The American Journal of Human Genetics, Volume 106

Supplemental Data

UK Biobank Whole-Exome Sequence Binary Phenome Analysis with Robust Region-Based Rare-Variant Test

Zhangchen Zhao, Wenjian Bi, Wei Zhou, Peter VandeHaar, Lars G. Fritsche, and Seunggeun Lee

Supplemental Figures

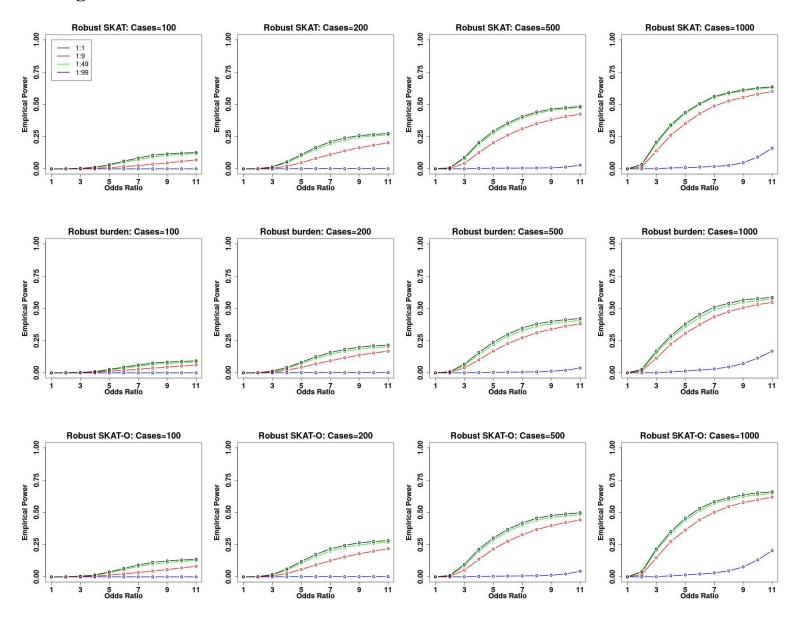
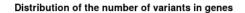
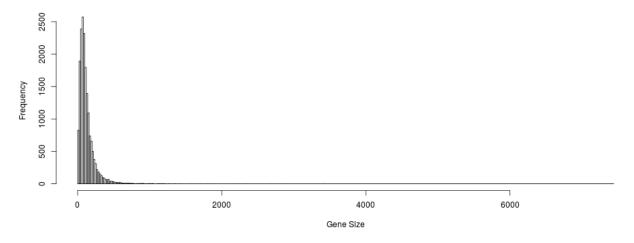




Figure S1. Empirical power estimates for robust SKAT, burden, SKAT-O with the same number of cases across different case control ratios. 30% of variants were causal variants and all causal variants were risk-increasing. The X-axis represents the genetic effect odds ratio and the Y-axis represents the empirical power. All causal variants had the same odds ratios.

Distribution of the number of variants in genes (n<=500)

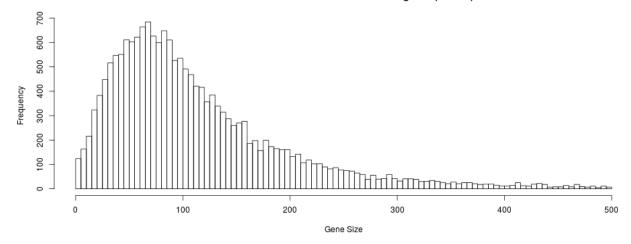


Figure S2. The distribution of the number of variants in genes in the UK-Biobank WES data.

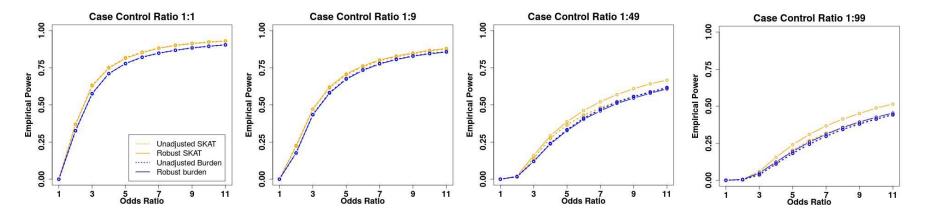


Figure S3. Empirical power estimates for the unadjusted and robust version of SKAT and burden test where 30% of variants were causal variants and all causal variants were risk-increasing. The X-axis represents the genetic effect odds ratio and the Y-axis represents the empirical power. All causal variants had the same odds ratios.

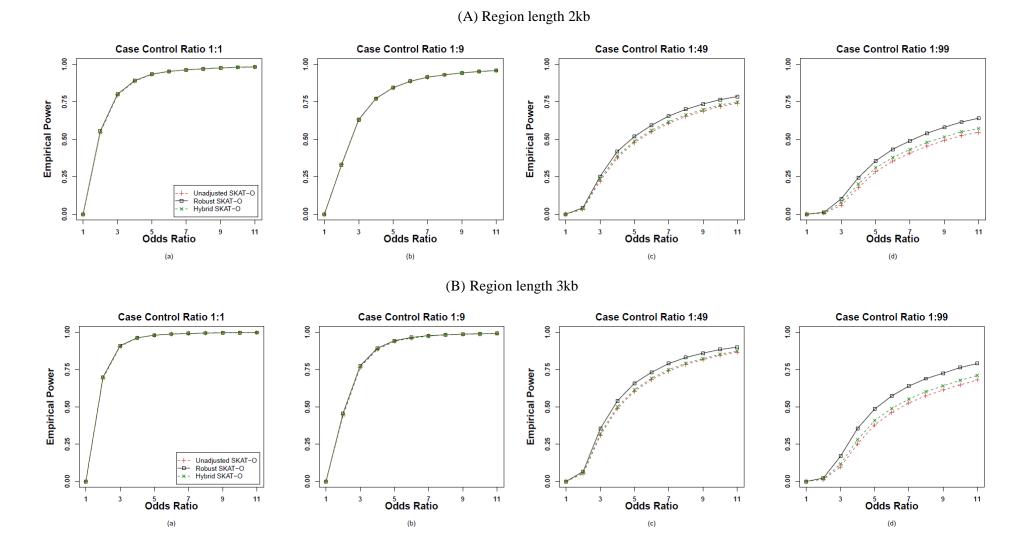


Figure S4. Empirical power estimates for the unadjusted and robust versions of SKAT-O and hybrid method where 30% of variants were causal variants. 80% causal variants were risk-increasing and 20% were risk-deceasing. The sample size was 50,000 and 10,000 datasets were generated. The X-axis represents the genetic effect odds ratio and the Y-axis represents the empirical power. (A) Region length is 2kb. (B) Region length is 3kb.

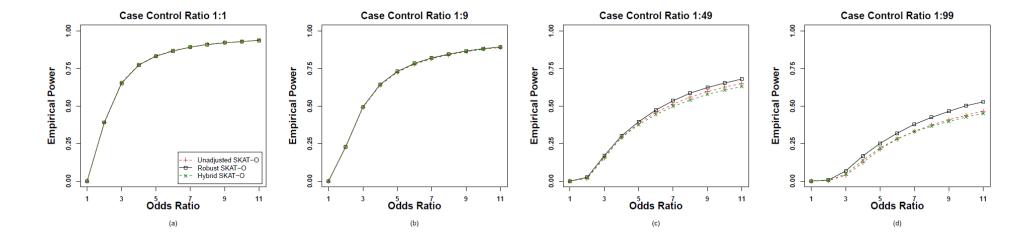


Figure S5. Empirical power estimates for the unadjusted and robust versions of SKAT-O and hybrid method where 30% of variants were causal variants. All causal variants were risk-increasing. The sample size was 50,000 and 10,000 datasets were generated with region length 1kb. The X-axis represents the genetic effect odds ratio and the Y-axis represents the empirical power.

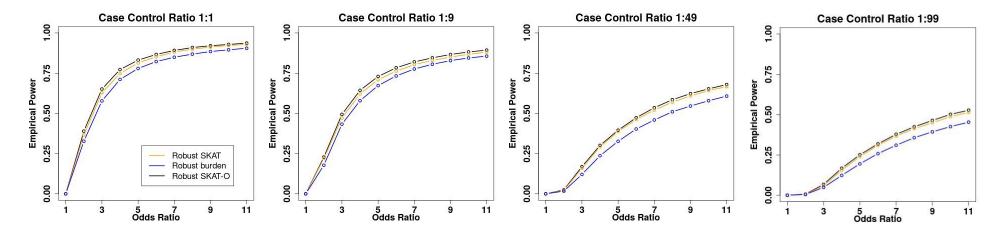


Figure S6. Empirical power estimates for robust SKAT, burden and SKAT-O where 30% of variants were causal variants and all causal variants were risk-increasing. The X-axis represents the genetic effect odds ratio and the Y-axis represents the empirical power. All causal variants had the same odds ratios.

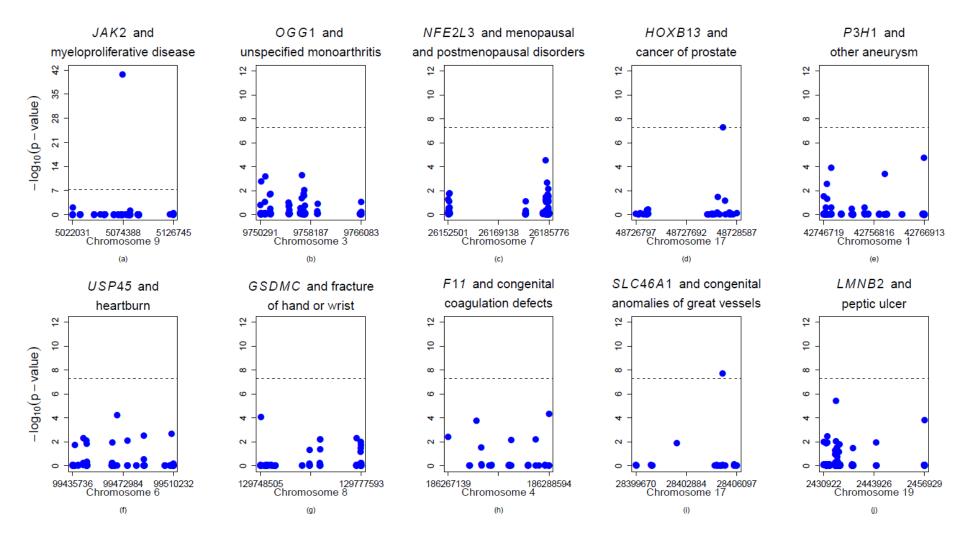


Figure S7. P-values of single variants in 10 significant genes. The X-axis represents the position of each single variant in the gene, and the Y-axis represents the negative log10 p-values of single variants. The dashed line represents the cutoff of 5×10^{-8} .

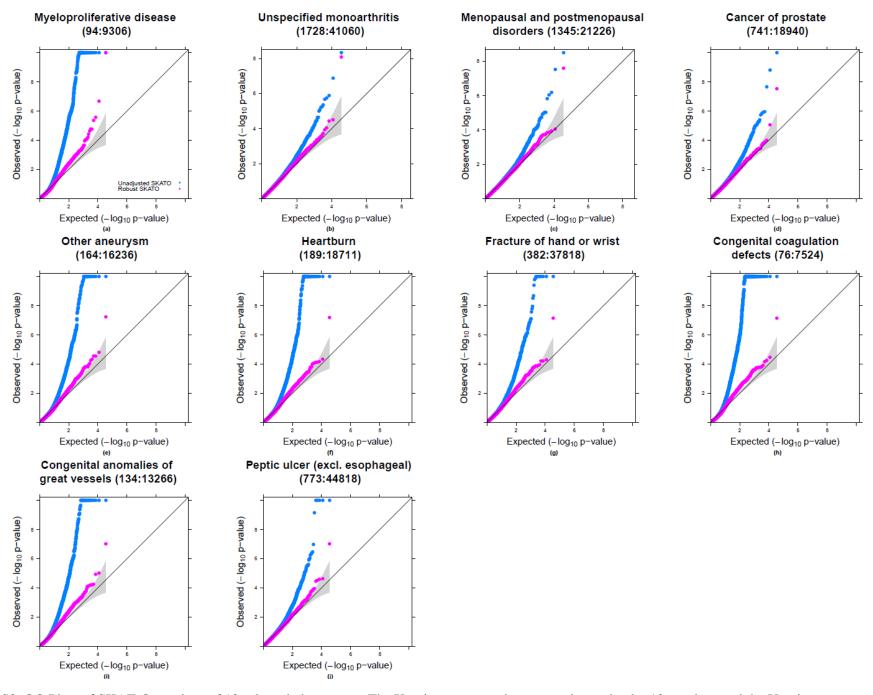


Figure S8. QQ Plots of SKAT-O p-values of 10 selected phenotypes. The X-axis represents the expected negative log10 p-values and the Y-axis represents the observed negative log10 p-values of genes.

Supplemental Tables

Table S1. Type I error rate divided by α of different methods when testing an association with dichotomous traits at stringent α levels $\alpha = 10^{-2}$, 10^{-4} and 2.5×10^{-6} . The sample size was 50,000 and 10^7 datasets were generated.

			Robust			Robust			Robust		
			SKAT without			burden without			SKAT-O without		
	Case:		additional	Robust		additional	Robust	SKAT-	additional	Robust	Hybrid
α	Control	SKAT	adjustment	SKAT	Burden	adjustment	burden	O	adjustment	SKAT-O	SKAT-O
10^{-2}	1:1	0.99	0.99	0.99	1.00	1.00	1.00	1.11	1.11	1.11	1.09
	1:9	1.01	1.01	1.01	0.99	0.99	1.00	1.13	1.13	1.13	1.09
	1:49	1.44	1.24	1.22	1.02	0.95	0.95	1.44	1.24	1.23	1.27
	1:99	1.92	1.44	1.41	1.07	0.92	0.91	1.82	1.36	1.33	1.53
	1:199	2.74	1.76	1.71	1.19	0.91	0.88	2.47	1.56	1.52	2.00
	1:399	3.99	2.22	2.14	1.44	0.94	0.89	3.47	1.88	1.82	2.75
10^{-4}	1:1	0.99	0.98	1.03	1.02	1.03	1.00	1.27	1.28	1.32	1.27
	1:9	1.39	1.11	1.14	1.12	1.08	0.99	1.65	1.43	1.40	1.52
	1:49	6.31	1.79	1.65	2.43	1.56	0.97	6.16	2.33	1.79	4.54
	1:99	13.48	2.42	2.13	3.95	2.05	1.02	12.77	3.23	2.17	8.89
	1:199	28.84	3.42	2.89	6.79	2.54	1.01	26.55	4.38	2.72	17.95
	1:399	61.28	4.86	3.79	11.71	2.84	0.95	55.65	5.75	3.37	36.76
	1:1	1.24	1.03	1.54	1.11	0.94	1.03	1.38	1.19	1.38	1.40
2.5	1:9	2.47	1.19	1.45	1.29	1.41	0.77	2.51	1.61	1.49	2.23
×10 ⁻⁶	1:49	28.27	1.80	1.91	6.88	2.91	1.06	23.70	3.24	1.98	16.69
	1:99	89.53	2.67	1.81	16.34	3.80	0.90	71.32	4.87	1.60	42.59
	1:199	262.60	4.62	3.16	39.57	5.99	1.17	211.90	7.93	2.80	126.26
	1:399	715.05	6.70	3.90	86.87	6.65	0.80	577.70	10.70	2.83	347.10

Table S2. Type I error rate divided by α of robust SKAT-O when testing an association with dichotomous traits at stringent α levels $\alpha = 10^{-2}$, 10^{-4} and 2.5×10^{-6} with three different region length (1) 1kb; (2) 2kb; (3) 3kb. The sample size was 50,000 and 10^7 datasets were generated.

			Region	Region	
			length 2kb	length 3kb	
		length 1kb	Terigui ZKD	length 3kb	
		Mean:16.33	Mean:32.69	Mean:49.05	
α	Case: control	SD: 4.05	SD: 5.65	SD: 6.71	
10 ⁻²	1:1	1.11	1.11	1.10	
	1:9	1.13	1.11	1.11	
	1:49	1.23	1.19	1.18	
	1:99	1.33	1.29	1.27	
10 ⁻⁴	1:1	1.32	1.15	1.14	
	1:9	1.40	1.18	1.20	
	1:49	1.79	1.73	1.67	
	1:99	2.17	2.09	1.99	
	1:1	1.38	0.96	1.04	
	1:9	1.49	1.56	1.08	
2.5×10^{-6}	1:49	1.98	2.24	1.60	
	1:99	1.60	2.44	2.08	

Table S3. Type I error rate divided by α of different methods when testing an association between all variants, including both common and rare variants, and dichotomous traits at stringent α levels $\alpha = 10^{-2}$, 10^{-4} and 2.5×10^{-6} . The sample size was 50,000 and 10^7 datasets were generated.

	Robust SKAT- CommonRare without								
	Case:	SKAT-	additional	Robust SKAT-					
α	control	CommonRare	adjustment	CommonRare					
10^{-2}	1:1	1.00	0.99	0.99					
	1:9	1.00	1.01	1.01					
	1:49	1.11	1.22	1.22					
	1:99	1.26	1.42	1.41					
	1:199	1.52	1.71	1.72					
	1:399	1.97	2.15	2.15					
10^{-4}	1:1	0.98	0.98	1.04					
	1:9	1.09	1.11	1.13					
	1:49	2.42	1.73	1.69					
	1:99	4.20	2.26	2.21					
	1:199	7.84	3.02	3.03					
	1:399	16.02	4.01	4.04					
	1:1	0.94	1.05	1.66					
2 5 . 10-6	1:9	1.53	1.17	1.45					
2.5×10^{-6}	1:49	7.48	1.57	1.94					
	1:99	18.54	2.50	1.93					
	1:199	50.43	3.87	3.37					
	1:399	140.09	4.47	4.46					

Table S4. Gene-phenotype associations detected by Robust SKAT-O across 791 phenotypes at α =2.5×10⁻⁶ (Number of associations=111) See excel file "Table S4.xlsx".

Table S5. Top 3 single rare-variant signals of associations with p-value $< 10^{-7}$ in the UK Biobank WES data.

	Gene							
Phenotype (Phecode)	Name	RS ID	Location	MAF	P-value	Annotation	Polyphen	SIFT
	JAK2	rs77375493	9:5073770:G:T	1.38E-03	1.81E-41	nonsynonymous SNV	probably_damaging	deleterious
Myeloproliferative		-	9:5022213:G:T	1.06E-04	7.16E-03	nonsynonymous SNV	probably_damaging	deleterious
disease (200)		rs150221602	9:5081828:G:C	1.12E-03	5.07E-02	nonsynonymous SNV	benign	deleterious
Unspecified	OGG1	rs113561019	3:9756791:G:A	5.67E-03	4.67E-04	nonsynonymous SNV	probably_damaging	deleterious
monoarthritis (716.2)		rs17050550	3:9751060:G:T	2.66E-03	5.96E-04	nonsynonymous SNV	benign	tolerated
		rs104893751	3:9750423:G:A	3.89E-03	1.69E-03	nonsynonymous SNV	probably_damaging	deleterious
Menopausal and	NFE2L3	rs148235978	7:26184630:A:G	7.93E-03	2.72E-05	nonsynonymous SNV	benign	deleterious
postmenopausal		rs148159120	7:26185140:G:A	5.91E-03	2.18E-03	nonsynonymous SNV	benign	tolerated
disorders (627)		rs144789579	7:26185559:A:G	3.33E-04	6.71E-03	nonsynonymous SNV	benign	tolerated
Cancer of prostate	HOXB13	rs138213197	17:48728343:C:T	2.16E-03	5.24E-08	nonsynonymous SNV	probably_damaging	deleterious
(185)		rs764401781	17:48728250:G:A	7.62E-05	3.37E-02	nonsynonymous SNV	benign	deleterious
		rs774579054	17:48728379:C:A	1.02E-04	7.05E-02	nonsynonymous SNV	possibly_damaging	tolerated
Other aneurysm (442)	Р3Н1	rs372710498	1:42766778:C:T	6.71E-04	1.71E-05	nonsynonymous SNV	probably_damaging	tolerated
		rs140254470	1:42748243:C:T	3.35E-04	1.21E-04	nonsynonymous SNV	benign	tolerated
		rs372301077	1:42758970:C:G	9.15E-05	3.88E-04	nonsynonymous SNV	probably_damaging	deleterious
Heartburn (530.9)	USP45	rs554927779	6:99468543:D:1	4.52E-03	5.39E-05	frameshift deletion	LoF: High-confidence	-
		rs201110065	6:99508768:G:T	3.70E-04	2.13E-03	nonsynonymous SNV	probably_damaging	deleterious_low_confidence
		rs144269307	6:99488237:G:A	2.65E-05	2.78E-03	nonsynonymous SNV	possibly_damaging	tolerated
Fracture of hand or	GSDMC	rs149748731	8:129748706:G:A	3.17E-03	8.17E-05	nonsynonymous SNV	possibly_damaging	tolerated
wrist (804)		rs79403769	8:129776220:C:A	1.14E-03	4.95E-03	nonsynonymous SNV	benign	deleterious
		rs16904151	8:129765749:C:T	6.54E-04	5.81E-03	nonsynonymous SNV	benign	tolerated
Congenital coagulation	F11	rs281875276	4:186288589:T:G	1.32E-04	4.52E-05	nonsynonymous SNV	probably_damaging	deleterious
defects (286.1)		rs140190776	4:186273178:G:A	1.97E-04	1.73E-04	splicing	LoF: High-confidence	-
		-	4:186267139:G:T	6.58E-05	3.85E-03	nonsynonymous SNV	probably damaging	deleterious
Congenital anomalies	SLC46A1	rs189103810	17:28405185:A:T	1.75E-03	1.86E-08	nonsynonymous SNV	possibly_damaging	deleterious
of great vessels		rs281875211	17:28402276:C:T	3.73E-05	1.24E-02	nonsynonymous SNV	possibly_damaging	deleterious
(747.13)		rs41297071	17:28405926:C:G	5.22E-04	7.13E-01	nonsynonymous SNV	benign	tolerated
Peptic ulcer (excl.	LMNB2	rs752957340	19:2434094:G:A	2.30E-04	3.83E-06	nonsynonymous SNV	probably_damaging	deleterious
esophageal) (531)		-	19:2456926:G:T	2.19E-05	1.47E-04	nonsynonymous SNV	-	-
			19:2431845:C:A	1.10E-05	3.45E-03	nonsynonymous SNV	benign	deleterious

Table S6. The most significant nearby variant association signals (± 100 Kbp up and down stream) in the UK-Biobank imputed datasets of 400,000 British samples.

	Gene			Ref	Alt		
Phenotype (Phecode)	Name	RS ID	Location	Allele	Allele	MAF	p-value
Myeloproliferative disease (200)	JAK2	rs10283564	chr9:5075628	C	G	2.51E-01	2.30E-17
Unspecified monoarthritis (716.2)	OGG1	rs75924392	chr3:9797369	A	G	4.25E-02	4.28E-04
Menopausal and postmenopausal disorders (627)	NFE2L3	rs35838658	chr7:26175486	T	A	3.48E-01	2.14E-04
Cancer of prostate (185)	HOXB13	rs145922598	chr17:48733224	C	T	3.27E-02	1.17E-04
Other aneurysm (442)	P3H1	rs148797090	chr1:42818294	T	C	1.35E-02	1.22E-03
Heartburn (530.9)	USP45	rs75597991	chr6:99367094	G	C	2.38E-02	4.08E-02
Fracture of hand or wrist (804)	GSDMC	rs409790	chr8:129833249	A	G	8.28E-01	1.84E-02
Congenital coagulation defects (286.1)	F11	rs115583874	chr4:186260648	G	T	1.37E-02	6.30E-03
Congenital anomalies of great vessels (747.13)	SLC46A1	rs111306228	chr17:28425402	C	A	2.06E-02	2.29E-03
Peptic ulcer (excl. esophageal) (531)	LMNB2	rs146283067	chr19:2441769	G	T	1.62E-02	1.31E-03