SUPPLEMENTARY FIGURES

A closer look into NADPH oxidase inhibitors: validation and insight into their mechanism of action

Joana Reis¹, Marta Massari¹, Sara Marchese¹, Marta Ceccon¹, Friso S. Aalbers¹, Federica Corana², Sergio Valente³, Antonello Mai³, Francesca Magnani¹, Andrea Mattevi^{1*}

¹Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Ferrata 9, 27100 Pavia, Italy

²Centro Grandi Strumenti, University of Pavia, via Bassi 21, 27100 Pavia, Italy

³Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.

Supplementary Figure 1. Thermal shift assays of NOX inhibitors on wild-type NOX5 dehydrogenase domain. Protein unfolding was monitored following the intrinsic protein fluorescence. The profile curves and corresponding inflection temperatures (T_i) are depicted.

Supplementary Figure 2. K_d determination of suramin binding to the wild-type dehydrogenase domain of NOX5 domain using microscale thermophoresis.

Supplementary Figure 3. K_i determination for DPI against the full-length bacterial NOX5.

Supplementary Figure 4. ESI-MS spectra of the heme extracted from the reduced transmembrane domain incubated with DPI. (A) Experimental and (B) theoretical isotopic pattern.

Supplementary Figure 5. K_i determination of DPI on (A) wild-type and (B) mutant dehydrogenase domain of bacterial NOX5.

Supplementary Figure 6. IC_{50} determination for VAS2870 (A) and VAS3947 (B) against the wild-type dehydrogenase domain of bacterial NOX5.

Supplementary Figure 7. ESI-MS spectra for mutant C688S dehydrogenase (A) without and (B) with addition of VAS2870.