Reviewers' comments:

Reviewer #1 (Remarks to the Author):

Introduction:

- Werner et al. present an interesting mathematical framework and approach to infer a point
mutation rate per cell division (mu) and a cell death/differentiation probability per cell division
(beta) from somatic point mutation calls in multi-region sequencing experiments. They derive an
analytical form for the expected distribution of mutational distances between samples under
different values of mu and beta, which they employ to infer the bayesian posterior parameter
estimates from real datasets using an MCMC approach with the Metropolis-Hasting sampling.

- They apply this approach to 2 published datasets of embryonic development (one brain and one
hematopoeitic) and 16 tumours from 4 published datasets including cancer types with high mutation
loads.

- They find that their approach fits data generated using a 3D tumour growth simulator;
recapitulates independent estimates of mu and beta in embryonic development datasets; and give
interesting results in the tumour samples, consistent when inferred from independent mutation sets
across chromosomes and different rates per mutational signatures. They also estimate tumour age
from the cell survival rate.

- In summary, Werner et al. propose an interesting and novel approach to estimate healthy or
tumour human tissue growth parameters, namely a point mutation rate per cell division and a cell
death/differentiation rate per cell division from point mutations calls in multi-region sequencing
data.

Main remarks:

- The code to perform the inference is not available.

- The authors develop an interesting probabilistic framework to disentangle per-cell-division
mutation and cell death rates from point mutation calls from multi-region sequencing and apply it to
several datasets. Like any probabilistic framework, it comes with assumptions. Given that this
framework is the main result here, these assumptions should be better discussed:

1) "the probability to acquire X novel mutations follows a Poisson distribution". It should be made
clear that this is an assumption and the authors could contrast with other potential models. For
example, what about the impact of punctuated events and bursts of mutations (e.g. kataegis)?



2) "the probability to acquire X novel mutations follows a Poisson distribution with constant rate
along tumour growth": whereas some studies suggest that mu is similar in stem cells across tissues
and different patient ages for given signatures, others show that clock-like mutations accumulate at
different rates across tissues (literature by Alexandrov) and there seems to have an important
acceleration of the clock in tumours when looking at relapse samples (doi:
http://dx.doi.org/10.1101/161562).

3) "cell death/differentiation rates is constant over time": studies suggest that proliferation and thus
likely cell death rates are not constant nor spatially-homogeneous during tumour growth (e.g.
doi:10.1038/nature11344 and discussed in: doi:10.1371/journal.pcbi.1004731.g001), rather high cell
death as to kick in later, as tumour would simply not grow otherwise.

These assumptions and their impact on the estimates should be discussed, as it might make it
clearer that this framework is expected to work well on embryonic development datasets, but
potentially much less so on tumour datasets.

- There is no information in the methods on how the sequencing data was analysed (mutation calls,
copy number, etc.), and what was taken as input (e.g. BAMs vs. pre-analysed VCFs etc.). How do the
authors deal with clonal vs. subclonal mutations; and low-purity samples, for which counts might be
underestimated?

- The estimates of tumour age are not clearly explained and seem superfluous, as the authors
suggest themselves to "interpret them with caution". The authors should either expand or remove
this section.

Minor remarks:

- Line 614: "Nucleotide dependent mutation rate estimates are shown in Sl Figure 6.": It is not clear
in SI Figure 6 from the figure legend or caption where that is shown.

- Figure 4 d-f: it is not clear what is shown from the legend. If | understand each parameter was re-
estimated individually per signature, which explains why the total does not match g-i.

- Supplementary Figure 11 shows that mutation rates vary between patient but not chromosomes of
the same patients. Although a reasonable control, this is expected, as mutation load from different
chromosomes is expected to be fairly stable. Perhaps another control would be to downsample the
number of tumour samples per patient and get outputs from multiple runs there to compare the
within vs. between patient variability.



- Regarding the MCMC results, it is difficult to explain why the parameters would be so different for
different chromosomes (e.g. patient 2 chromosome 19, patient 4 chromosome 12). Is it due to very
different mutation load on different chromosomes, or very different mutational distances? Some
traces look like they do not evolve much from the start, it would be good to see the prior
distributions plotted together with the posterior if that is possible.

Conclusions:

- Altogether, this is a widely interesting and novel story; though there is no code available, and the
main text and the methods are missing important pieces of discussion and information.

Reviewer #2 (Remarks to the Author):

Werner and colleagues present a useful theory for predicting the mutational distance between
samples from a supercritical branching process given the mutation rate and lineage survival rate.
They validate this prediction against a previously published spatial simulation of stochastic tissue
growth, sampling, and sequencing. Using MCMC, they then infer the mutation and survival rates
from previously published human sequencing data in development (HSCs and neurons) and cancer
(16 tumors of several types). In doing so, the paper not only outlines a potentially useful framework
for understanding mutation accumulation in growing tissues, but also quantifies two parameters
that are fundamental to these processes. Overall, this paper’s findings are well-presented and will be
of interest in multiple fields.

Major concerns:

The exponential-growth coalescent approximation from Eq. (19) is generally a poor approximation
when population growth is modeled as a birth-death process rather than a deterministic expansion.
One reason is because, when conditioned on survival, the expected growth of a tissue is faster than
exponential (the “push of the past” phenomenon); another reason is that deterministic growth
underestimates the variance in the coalescent time. Much better approximations are given by
Stadler, Vaughan, Gavryushkin, et al. 2015, alongside the exact result (their Eq. 2.4). Would it be



possible to confirm that the four distributions plotted in your Fig. 1d would look similar even if you
were to use these better approximations or the exact result?

Although the mutational distance between two cells descended from a common ancestor should
include the mutations that accumulated along both lineages (assuming each mutation is unique), it
seems that Y (Egs. 6 and 18) as defined in this paper only counts the mutations that accumulated
along one of the two lineages. Would you be able to clarify this point for me? To be specific, if two
bulk samples are collected, then one sample has some MRCA ancl, and the other sample has some
MRCA anc2 (which do not necessarily exist at the same time as depicted in Fig. 1a), and both
samples then derive from their MRCA anc3, which in turn descends from the earliest cell in the
tissue, anc4. Y seems to count the mutations that accumulated between anc4 and anc3 in addition
to between anc3 and either ancl or anc2. However, the mutational distance between the two
samples should include the mutations that accumulated between anc3 and ancl AND those which
accumulated between anc3 and anc2, but not between anc4 and anc3. Can Eq. (6) be manipulated
to address this issue? One idea would be to study the convolution of two iid copies of Y (i.e. Y1+Y2),
but this would include two copies of the mutations that accumulated between anc4 and anc3, when
those mutations would ideally not be included.

Why might the inferred survival rates for the 16 tumors in this study be so much greater than we
typically see in the literature? An often-assumed value for the survival rate in cancer is p=0.05
(ranging from p=0.01 to p=0.28); see, for example, Bozic, Gerold, and Nowak 2016. Likewise, it
seems that Chkhaidze, Heide, Werner, et al. 2019 used an initial death rate of 0.90 or 0.80 (survival
rate of p=0.10 or p=0.20) in their Fig. S2. Even if this were converted to the survival rate as defined in
this study, it would be beta = p*2/[2p(1-p)+p”2] = p/(2-p), which would range from beta=0.005 to
0.163. To reflect the low survival rates in cancer, it would also be useful to run another batch of your
grid-based tumor simulations with a death rate incorporated.

The discussion section is brief and could benefit from an overview of the limitations of the
framework. As just one example, this framework assumes that the mutation and survival rates are
constant over time and spatial location, even though these typically vary in cancer, particularly as
driver mutations accumulate. As another example, the framework assumes that cell lineages are
independent, and that there are no resource or spatial constraints.

Minor concerns:

The final sentence of the first paragraph of the results section (lines 94-96) defines mutational
distance, a central concept in the paper, but it would be useful to rephase this definition to ensure
that it is as clear as possible.



The sections “The distribution of mutational distances” and “Distribution of mutational distances in
multi-region sampling data” are almost identical, and there is no need to include both. | suggest
removing the latter entirely. As a less ideal alternative, perhaps Egs. (11-15) could be removed, since
Eg. (16) follows directly from combining Eq. (8) with Eq. (9) using the basic idea of conditional
probability. If the authors wish to provide the generating function for other reasons, then perhaps
only Eq. (13) could be retained.

Egs. (2) and (9) use the notation P(m), but Egs. (4) and (16) use the notation P(Y_r =y), while Eq. (5)
and (22-23) use the notation P_r. For consistency, it might be clearer to instead use P(m|r), P(y|r),
and P(r) respectively. Then Egs. (6) and (18) would be simply P(y).

Should Eq. (2) read P(m|r) = (r+m-1 choose r-1) beta’r (1-beta)*m instead? Alternatively, it might be
more useful to present the distribution of the total number of divisions n, P(n|r) = (n-1 choose r-1)
beta’r (1-beta)?(n-r), since it is n and not m that is needed later in Eq. (4).

Should line 152 introduce Eq. (3) as the total number of mutations that accumulate after r branching
divisions, rather than just two branching divisions?

Fig. 1: Panels 1d and 1e are much too small to each contain four plots; can these be rearranged and
enlarged? What do the red shaded regions in panel 1e-top-left represent? For panel le-top-right,
what mu and beta values were used, and were the samples maximally distant or randomly located?
In line 215, no need to mention 2d grids unless you include those results.

Figs. 2-3: The x-axes for panels (a) and (b) are both labeled as mu, but they are different quantities;
should they instead read (a) mutational distance y, and (b) inferred mutation rate mu*L? How was
RA2 computed, and is there a better way to evaluate goodness of fit using the likelihood function?

Fig. 4: Could a brief explanation be provided as to why the total bar heights in panels d-f not
correspond to the bar heights in panels g-i?

Table 1 and Fig. 5: It would be very useful to explain, preferably in the methods section, how tumor
age was inferred from the survival rate, with references for the choice of 2-week (+/- 1 week)
division times. It would also be useful to explain why beta_h = 1/3 is the minimum feasible value
(due to the 25:50:25 ratio of 0:1:2 surviving daughter cells).



In line 517, should the growth rate lambda be set equal to one? In this same line, it might be
beneficial to define NO. In line 512, it would be useful to clarify which population size N(t)
represents, and to clarify that time t is using the backwards-in-time convention.

In Egs. (20-22), beta*t should be replaced with beta*(delta t), and dt should be replaced with d(delta
t).

In line 522, it would be useful to provide a more specific condition than “sufficiently large NO.” For
example, NO >> exp(beta*(delta t)), or equivalently delta t << t0, or equivalently beta <<
log(NO)/(delta t). For the HSC and neuron data, in which beta is inferred to be nearly 1, is it still true
that beta satisfies this latter condition?

In line 566, there is a reference to Sl Fig. 26b, but | cannot find this figure. | only seem to have Sl Figs.
1-12. Am | missing some of your Sl figures?

In line 588, do you mean r =i =30 rather than k =i = 30? On this note, perhaps the index of
summation i could be replaced by n for clarity in Egs. (4), (6), and (14-18).



We want to thank both reviewers for the time and efforts invested to provide
extremely valuable feedback on our submission. We were very happy to see that
both reviewers find the manuscript interesting, novel and of importance to
multiple fields. The comments helped us tremendously to improve the
presentation and discussion of our results. Please find a detailed point by point

response to all the comments and suggestions below.

Reviewer #1 (Remarks to the Author):

Introduction:

- Werner et al. present an interesting mathematical framework and approach to
infer a point mutation rate per cell division (mu) and a cell death/differentiation
probability per cell division (beta) from somatic point mutation calls in multi-
region sequencing experiments. They derive an analytical form for the expected
distribution of mutational distances between samples under different values of
mu and beta, which they employ to infer the bayesian posterior parameter
estimates from real datasets using an MCMC approach with the Metropolis-

Hasting sampling.

- They apply this approach to 2 published datasets of embryonic development
(one brain and one hematopoeitic) and 16 tumours from 4 published datasets

including cancer types with high mutation loads.

- They find that their approach fits data generated using a 3D tumour growth
simulator; recapitulates independent estimates of mu and beta in embryonic
development datasets; and give interesting results in the tumour samples,
consistent when inferred from independent mutation sets across chromosomes
and different rates per mutational signatures. They also estimate tumour age

from the cell survival rate.

- In summary, Werner et al. propose an interesting and novel approach to

estimate healthy or tumour human tissue growth parameters, namely a point



mutation rate per cell division and a cell death/differentiation rate per cell

division from point mutations calls in multi-region sequencing data.

We want to thank the reviewer again for the very positive comments on our

work, which helped us to improve the manuscript significantly.

Main remarks:

- The code to perform the inference is not available.

We apologize for this oversight. The code for the stochastic computer

simulations of tumour growth can be found at

https://github.com/kchkhaidze /CHESS.cpp.

The code for the MCMC framework is now available on

https://github.com/BenWernerScripts/MCMC-MutationalDistances-

- The authors develop an interesting probabilistic framework to disentangle per-
cell-division mutation and cell death rates from point mutation calls from multi-
region sequencing and apply it to several datasets. Like any probabilistic
framework, it comes with assumptions. Given that this framework is the main

result here, these assumptions should be better discussed:

We agree with the reviewer. We now have considerably extended our discussion
on the underlying assumptions for the probabilistic inference framework. We
also included a discussion in which situations some of the assumptions might

break down and some of the resulting consequences.

This discussion is now presented in Lines [143-145 & 408-424] in the revised

manuscript.



1) "the probability to acquire X novel mutations follows a Poisson distribution".
It should be made clear that this is an assumption and the authors could contrast
with other potential models. For example, what about the impact of punctuated

events and bursts of mutations (e.g. kataegis)?

We agree with the reviewer, this is certainly true. In our manuscript we are
concerned with the clockwise process of mutation accumulation and how it is
intertwined with different cell population dynamics in development and cancer.
This process is unavoidable and universally present in somatic tissues. In
addition, there might be certain singular catastrophic events of mutational
bursts, chromosomal mis-segregations, chromosomal fusions amongst many
others. This is beyond this work, but of great importance and now added as

discussion to the manuscript.

This discussion is now presented in Lines [143-145 & 408-424] in the revised

manuscript.

2) "the probability to acquire X novel mutations follows a Poisson distribution
with constant rate along tumour growth": whereas some studies suggest that mu
is similar in stem cells across tissues and different patient ages for given
signatures, others show that clock-like mutations accumulate at different rates
across tissues (literature by Alexandrov) and there seems to have an important
acceleration of the clock in tumours when looking at relapse samples (doi:

http://dx.doi.org/10.1101/161562).

We agree with the reviewer and also consider this an important issue. We first
should distinguish healthy tissue and cancer. In healthy tissue there is increasing
evidence for a stable mutation rate across ages and individuals (in many healthy
tissues one finds linear dependences of tissue age and mutational burden across
individuals of different ages). The situation is probably different in cancer.

First, we would expect that mutation rates differ significantly between tumours.
We see evidence in our work here. Second, it is conceivable that mutation rates

increase during tumour progression. We consider this a currently open question.



Studies based on mutational signatures are not yet able to disentangle mutation
rate and cell population dynamics. We will need higher sampling density or
higher resolved time series data to unravel the change of the mutation rate and
cell population dynamics during tumour growth. This is a very important topic

for future studies and is now discussed in more detail in the manuscript.

This discussion is now presented in Lines [143-145 & 408-424] in the revised

manuscript.

3) "cell death/differentiation rates is constant over time": studies suggest that
proliferation and thus likely cell death rates are not constant nor spatially-
homogeneous during tumour growth (e.g. doi:10.1038/nature11344 and
discussed in: doi:10.1371/journal.pcbi.1004731.g001), rather high cell death as
to kick in later, as tumour would simply not grow otherwise.

These assumptions and their impact on the estimates should be discussed, as it
might make it clearer that this framework is expected to work well on embryonic

development datasets, but potentially much less so on tumour datasets.

We thank the reviewer for the comment and agree. A constant cell
death/differentiation rate is an important assumption of the model. We now

discuss it in more detail in the manuscript.

This discussion is now presented in Lines [143-145 & 408-424] in the revised

manuscript.

- There is no information in the methods on how the sequencing data was
analysed (mutation calls, copy number, etc.), and what was taken as input (e.g.
BAMs vs. pre-analysed VCFs etc.). How do the authors deal with clonal vs.
subclonal mutations; and low-purity samples, for which counts might be

underestimated?

We apologize for a lack of detail on this point. All data presented in this

manuscript has been published and is available for public use. We have used the



mutational calls as used in the original publications. We now added explanation
to the supplement and refer to it in the main text. We also added an analysis how
sequencing depth changes the inferences presented here. One advantage of our
method is the reliance on clonal mutations in bulk samples (bulk specific sub-
clonal mutations do not contribute to the inference as we do pairwise
comparisons of joined mutations between bulk samples). Inferences remain
stable for relatively low coverage (Figure R1). The analysis is now discussed and

added to the supplement.

This discussion is now presented in Lines [580-588] and SI Figure 19 in the

revised manuscript.
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Figure R1: Parameter inference for different sequencing depth. Shown are the parameter
inferences of the mutation rate (a) and the survival rate (b) for 10 spatial tumour simulations
with 4 = 15 and = 0.8 from the mutational distance distribution derived from 9 bulk samples
with simulated sequencing depth of 25x, 50x and 200x. Shown are also the relative errors 7 for
each scenario. The construction of the mutational distance distribution relies on the
identification of clonal mutations within bulk samples. Consequently, the inferences remain

accurate for a simulated sequencing depth of 25x.

- The estimates of tumour age are not clearly explained and seem superfluous, as
the authors suggest themselves to "interpret them with caution". The authors

should either expand or remove this section.



We agree with the reviewer. This inference was based on quite strong
assumptions that probably differ between patients again. This inference is not

essential to our manuscript and we have decided to remove it.

Minor remarks:
- Line 614: "Nucleotide dependent mutation rate estimates are shown in SI
Figure 6.": It is not clear in SI Figure 6 from the figure legend or caption where

that is shown.

We apologize. This was a formatting mistake. We added the corresponding

Figure to the supplement and referenced it accordingly.

This is now SI Figure 10 in the revised manuscript.
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Figure R2: Mutation rates of mutational subtypes. The mutation rate for mutational subtypes

was inferred based on our MCMC algorithm for individual chromosomes (see Figure 5 in the

main text) for all 3 patients separately and normalised for the C & T content at each chromosome.

In Patient 02 and 04 transitions show higher mutation rates than transversions. Interestingly, in

Patient 02 transversions T - Aand T — G are absent, whereas in Patient 04 they are detectable.

Patient 03 shows a distinct pattern of mutation accumulation. Here transitions and transversions

appear equally likely, with C = X mutations slightly more likely compared to T — X mutations.

- Figure 4 d-f: it is not clear what is shown from the legend. If | understand each

parameter was re-estimated individually per signature, which explains why the

total does not match g-i.



The reviewer is correct. We extended the corresponding explanation in the

caption of Figure 4 [Lines 318-319].

- Supplementary Figure 11 shows that mutation rates vary between patient but
not chromosomes of the same patients. Although a reasonable control, this is
expected, as mutation load from different chromosomes is expected to be fairly
stable. Perhaps another control would be to downsample the number of tumour
samples per patient and get outputs from multiple runs there to compare the

within vs. between patient variability.

We agree with the reviewers suggestion. We now added additional tests. We now
downsample (i) the data for healthy haematopoiesis and show (ii) downsampled
data of patient 04 (in this case 9 independent samples were available and thus
downsampling was possible). In addition we show that parameter inferences

remain consistent if inferred on different parts of the genome.

This is now presented in SI Figures 14 & 15 in the revised manuscript.
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Figure R3: Data down-sampling and parameter inferences. a),b) Parameter inferences for
the down-sampled data of healthy haematopoiesis. c),d) Parameter inferences for the down-

sampled data of chromosome 1 of patient 04.
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Figure R4: Inference of per-cell mutation and per-cell survival rate for whole genome (per
chromosome, open grey circles), non-coding (black squares) and coding mutations (red
circles) in Patients 02-04. The coding mutation rate in patient 02 is slightly increased
compared to whole genome inferences (ujs; = 1xX1078, u2 = 2.8x1078), they are slightly lower
in patient 03 (udy; = 2.4X1078,u23 =2.02x107%) and the same in patient 04 (uy; = 3.1X
1078, u2% = 3.08x1078). Non-coding mutation rates agree with median whole genome mutation

rates.

- Regarding the MCMC results, it is difficult to explain why the parameters would
be so different for different chromosomes (e.g. patient 2 chromosome 19, patient
4 chromosome 12). Is it due to very different mutation load on different
chromosomes, or very different mutational distances? Some traces look like they
do not evolve much from the start, it would be good to see the prior distributions

plotted together with the posterior if that is possible.

We agree with the reviewer. Also, the most inferences are consistent, there are a
few outliers. In case of chromosome 19 of Patient 02 and chromosome 12 of
Patient 04 the mutational distances are larger (relative to the size of the

chromosomes). At this point we do not know if this is caused by some differences



in biology (e.g. locally increased mutation rates) or potentially a genome
doubling remained undetected for both chromosomes (which would appear as if

the mutation rate of that chromosome doubled).

We also agree with the reviewer that some traces of the MCMC inferences seem
very stable. In many cases we optimized the initial value of the MCMC trace to
reduce computational time. The trace starts near optimum. In some cases,
especially when we investigate whole genome sequencing of MSI cancers,
calculating the likelihood function of the MCMC algorithm repeatedly is
computational costly and therefore optimizing the initial condition as well as
length of the trace can improve performance considerably. In Figure R5 we show
a few examples of the MCMC trace with different initial values and its

convergence to a stable pair of parameter inferences.

Our MCMC framework is an implementation of the Metropolis-Hastings-
algorithm. As such we have a proposal distribution that varies each parameter
around its current value and accepts a new set of parameters proportional to the
corresponding likelihood ratios of the old and new parameter set (we describe
the algorithm in more detail in the supplement). One can use different
distributions for the proposal distributions. In our implementation, we use a
normal distribution, but also tested Gamma distributed proposal distributions,

with no difference of the actual inferred parameter set.

We have extended our discussion in the manuscript now [Lines 571-577] and

added SI Figures 17 & 18 to the revised manuscript.
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Figure R5: Examples of the MCMC parameter estimation. Shown are multiple realisations of
the MCMC algorithm for a) & b) healthy haematopoiesis (see also Figure ?? in the main text) and
c) & d) Chromosome 19 of Patient 02 as shown in panel a) of Figure ?? in the main text. Each
inference started with different initial conditions p, and f,. We use a realisation of the

Metropolis-Hastings algorithm and chains are converging to stable parameter pairs.

Conclusions:
- Altogether, this is a widely interesting and novel story; though there is no code
available, and the main text and the methods are missing important pieces of

discussion and information.

We want to thank the reviewer again.



Reviewer #2 (Remarks to the Author):

Werner and colleagues present a useful theory for predicting the mutational
distance between samples from a supercritical branching process given the
mutation rate and lineage survival rate. They validate this prediction against a
previously published spatial simulation of stochastic tissue growth, sampling,
and sequencing. Using MCMC, they then infer the mutation and survival rates
from previously published human sequencing data in development (HSCs and
neurons) and cancer (16 tumors of several types). In doing so, the paper not only
outlines a potentially useful framework for understanding mutation
accumulation in growing tissues, but also quantifies two parameters that are
fundamental to these processes. Overall, this paper’s findings are well-presented

and will be of interest in multiple fields.

We want to thank the reviewer again for the very constructive and encouraging
comments that helped us to improve the manuscript considerably. We were very
happy to read that the reviewer considers the manuscript of interest to multiple

fields.

Major concerns:

The exponential-growth coalescent approximation from Eq. (19) is generally a
poor approximation when population growth is modeled as a birth-death
process rather than a deterministic expansion. One reason is because, when
conditioned on survival, the expected growth of a tissue is faster than
exponential (the “push of the past” phenomenon); another reason is that
deterministic growth underestimates the variance in the coalescent time. Much
better approximations are given by Stadler, Vaughan, Gavryushkin, et al. 2015,
alongside the exact result (their Eq. 2.4). Would it be possible to confirm that the
four distributions plotted in your Fig. 1d would look similar even if you were to

use these better approximations or the exact result?



We thank the reviewer for pointing us to this extremely interesting discussion of
the potential limitations of the deterministic growth approximation of the

coalescence approach. This is a fascinating read we were not aware of before.

We absolutely agree that this is an important issue. In our manuscript, we test
the inference scheme on individual- based stochastic computer simulations of
accumulating mutations in a growing tumour. Each possible reaction in the
simulation (e.g. birth, death, mutation, spatial position etc.) are implemented by
a Gillespie algorithm and thus are an “exact” numerical realisation of the
underlying Master Equation of the stochastic process. Thus, the resulting
mutational distance distributions derived from these simulations can be

considered exact under the bounds of the imposed stochastic process.

We have now added additional tests of the inference scheme (in addition to the
original Figure in the main manuscript) and the stochastic spatial simulations of
tumour growth with a wider range of model parameters (Figures R??) and find

good agreements.

As stated in manuscript by Tanja Stadler and colleagues: the deterministic
approximation “is fine in case the number of generations where the population

)

size is ‘very small’ is considered to be not ‘many’ “. This is probably what
happens in our case. We feel that a complete resolution of this complex issue is
beyond the scope of this manuscript. We now added this important point to the

manuscript.

We have included discussion on this point in Lines [483-489] in the revised

manuscript.

Although the mutational distance between two cells descended from a common
ancestor should include the mutations that accumulated along both lineages
(assuming each mutation is unique), it seems that Y (Egs. 6 and 18) as defined in
this paper only counts the mutations that accumulated along one of the two

lineages. Would you be able to clarify this point for me? To be specific, if two



bulk samples are collected, then one sample has some MRCA anc1, and the other
sample has some MRCA anc2 (which do not necessarily exist at the same time as
depicted in Fig. 1a), and both samples then derive from their MRCA anc3, which
in turn descends from the earliest cell in the tissue, anc4. Y seems to count the
mutations that accumulated between anc4 and anc3 in addition to between anc3
and either ancl or anc2. However, the mutational distance between the two
samples should include the mutations that accumulated between anc3 and ancl
AND those which accumulated between anc3 and anc2, but not between anc4
and anc3. Can Eq. (6) be manipulated to address this issue? One idea would be to
study the convolution of two iid copies of Y (i.e. Y1+Y2), but this would include
two copies of the mutations that accumulated between anc4 and anc3, when

those mutations would ideally not be included.

This is an interesting observation and we thank the reviewer for this remark. We
agree with the reviewer that equations 6 & 18 appear to represent mutations
along one lineage. It is important to remember that equations 6 & 18 do not
count lineages but represent expected lineage length distributions (which as we
keep the underlying model parameter constant must be symmetric for both
lineages). As such they are independent of the exact number of lineages (given a
sufficiently large sample size). Once the expected distribution of mutational
distances is normalised, the dependence on lineage counts vanishes. For the

purpose here, we always compare normalised mutational distance distributions.

Why might the inferred survival rates for the 16 tumors in this study be so much
greater than we typically see in the literature? An often-assumed value for the
survival rate in cancer is p=0.05 (ranging from p=0.01 to p=0.28); see, for
example, Bozic, Gerold, and Nowak 2016. Likewise, it seems that Chkhaidze,
Heide, Werner, et al. 2019 used an initial death rate of 0.90 or 0.80 (survival rate
of p=0.10 or p=0.20) in their Fig. S2. Even if this were converted to the survival
rate as defined in this study, it would be beta = p*2/[2p(1-p)+p”2] = p/(2-p),
which would range from beta=0.005 to 0.163. To reflect the low survival rates in
cancer, it would also be useful to run another batch of your grid-based tumor

simulations with a death rate incorporated.



We thank the reviewer for this remark. This is an important observation. In the
original work of Bozic and colleagues it was not possible to disentangle mutation
and survival rates. They therefore made the for the time (very reasonable)
choice to assume a mutation rate of 5x1071% per bp per division (typical
germline mutation rate). The authors then extrapolated how many generations
would be necessary to reach a certain typically observed driver and passenger
mutational load. Together with assumed cell proliferation rates this leads to very

low cell survival rate estimates.

Sequencing data of the last years shows that somatic mutations rates are likely
higher in healthy tissues and probably much higher in many tumours. Bozic et al.
discuss in their paper that results would be consistent with a death rate of 0
(B = 1in our notation) if the mutation rate were 2x10~7 per bp per division
(page 8 in Bozic et al. PLoS CB 2016). We find mutation rates of the order of 1078
in many tumours which consistently would lead to much lower death rates in the

work of Ivana Bozic and colleagues. We have added this to the discussions of the

paper.

In our previous work of Chkhaidze et al. the parameter choice was arbitrary in a
sense that we wanted to show different possible scenarios, but there is no direct

inference of the model parameters on tumour specific data.

We discuss this now in the revised manuscript [Lines 394-397].

We also agree with the second point of the reviewer and have added another set
of simulations with varying death rates to show that the inference framework
also works for high death rates. This has been added as a supplemental figure

and is accordingly referenced in the manuscript.

This additional analysis is now presented in SI Figures 19-21.
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Figure R6: Spatial stochastic simulation inferences with varying per-cell survival rates.
Panels (a)-(c) show examples for the mutational distance distribution reconstructed for cases of
high mutation rate and different per-cell survival rates. The distributions are plotted with same
y-axes to show the dramatic differences in the shape of the distributions (notice the different
scales of the x-axis in panels a) to c)). The inset of panel (a) shows the same distribution, just
with a differently scaled y-axis. Panels (d) & (e) show the inference of the evolutionary
parameters for independent stochastic runs of spatial tumour simulations (9 bulk samples per

simulation). Inferences are robust for low and high death as shown by relative errors 7.

The discussion section is brief and could benefit from an overview of the
limitations of the framework. As just one example, this framework assumes that
the mutation and survival rates are constant over time and spatial location, even
though these typically vary in cancer, particularly as driver mutations
accumulate. As another example, the framework assumes that cell lineages are

independent, and that there are no resource or spatial constraints.

We agree with the reviewer. We now have considerably extended our discussion
and give a detailed account of the underlying model assumptions as well as
limitations of the current framework.

We added an extended discussion to the revised manuscript [Lines 408-423].

Minor concerns:



The final sentence of the first paragraph of the results section (lines 94-96)
defines mutational distance, a central concept in the paper, but it would be useful

to rephase this definition to ensure that it is as clear as possible.

We agree with the reviewer on this important point and have changed our

explanation to the formulation:

“We define a mutational distance as the number of mutations different between

any two ancestral cells, Figure 1c. In the language of set theory, if ancestral cell 1
carries a set of mutations A and ancestral cell 2 carries a set of mutations B, then
the mutational distance y is the number of elements of the symmetric difference

of Aand B,y = |A © B|.” [Lines 114-119] in the revised manuscript.

The sections “The distribution of mutational distances” and “Distribution of
mutational distances in multi-region sampling data” are almost identical, and
there is no need to include both. I suggest removing the latter entirely. As a less
ideal alternative, perhaps Egs. (11-15) could be removed, since Eq. (16) follows
directly from combining Eq. (8) with Eq. (9) using the basic idea of conditional
probability. If the authors wish to provide the generating function for other

reasons, then perhaps only Eq. (13) could be retained.

We agree with the reviewer. The first paragraph in the supplement was

repetitive and we have removed it as suggested.

Egs. (2) and (9) use the notation P(m), but Eqgs. (4) and (16) use the notation
P(Y_r = y), while Eq. (5) and (22-23) use the notation P_r. For consistency, it
might be clearer to instead use P(m|r), P(y|r), and P(r) respectively. Then Egs.
(6) and (18) would be simply P(y).

We thank the reviewer for this suggestion. It makes the notation more

transparent and we happily adopt it to our manuscript.



Should Eq. (2) read P(m|r) = (r+m-1 choose r-1) beta”r (1-beta)"m instead?
Alternatively, it might be more useful to present the distribution of the total
number of divisions n, P(n|r) = (n-1 choose r-1) beta”r (1-beta)”(n-r), since it is

n and not m that is needed later in Eq. (4).

Thanks for spotting this mistake. This is corrected now.

Should line 152 introduce Eq. (3) as the total number of mutations that

accumulate after r branching divisions, rather than just two branching divisions?

Our idea was to first discuss mutation accumulation across a single lineage and
show that a combination of different parameters can lead to the same mutational
burden. This might be obvious from a theoretical perspective, but is often not

really appreciated in cancer genomic analysis.

Fig. 1: Panels 1d and 1e are much too small to each contain four plots; can these
be rearranged and enlarged? What do the red shaded regions in panel 1e-top-left
represent? For panel le-top-right, what mu and beta values were used, and were
the samples maximally distant or randomly located? In line 215, no need to

mention 2d grids unless you include those results.

We thank the reviewer and agree with his advice. We now split the original
Figure 1 into two independent Figures, one showing the general framework and

a second showing the computational inference.

The shaded regions show the spatial spread of a random subclonal mutation that

occurred after the tumour was initiated.

The values to generate the mutational distance distribution in the previous panel
le are u = 20 and B = 0.95. Spatial samples on the tumour were randomly
distributed. However, based on simulations we find that for a low number of

samples per tumour maximal distance sampling is slightly better than randomly



distributed samples. The information is now added to the caption of the figure

and below analysis is added to the supplement.

The new Figure is now presented as SI Figure 20 in the revised manuscript.

Parameter inferences for maximal distance and random spatial sampling
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Figure R7.: Random and Maximal Distance sampling. In order to test differences of random
and maximal distance sampling, we did 10 spatial simulations with same underlying parameters
(dashed lines). We then took 9 bulk samples either randomly or with maximal spatial distance
and used our MCMC for parameter inferences. A maximal distance sampling strategy performs

slightly better compared to random sampling (indicated by the relative errors 7).

Figs. 2-3: The x-axes for panels (a) and (b) are both labeled as mu, but they are
different quantities; should they instead read (a) mutational distance y, and (b)
inferred mutation rate mu*L? How was R*2 computed, and is there a better way

to evaluate goodness of fit using the likelihood function?

We thank the reviewer for noticing our labelling error. This has been corrected
now. The R? was calculated as mean square distance of each binned mutational
distance measured from the data to the best fit of the mutational distance
distribution given the inferred pair of parameters. Below we also now show an
example trace of the log likelihood of the MCMC fit of the healthy haematopoiesis
data (FigureR8). a) shows the entire trace, whereas in b) we show the accepted

values of the MCMC realisation for the first 1000 MCMC steps.
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Figure R8.:Example of Log Likelihood trace of the MCMC parameter estimation. Shown is
the trace of the Log Likelihood function for a) the first 1000 steps of the MCMC algorithm for the
parameter inference of healthy haematopoiesis. b) Accepted values of the MCMC for the first

1000 steps. After a burn-in phase of 100 steps, we find log L = —2.56.

The new Figure is now presented (SI Figure 18 in the revised manuscript).

Fig. 4: Could a brief explanation be provided as to why the total bar heights in

panels d-f not correspond to the bar heights in panels g-i?

We assigned mutational signature for each chromosome and then run the MCMC
for each mutational signature and each chromosome independently. We added

an additional explanation to the caption of Figure 4.

Table 1 and Fig. 5: It would be very useful to explain, preferably in the methods
section, how tumor age was inferred from the survival rate, with references for
the choice of 2-week (+/- 1 week) division times. It would also be useful to
explain why beta_h = 1/3 is the minimum feasible value (due to the 25:50:25

ratio of 0:1:2 surviving daughter cells).

We decided to take out the tumour age inferences as they were based on general

assumptions that probably do not hold true on an individual patient basis.

We added an extended discussion why beta=1/3 is the expected lower threshold
for healthy haematopoiesis. This is now presented in Lines [492-518] in the

revised manuscript.



In line 517, should the growth rate lambda be set equal to one? In this same line,
it might be beneficial to define NO. In line 512, it would be useful to clarify which
population size N(t) represents, and to clarify that time t is using the backwards-

in-time convention.

Yes indeed, here we measure time in generations and lambda should be set to 1.
We also added discussion on the coalescence backward time convention to the

supplement.

[Lines 446-449] in the revised manuscript.

In Egs. (20-22), beta*t should be replaced with beta*(delta t), and dt should be
replaced with d(delta t).

We agree and have changed the equations accordingly.

In line 522, it would be useful to provide a more specific condition than
“sufficiently large NO.” For example, NO >> exp(beta*(delta t)), or equivalently
delta t << t0, or equivalently beta << log(NO0)/(delta t). For the HSC and neuron
data, in which beta is inferred to be nearly 1, is it still true that beta satisfies this

latter condition?

We agree with the reviewer. In our original manuscript, we were too vague in

what N, sufficiently large means. Below we plot realisations of equations S2 and
S3 for B = 1 and different values of N,. If we just plot equations S2 and S3, the
approximation seems to fail for Ny = 1. However, it is important to note that
equations S2 and S3 are not normalized. In panel b) we show the normalized
expressions. Once normalized both expressions are numerically identical. What
is used for inference finally are the normalized expressions and therefore the
approximation seems excellent for all values of N,. We now added the Figure to

the supplement of the manuscript.
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Figure R9. Analytical approximation dependence on N,. a) Realisations of equation ?? for
different values of N,. Here N, = oo corresponds to the approximate expression ??. Note
equations ?? and ?? are not normalised. b) The normalised equations ?? and ?? are identical even

for the smallest possible N, = 1.

This is now discussed in Lines [468-469] and SI Figure 16 in the revised

manuscript.

In line 566, there is a reference to SI Fig. 26b, but I cannot find this figure. I only

seem to have SI Figs. 1-12. Am [ missing some of your SI figures?

We are sorry. This is a mistake from a previous iteration that we overlooked.

This has now been corrected.

In line 588, do you mean r = i = 30 rather than k =i = 307 On this note, perhaps
the index of summation i could be replaced by n for clarity in Eqgs. (4), (6), and
(14-18).

Thanks for spotting this error, this is corrected now.

We are running short of indices in our notation. We used n before as the total

number of cell divisions. It probably is better to stick to i as index in this case.



Reviewers' comments:

Reviewer #1 (Remarks to the Author):

We thank the authors for the thorough rebuttal and feel like all comments have been satisfyingly
answered.

Reviewer #2 (Remarks to the Author):

Thank you to the authors for addressing the majority of my initial concerns. They have provided
some additional evidence that scaling their stochastic coalescent model to deterministic (rather than
stochastic) growth still allows for satisfying fits to the exact numerical simulations, and they have
discussed the limitations of their approach in lines 484-491. The authors have clarified that their
inferred survival rates in cancer are much higher than has been previously reported because they
simultaneously infer a higher mutation rate than has been previously assumed. Sl Figures 14-21 are
a helpful addition.

Only a few of my concerns remain:

Mutational distance has now been defined by the authors as the number of mutations different
between two ancestral cells, although it remains unclear to me whether implicit in this definition is
that one of these ancestral cells descended from the other. If so, it would be helpful to clearly state
this assumption. If not, then | remain concerned that equation (7) only accounts for the mutations
that accumulated along one of the two lineages that separate these cells, which would be
inconsistent with the definition of mutational distance. Which pairs of cells are used to calculate the
distributions in Figure 2, for example?

Equation (3) (equation 2 in the original version) is described as the distribution of “the number of
non-branching events m,” but | believe this distribution should be P(m|r) = (r+m-1 choose r-1)
beta’r (1-beta)*m. Perhaps the authors meant to give the distribution of the total number of
divisions n, which | believe should be P(n|r) = (n-1 choose r-1) beta’r (1-beta)?(n-r).



Line 228 states that “cell birth and death on a 2- or 3-dimensional grid was simulated using a
Gillespie algorithm.” Each time a plot from the spatial model is given, it would be useful to identify
whether it was generated from a 2-dimensional simulation or a 3-dimensional simulation.

The x-axis of the center plot in Figure 4 reads “inferred mutational distance,” but should it instead
read “inferred mutation rate” as it does in Figure 3?

The caption for Sl Figure 18b reads “(b) Accepted values of the MCMC for the first 1000 steps” but it
appears to be the log-likelihood for the first 250 steps. Was the wrong plot included here?



Reviewers' comments:

We want to thank both reviewers again for carefully reviewing our work and

providing such constructive feedback to help us improve the manuscript.

Reviewer #1 (Remarks to the Author):

We thank the authors for the thorough rebuttal and feel like all comments have

been satisfyingly answered

We want to thank the reviewer again for the very constructive and helpful
commends and are very happy to see that we could answer all commends

satisfyingly.

Reviewer #2 (Remarks to the Author):

We want to thank the reviewer again for the very constructive assessment of our
work that helped us improving our manuscript tremendously. Please find a brief

respond to the remaining suggestions below.

Thank you to the authors for addressing the majority of my initial concerns. They
have provided some additional evidence that scaling their stochastic coalescent
model to deterministic (rather than stochastic) growth still allows for satisfying
fits to the exact numerical simulations, and they have discussed the limitations of
their approach in lines 484-491. The authors have clarified that their inferred
survival rates in cancer are much higher than has been previously reported
because they simultaneously infer a higher mutation rate than has been

previously assumed. SI Figures 14-21 are a helpful addition.

We are very happy to see that the majority of suggestions have been addressed

by our initial revision.

Only a few of my concerns remain:



Mutational distance has now been defined by the authors as the number of
mutations different between two ancestral cells, although it remains unclear to
me whether implicit in this definition is that one of these ancestral cells
descended from the other. If so, it would be helpful to clearly state this
assumption. If not, then I remain concerned that equation (7) only accounts for
the mutations that accumulated along one of the two lineages that separate these
cells, which would be inconsistent with the definition of mutational distance.
Which pairs of cells are used to calculate the distributions in Figure 2, for

example?

We apologize, if the concept of mutational distances still remained unclear. We
were indeed imprecise in how we specified the set-theoretical definition. To
clarify: if we take two samples from a simulated tumour, the clonal mutations in
those samples correspond to the mutations carried by the ancestral cells of each
of these samples. Say these mutational lists are called A and B. By definition, the
ancestral cells with mutational profile A and B must coalesce from some earlier
ancestral cell C, with mutational profile C = ANB. We now can construct two
mutational distances, namely y; = |[A\ (ANB)| and y, = |B \ (ANB)|. This
process can be iterated for increasing number of samples per tumour (or
simulation). We have corrected our statement in the main text of the revised
manuscript and apologize again for the confusion caused by our to lose original

explanation.

Equation (3) (equation 2 in the original version) is described as the distribution
of “the number of non-branching events m,” but I believe this distribution should
be P(m|r) = (r+m-1 choose r-1) beta”r (1-beta)*m. Perhaps the authors meant to
give the distribution of the total number of divisions n, which I believe should be

P(n|r) = (n-1 choose r-1) beta”r (1-beta)”(n-r).

The reviewer is correct. This was poorly stated in the previous iteration and has
now been corrected. We state equation (3) now as the “number of non-branching

events m” now.



Line 228 states that “cell birth and death on a 2- or 3-dimensional grid was
simulated using a Gillespie algorithm.” Each time a plot from the spatial model is
given, it would be useful to identify whether it was generated from a 2-

dimensional simulation or a 3-dimensional simulation.

We agree and thank the reviewer for this suggestion. We have updated the

sections of the manuscript correspondingly.

The x-axis of the center plot in Figure 4 reads “inferred mutational distance,” but

should it instead read “inferred mutation rate” as it does in Figure 3?

We thank the reviewer for spotting this mistake. This has been corrected now.

The caption for SI Figure 18b reads “(b) Accepted values of the MCMC for the
first 1000 steps” but it appears to be the log-likelihood for the first 250 steps.

Was the wrong plot included here?

We apologize for being unclear in our caption here. Panel a) shows the entire
MCMC for 1000 steps, panel b) shows the accepted values of the 1000 MCMC
steps shown in panel a). Approximately 220 suggested parameters were
accepted during the realisation of the MCMC chain. We have now clarified the

description in the caption of SI Figure 18.
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