S	3S	-66	157	-35	4.20	76.6	DIDXUM
Boc-(3carboxy)-Pro)-OBn	2R,3S	3S	79	-151	39	4.31	85.6	TAZPOZ
Boc-(3Ph-Pro)-OMe	2S,3S	3R	-59	149	-38	4.18	82.4	BALMOR
Boc-(3caboxy-Pro)-OH	2S,3S	3S	-58	-33	-32	4.22	141.8	SUMZOP
Boc-(3 <i>n</i> Pr-Pro)NH(CHCH₃Ph)	2S,3S	3S	-53	138	33	4.24	88.2	KEBVAO
Boc-(3CF ₃ -Pro)-NHCH(CH ₃ Ph)	2S,3S	3S	-63	141	38	4.27	84.5	SIGJUQ
D-proline/ <i>cis</i>								
Boc-(3CF ₃ - ^D Pro)-NHCH(CH ₃ Ph)	2R,3S	3S	92	-151	41	4.47	89.7	SIGKAX
Boc-(3Vin- ^D Pro)-OH	2R,3S	3S	76	-171	38	4.32	76.6	AWAVOK01
Boc-(3Ph-Pro)-Obn	2R,3R	3S	65	-138	38	4.20	82.4	DOSFIB
Boc-(3Ph-Pro)-Obn	2R,3S	3R	55	-138	-40	4.18	81.8	DOTVOY
Boc((3Ph- ^D Pro)-OMe	2R,3S	3R	57	-147	37	4.16	82.3	MISLEH

^a The exo and endo ring puckers are shown in blue and red, respectively.

^{*b*} 'd' corresponds to the distance (in Å) between carbonyl oxygen atom (O_{i-1}) of the residue preceding Pro (or analog) and the carbon atom of the carbonyl group of Pro (or analog) >C_i=O_i.

^{*c*} θ corresponds to the angle between O_{i-1}, C_i and O_i.

Table S4. Dihedral angles of 5-substituted proline analogues in CSD.

	abs.	hydrogen			_	1		
compound	config.	replaced	φ°	ψ^{o}	<u>χ2</u> ^a °	d ^{<i>b</i>}	θ ^c o	CSD
L-proline- <i>trans</i>								
Ac-(5OH-Pro)-Ome	2S,5R	5R	-72	160	-38.6	3.09	94.3	BOWHEA
Boc-(5CNPro)-Ome	2S,5R	5S	-57	145	36.5	2.90	93.3	UDAQIB
Ac-(COOMe-Pro)-Ome	2S,5R	5S	-68	166	38.3	2.94	87.3	GEBLAD
Bz-(5Mes-Pro)-Ome	2S,5R	5S	-54	144	34.2	2.83	98.8	GODYAA
Ac-(5Me-Pro)-NHMe	2S,5R	5R	-66	152	-38.9	3.01	97.6	BIJFEF10
Fm-(5Mes-Pro)-OH	2S,5R	5S	-57	n.d. ^{<i>b</i>}	30.5	2.88	n.d. ^{<i>b</i>}	KENYEI
Boc-(5Cnp)-Ome	2S,5S	5R	-75	157	-34.9	3.15	95.0	UDAQEX
Ac-(5Me-Pro)-NHMe	2S,5S	5S	-65	150	36.7	2.93	95.9	CEDROS
D-proline- <i>trans</i>								
Ac-(CH ₂ Ph-Pro)-OMe	2R,5R	5S	62	-160	38.2	2.89	92.3	YOVXIS
Boc-(5-CF ₃ -Pro)-OMe	2R,5S	5R	75	-167	-34.4	3.00	88.2	UWILIX
L-proline- <i>cis</i>								
Ph ₂ Carbamoyl-								
5-Azp-OMe	2S,5S	5S	-51	-178	31.9	3.95	60.8	ZIKNEM
Boc-((5-PhSO2-Pro-OEt	2S,5R	5R	-48	150	-33.6	3.87	69.4	VEXJAK
Bz-((COO ₂ Et) ₂ CCH ₃)-								
Pro-Oet	2S,5S	5R	-46	-32	-31.4	4.03	147.5	EHUTEG
Boc-(5-allyl)Pro-OtBu	2S,5S	5R	-57	162	-37.9	4.17	73.7	BAVZEE
Boc-(('BuPh ₂ Si)Oet)Pro-H	2S,5S	5R	-49	-37	-24.4	4.11	138.3	NEJKAO
Boc-(5C ₂ H ₄ OH-Pro)-OtBu	2S,5S	5R	-60	156	-36.0	4.18	77.0	OBAZUM
Boc-(5-(2-oxobutyl)Pro-OMe	2S,5S	5R	-56	153	n.d. ^{<i>d</i>}	4.13	n.d. ^{<i>d</i>}	OVIMIR
CBz-(PhOHEt-Pro)-O ^t Bu	2S,5R	5S	-77	180	n.d. ^{<i>d</i>}	4.17	74.5	REMXOW
CBz-(PhOHEt-Pro)-O ^t Bu	2S,5S	5R	-84	-176	-37.8	4.38	75.0	REMXUC
Bz-((5-bisEthoxycarbonyl-								
methyl-Pro)-OEt			-113	153	-32.2	4.63	95.9	EHUTAC
D-proline- <i>cis</i>								
X-(5-CO ₂ Me-Pro)-OMe			63	-163	38.3	4.20	75.5	YEWKAM

^a The exo and endo ring puckers are shown in blue and red, respectively.

^b 'd' corresponds to the distance (in Å) between carbonyl oxygen atom (O_{i-1}) of the residue preceding Pro (or analog) and the carbon atom of the carbonyl group of Pro (or analog) >C_i=O_i. ^{*c*} θ corresponds to the angle between O_{i-1}, C_i and O_i. ^{*d*} n.d. = no data (due to disorder)