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Whole-genome sequencing (WGS) can improve assessment of low-frequency and rare variants, particularly in non-European popula-

tions that have been underrepresented in existing genomic studies. The genetic determinants of C-reactive protein (CRP), a biomarker

of chronic inflammation, have been extensively studied, with existing genome-wide association studies (GWASs) conducted in

>200,000 individuals of European ancestry. In order to discover novel loci associated with CRP levels, we examined a multi-ancestry

population (n ¼ 23,279) with WGS (�383 coverage) from the Trans-Omics for Precision Medicine (TOPMed) program. We found evi-

dence for eight distinct associations at the CRP locus, including two variants that have not been identified previously (rs11265259 and

rs181704186), both of which are non-coding and more common in individuals of African ancestry (�10% and �1% minor allele fre-

quency, respectively, and rare or monomorphic in 1000 Genomes populations of East Asian, South Asian, and European ancestry).

We show that the minor (G) allele of rs181704186 is associated with lower CRP levels and decreased transcriptional activity and protein

binding in vitro, providing a plausible molecular mechanism for this African ancestry-specific signal. The individuals homozygous for

rs181704186-G have a mean CRP level of 0.23 mg/L, in contrast to individuals heterozygous for rs181704186 with mean CRP of

2.97 mg/L andmajor allele homozygotes with mean CRP of 4.11 mg/L. This study demonstrates the utility of WGS in multi-ethnic pop-

ulations to drive discovery of complex trait associations of large effect and to identify functional alleles in noncoding regulatory regions.
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Whole-genome sequencing (WGS) data are being rapidly

generated in deeply phenotyped cohorts or case-referent

samples of complex disorders by projects such as the

United Kingdom’s 100,000 Genomes Project,1 the Na-

tional Institute of Mental Health’s Whole Genome

Sequencing for Psychiatric Disorders Consortium,2 the Na-

tional Human Genome Research Institute’s Centers for

Common Disease Genomics (CCDG) project (see Web Re-

sources), and the National Heart, Lung, and Blood Insti-

tute’s Trans-Omics for Precision Medicine (TOPMed) Pro-

gram.3 WGS resources can improve interrogation of low-

frequency and rare variation associated with quantitative

traits or clinical outcomes4 compared to genotyping

array-based studies. However, sample sizes remain modest

compared to large-scale genome-wide association studies

(GWASs).

WGS-based analysis may offer particular advantages for

non-European populations currently underrepresented in

GWASs, with �95% of GWAS participants being of Euro-

pean or East Asian ancestry.5 WGS can assess population-

specific variants which are at very low frequency or absent

in large European GWASs, including variants that are often

poorly imputed with standard reference panels and geno-

typing arrays. Current imputation reference panels for

non-European populations (notably 1000 Genomes phase

3, n ¼ 5,008 haplotypes across 26 mostly non-European

populations6) are also much smaller than resources like

the Haplotype Reference Consortium (HRC) for European

populations (n ¼ 64,976 haplotypes),7 making imputation

of low-frequency variants more difficult. Along with dis-

crepancies in imputation reference panel size, many geno-

typing arrays have poor genomic coverage in non-Euro-

pean populations.8 Because WGS assesses the entire

genome of each individual, the limitations of genotyping

arrays and imputation reference panels are easily over-

come, allowing better understanding of the genetic archi-

tecture of complex traits in non-European populations.

Based on previous success in identifying novel coding

low-frequency or population-specific variants for inflam-

matory biomarkers in sequencing-based analyses,9,10 we

evaluated the ability of WGS to identify additional high-

impact non-coding variation for commonly assessed

inflammation biomarker C-reactive protein (CRP).

CRP is an acute-phase protein synthesized in the liver

and is often used as a biomarker for chronic low-grade

inflammation. As such, its relationship to cardiovascular

disease (CVD) has been well established by numerous

epidemiological studies, though current analyses do not

point to a causal relationship with CVD.11,12 CRP has

also been associated with inflammatory disorders,13,14

type 2 diabetes,15 and overall mortality,16 and recent Men-

delian randomization studies have pointed to a potential

causal role in bipolar disorder and schizophrenia.12

CRP demonstrates substantial heritability in family-

based studies (�30% in East Asians,17 �30%–40% in Euro-

peans,18–20 �45% in African Americans21). CRP levels vary

by race/ethnicity group with higher levels observed in in-
The Americ
dividuals of African ancestry compared to European or

East Asian ancestry.22,23 The genetic architecture of CRP

has been investigated in diverse populations by whole-

exome sequencing (WES),10 genome-wide association,24–

26 and fine-mapping studies imputed to various reference

panels27,28 in tens of thousands of samples. Most recently,

the largest GWAS was conducted in up to 204,402 individ-

uals of European ancestry, identifying 58 loci and explain-

ing 7% of the trait variance.12 Some studies have also re-

ported population-specific variants associated with CRP

levels.27 Among reported loci, the locus surrounding the

CRP (MIM: 123260) gene itself on chromosome 1 explains

the largest portion of phenotypic variance (1.4%12), with

multiple distinct signals reported and clear evidence of

allelic heterogeneity across populations.27,28 For example,

using approximate conditional analysis, the most recent

European GWAS analysis reported 13 signals at the CRP lo-

cus (including rs149520992, an intergenic variant with a

minor allele frequency [MAF] of 1% in Europeans and

rare in other populations),12 and four distinct signals

(shared across ancestry groups) were reported in the

multi-ethnic fine-mapping effort from the Population Ar-

chitecture using Genomics and Epidemiology (PAGE)

study.28 African-specific variant rs726640 or variants in

linkage disequilibrium (LD) with it have also been reported

in several previous studies.26,27,29

Using data from the NHLBI TOPMed WGS project, we

sought to investigate the additional value of WGS (beyond

whole-exome sequencing and imputed GWAS) for single-

variant analysis in a set of 23,279 individuals predomi-

nantly of self-reported European, African American, East

Asian, and Hispanic/Latino ancestry with measured CRP

levels (Table S1). We identified association with CRP levels

at eight known loci (CRP, APOE [MIM: 107741], HNF1A

[MIM: 142410], LEPR [MIM: 601007], GCKR [MIM:

600842], IL6R [MIM: 147880], IL1F10 [MIM: 615296],

and NLRP3 [MIM: 606416]) with p < 1 3 10�9 in an

ancestry-pooled genome-wide single-variant analysis (Ta-

ble 1, Figure S1). We also examined these eight CRP-associ-

ated loci separately in African American (n ¼ 6,545) and

European American (n ¼ 15,065) participants (Table S2).

In the European American analysis, at least one variant

at each locus met the locus-wide significance threshold

for association with CRP levels with the exception of the

NLRP3 locus. The African American analysis also demon-

strated at least one locus-wide significant variant at all

loci except GCKR and LEPR.

We performed stepwise conditional analyses at each of

the eight loci by conditioning on the lead variant at each

locus and then sequentially conditioning on each new

lead variant until no variants met our locus-wide signifi-

cance thresholds (Table 1). Stepwise conditional analyses

were performed in ancestry pooled and stratified (self-re-

ported European American- and African American-spe-

cific) analyses. We identified two conditionally distinct sig-

nals at HNF1A and eight at the CRP locus (Table 2, Figures

1, S2, and S3). The presence of multiple association signals
an Journal of Human Genetics 106, 112–120, January 2, 2020 113



Table 1. Eight Loci Significantly Associated (p < 1 3 10�9) with C-Reactive Protein Levels in TOPMed

Locus
Lead
Variant Annotation p Value Beta

Effect
Allele

TOPMed
EAF
Overall

TOPMed
African
American
EAF

TOPMed
European
American
EAF

After Conditioning on Lead Variant

New Lead
Variant p Value

2nd Signal
Threshold

Total #
Signals

LEPR rs7516341 intronic 1.9E�19 �0.09 C 0.43 0.54 0.37 rs72683129 4.7E�05 4.7E�06 1

IL6R rs4129267 intronic 5.0E�12 �0.07 T 0.33 0.14 0.40 rs149417774 2.7E�04 6.3E�06 1

CRP rs7551731 intergenic 1.1E�65 �0.18 C 0.30 0.22 0.33 rs73024795 1.2E�42 2.4E�06 8

NLRP3 rs56188865 intronic 2.6E�11 �0.06 C 0.42 0.52 0.38 rs115695052 1.6E�05 4.5E�06 1

GCKR rs1260326 missense,
p.Leu446Pro
(GCKR)

1.9E�13 �0.08 C 0.66 0.85 0.58 rs183628627 4.7E�04 6.7E�06 1

IL1F10 rs6734238 intergenic 8.4E�12 0.07 G 0.41 0.45 0.41 rs148498391 4.1E�04 6.2E�06 1

HNF1A rs2243458 intronic 1.5E�33 �0.13 T 0.27 0.12 0.33 rs544759708 3.3E�06 4.3E�06 2

APOE rs429358 missense,
p.Cys130Arg
(APOE4)

1.1E�65 �0.22 C 0.15 0.21 0.13 rs186472069 1.6E�05 4.7E�06 1

Significance threshold for identification of second signals calculated as p ¼ (0.05/tested variants). EAF, effect allele frequency, for those in TOPMed CRP analysis.
at both CRP and HNF1A has been reported in previous

studies, with at least two signals identified at both loci

in a recent multi-ethnic fine-mapping effort (four signals

atCRP, two signals atHNF1A)28 and in the largest European

meta-analysis (13 approximate conditional signals at

CRP and 2 at HNF1A).12 The eight identified signals at

the CRP locus include low-frequency, exonic variants

(rs1800947 [p.Leu184Leu] and rs553202904, a noncoding

proxy for rs77832441 [p.Thr59Met]) and noncoding

variants with much higher MAF in African ancestry indi-

viduals. These African American-driven signals include

both known (rs73024795) and previously unreported

(rs11265259, rs181704186) associations. In an unrelated

subset (n ¼ 17,371), these eight conditionally distinct

signals explained 4.2% of variance in natural log trans-

formed CRP (2.6% in European Americans, 6.0% in African

Americans). When performing stepwise conditional ana-

lyses at the CRP locus separately by ancestry, five condi-

tionally distinct signals were identified in African Ameri-

cans alone and four conditionally distinct signals were

identified in European Americans. Based on these results

and with consideration of population-specific allele fre-

quencies, four signals at CRP were driven primarily by

African American individuals (rs73024795, rs11265259,

rs181704186, rs2211321) and two by European Americans

(rs553202904, rs12734907) (Table S3). The other two sig-

nals (rs7551731 and rs1800947) were shared between Afri-

can Americans and European Americans.

To determine whether the association signals we

observed at the CRP or HNF1A loci were tagging previously

reported associations, we performed a separate conditional

analysis by which we adjusted for all variants associated

with CRP levels at the CRP or HNF1A loci in prior GWAS,

fine-mapping, or exome-sequencing efforts (Tables S4

and S5). In this analysis, two African American-driven

signals at CRP remained locus-wide significant including
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rs11265259 (signal ‘‘E’’; b¼�0.32, p¼ 7.33 10�18; African

American MAF ¼ 0.10) and rs181704186 (signal ‘‘H’’;

b ¼ �0.46, p ¼ 3.0 3 10�7; African American MAF ¼
0.01); both are rare or monomorphic in other ancestry

populations, with no copies of the minor allele for either

variant found in 1000 Genomes European, East Asian, or

South Asian populations. We also note the unusually

large effect size for rs181704186, with major allele homo-

zygotes having mean CRP levels of 4.11 mg/L (similar to

the overall TOPMed mean of 4.10 mg/L), heterozygotes,

2.97 mg/L, and minor allele homozygotes, 0.23 mg/L,

respectively (Figure 2A). By contrast, the more common

variant, rs11265259, has mean CRP levels of 4.10, 4.36,

and 3.04 mg/L, respectively. LD in African Americans

from TOPMed between rs11265259 and rs181704186

and known signals is listed in Table S6. After adjusting

for known variants at the HNF1A locus (Table S5), both as-

sociation signals were attenuated below the locus-wide sig-

nificance threshold. We thus carried forward the two

conditionally distinct CRP signals, and not the secondary

signal at HNF1A, for further follow-up.

As both remaining CRP variant associations appeared to

be distinct from any previously identified CRP locus

variant association, we attempted to replicate these two

signals using CRP measurements in African American

women from the Women’s Health Initiative (WHI) study

(n ¼ 7,108). The WHI participants had genotype data

from an Affymetrix 6.0 array imputed to the TOPMed refer-

ence panel (freeze 5b, Michigan Imputation Server) but

were not whole genome sequenced through TOPMed at

the time of freeze 5b’s release. Both variants were locus-

wide significant (using the same p ¼ 2.47 3 10�6 locus-

wide threshold used in our TOPMed analysis in Table 2)

in our independent WHI replication sample of African

Americans (Table S7, rs11265259, p ¼ 6.1 3 10�9,

rs181704186, p ¼ 9.2 3 10�11) with consistent direction
2, 2020



Table 2. Eight Conditionally Distinct Signals Associated with C-Reactive Protein Were Identified at the CRP Locus in TOPMed

Signal Variant Annotation Beta p Value
Effect
Allele

TOPMed
Overall EAF

TOPMed
African
American
EAF

TOPMed
European
American
EAF

1000
Genomes
AFR EAF

1000
Genomes
EUR EAF

Sequential
Conditional
p Value

A rs7551731 intergenic �0.18 1.1E�65 C 0.30 0.22 0.33 0.20 0.31 –

B rs73024795 intergenic 0.36 5.0E�54 T 0.05 0.16 4.98E�04 0.18 N/A 1.2E�42

C rs2211321 intergenic �0.02 0.05 C 0.70 0.65 0.71 0.64 0.71 3.1E�27

D rs553202904a intergenic �0.70 1.4E�12 G 0.002 3.82E-04 0.003 N/A 0.003 8.8E�17

E rs11265259 intergenic �0.18 8.9E�09 C 0.03 0.09 4.31E�04 0.10 N/A 9.3E�12

F rs1800947 synonymous,
p.Leu184Leu

�0.24 5.8E�26 G 0.05 0.01 0.06 0.002 0.05 9.2E�09

G rs12734907 intergenic 0.08 1.5E�12 T 0.26 0.08 0.34 0.02 0.37 7.9E�10

H rs181704186 intergenic �0.61 3.9E�12 G 0.003 0.009 9.96E�05 0.01 N/A 1.0E�07

Abbreviations: AFR, African; EUR, European; N/A, not applicable (monomorphic). Letters correspond to the signals displayed in the LocusZoom plot in Figure 1.
Beta, p value, and overall effect allele frequency are from TOPMed pooled ancestry analysis. EAF, effect allele frequency, for those in TOPMed CRP analysis.
aProxy variant is missense, Thr59Met (r2 ¼ 0.98 in analyzed TOPMed samples)
of effect. This remained true when conditioning on all

known variants from prior GWASs and exome-sequencing

studies in Table S4 (rs11265259, p ¼ 8.7 3 10�12,

rs181704186, p ¼ 9.7 3 10�6). These replication results

in WHI provide evidence to the validity of these variants

and show the utility of the TOPMed reference panel for

imputation in non-European ancestry individuals.

We performed several in silico analyses to further charac-

terize the putative functional regulatory mechanisms

of these two variants. Both rs11265259 (located �6 kb

downstream of CRP, signal E) and rs181704186 (located

�37 kb upstream of CRP, signal H) have high Genomic

Evolutionary Rate Profiling (GERP)31 scores (7.08 for

rs11265259, 7.45 for rs181704186), indicating sequence

conservation across species. In addition, both variants

are located in predicted enhancer regions based on

ChromHMM32 models in liver (Figures 2B and S4),

where CRP is produced. Neither is in strong LD (defined

as r2 > 0.8) with any other variant sequenced in the

TOPMed African American samples. Integrated functional

annotation scores from FUN-LDA comparing all Roadmap

Epigenomics project tissues were highest in adult liver

for both variants (Table S8a), suggesting that liver is a likely

tissue in which these variants play a functional role. The

annotation score for rs181704186was 1.0 in liver, the high-

est possible score. The highest score for rs11265259 was

more modest (0.0746), suggesting weaker evidence of

enhancer function for this variant. Concordant with these

results, our cross-tissue annotation principal components

analysis (see Supplemental Material and Methods) found

that both rs181704186 and rs11265259 were in the top

10% for conservation (scores of 18.8 and 16.3, respec-

tively), with rs181704186 also having high epigenetics

and transcription factor binding scores (Table S8b). Neither

CRP locus variant E nor H was colocalized with eQTLs from

any tissue available in GTEx,33 whole blood (eQTLGen

browser34), or in a recent large adult liver eQTL analysis.35
The Americ
Curiously, however, the latter liver eQTL mega-analysis

identified no cis-eQTL for CRP, despite the very high

expression of CRP in the liver.35 We do note, however,

that existing eQTL datasets that include some African

Americans (such as GTEx) are fairly small; greater sample

sizes and increased genetic diversity of included partici-

pants are needed to better explore eQTL effects for ancestry

specific or low frequency variants like rs181704186 and

rs11265259. However, GeneHancer36 did link the enhancer

region containing rs181704186 to the CRP gene (‘‘elite’’

enhancer-gene connection [interaction confidence score

10.61], reflecting both a high-likelihood enhancer and

strong enhancer-gene link). In summary, rs181704186 in

particular had strong functional annotation scores in a rele-

vant tissue for CRP levels (liver), as well as a large effect size,

making it an attractive candidate for functional follow-up.

Finally, because we observed multiple independent sig-

nals at the CRP locus, we attempted to jointly model these

effects with the FINEMAP statistical fine-mapping

approach. We ran FINEMAP separately on the African

American (AA) and European American (EA) samples,

assuming a maximum of 5 causal variants in AAs and 4

causal variants in EAs (based on the results from the

ancestry-specific conditional analyses). The FINEMAP

method identified 7 variants in the 95% credible set in

AAs (see Table S9 for all variants in the credible sets,

including AA conditional analysis lead rs11265259) and

26 variants in EAs, including conditional analysis lead

variants rs2211320 and rs1800947. Interestingly, while

rs11265259 was included in the 95% credible set in AAs,

rs181704186 was not (r2 < 0.03 with all 7 credible set var-

iants). Nevertheless, we nominated the rs181704186

variant for experimental follow up based on the prepon-

derance of annotation-based evidence detailed above.

We performed further in vitro functional assays to char-

acterize the regulatory role of rs181704186. We cloned a

1141-bp element designed to capture the surrounding
an Journal of Human Genetics 106, 112–120, January 2, 2020 115



Figure 1. Eight Conditionally Distinct Sig-
nals Associated with C-Reactive Protein
Were Identified at the CRP Locus in
TOPMed
LocusZoom plot of �log10(p value) versus
genomic location for all distinct signals at
the CRP locus. Letters correspond to the
list of conditionally distinct signals in Table
2. The lead variant for each conditionally
distinct signal is indicated with a diamond,
with other variants in linkage disequilib-
rium r2 > 0.2 indicated in the colors used
for each letter label and displayed on the
legend at right, each with a different shape
(for example, variants in close linkage
disequilibrium with signal A (rs7551731)
are displayed as red circles). Linkage disequi-
librium is calculated using the same
TOPMed samples included in our pooled
ancestry C-reactive protein analyses.
regions of accessible chromatin and of cross-species con-

servation and containing each allele into a luciferase re-

porter vector in both orientations with respect to a mini-

mal promoter (Table S10). Allele-specific clones of the

reporter vector were transfected into the HepG2 hepato-

cyte/liver carcinoma cell line. Consistent with the GWAS

direction of effect, the G allele associated with lower CRP

levels was also associated with lower transcriptional activ-

ity in both the forward and reverse orientations (Figures 2C

and S5A) than the A allele. In vivo, this likely reflects lower

transcription of CRP, based on proximity and the Gene-

Hancer links between this enhancer and the CRP transcrip-

tion start site.36 The cloned regulatory element appears to

be a repressor, as the levels of transcriptional activity are

lower than empty vector controls (Figure 2C).

We next performed an electrophoretic mobility shift

assay (EMSA) to test the alleles of rs181704186 for

differences in transcription factor binding (Figures 2E

and S5B–S5D). We observed an allele-specific band at

rs181704186-A (as indicated with an arrow; comparing

lane 2 versus 7) that is competed away by a 403 excess

of a probe containing the A allele (lane 3), but unaf-

fected by probes containing the G allele (lane 4). The

rs181704186 variant overlaps a CCAAT Enhancer Binding

Protein Beta (CEBPB) binding site in ENCODE ChIP-seq

experiments from HepG2 and HeLa cells, along with

several other transcription factor binding proteins

(Figure 2B). The rs181704186-G allele is predicted to

disrupt the CEBPB motif, changing the position weight

matrix log of the odds score from 14.8 to 2.917,18

(Figure 2D). CEBPB is a transcription factor known to be

important for production of CRP in liver37,38 and a strong

candidate for contributing to the observed allelic differ-

ences in transcriptional activity. We attempted to super-

shift the EMSA DNA-protein complexes with antibodies

to CEBPB. Incubation with an antibody targeting CEBPB

showed a weaker band, which may represent a partially
116 The American Journal of Human Genetics 106, 112–120, January
disrupted the A-allele-specific protein-DNA complex (lane

5). These allele-specific differences in protein binding are

concordant with the transcriptional reporter assay and

are suggestive that disruption of transcription factor bind-

ing at least partially mediates these regulatory effects,

although further evidence is needed to determine the

role of CEBPB and/or other transcription factors.

Using data from the TOPMed program, we report two

low-frequency, population-specific variants that are asso-

ciated with circulating CRP levels. Prior studies of geno-

types imputed to the 1000 Genomes reference panels

have not detected these associations. The best powered

CRP GWAS to date included only individuals of European

ancestry,12 a population for which these variants would

not have been detectable given their very low frequency.

Notably, a recent study from the PAGE consortium

included CRP as an exemplary quantitative trait, with

data from 8,349 African Americans with CRP, genotyped

on the Multi-Ethnic Genotyping Array (MEGA) and

imputed to 1000 Genomes Phase 3. Neither variant was

observed to be associated with CRP, despite detailed exam-

ination of secondary signals in a larger pooled sample size

than available here for African Americans (and in a sample

including some of the same African American partici-

pants, notably from WHI, as in our discovery and replica-

tion cohorts). This suggests that the use of a genotyping

array developed to more equitably capture global genetic

variation and subsequent imputation to the 1000 Ge-

nomes reference panel may still miss some population-

specific variant associations that can be identified using

WGS. In WHI our CRP-associated variants can be well

imputed using TOPMed as a reference panel (imputation

quality r2 R 0.9); the TOPMed reference panel has

�203 larger sample size than 1000 Genomes Phase 3,

and increased imputation quality is expected in African

Americans based on previous work.39 Imputation quality

is only modestly attenuated in WHI using 1000 Genomes
2, 2020



Figure 2. Regulatory Role of Low-Frequency, African Ancestry-Specific Variant rs181704186
(A) Boxplot of natural log-transformed CRP values by allele for rs181704186 (for 23,157 major allele homozygotes, 119 heterozygotes,
and 3 minor allele homozygotes).
(B) Genome browser plot for rs181704186, chromHMM annotation in adult liver (yellow, enhancer; yellow, enhancer; red, transcription
start site) from RoadMap Epigenomics, H3K4me1 signal from adult liver, 100 vertebrates basewise conservation by PhyloP, transcription
factor ChIP-seq clusters from ENCODE (161 factor version, motifs highlighted in green, proportion cell types detected/total number of
cell types assayed displayed). We also display GeneHancer’s connection of the region containing this variant to CRP. No other variants
have linkage disequilibrium r2 R 0.8 with lead variant rs181704186.
(C) Luciferase assay demonstrating reduced transcriptional activity for the G allele, which is also associated with lower CRP levels. Blue
lines indicate the groups compared for each listed p value.
(D) Disrupted CEBPB transcription factor binding motif position weight matrix from Kheradpour and Kellis30 (CEBPB-disc1, with blue
box highlighting position changed by rs181704186).
(E) Differential protein binding for A and G allele in EMSA assay. EMSA with biotin-labeled probes containing the A or G allele of
rs181704186 shows an allele-specific band (lane 2 versus 7, indicated with red arrows) that is competed away by 40-fold excess of un-
labeled probe containing the A allele (lane 3), but unaffected by a 40-fold excess of probe containing the G allele (lane 4). Incubation
with an antibody targeting CEBPB partially disrupts the A-allele-specific protein-DNA complex (lane 5). NE, nuclear extract.
(F) Summary of direction of effect of rs181704186-G.
Phase 3 as a reference panel (imputation quality r2 R

0.75), but this still leads to weaker association for

rs11265259 in particular using 1000 Genomes imputa-

tion, likely due to a reduction in effective sample size

(product of sample size and r2). Concurrent association

analysis in both sequenced and imputed data (using

the largest relevant sequencing dataset, such as TOPMed,

as a reference panel) may be a powerful strategy for

discovering low-frequency and rare variant associations

with many complex traits, particularly in non-European

populations.39
The Americ
Our results using WGS and replicated with TOPMed

imputed data exemplify the value of WGS in individuals

of diverse genetic ancestry. Despite having only 10% of

the sample size of the largest European GWAS meta-anal-

ysis to date, the genetic diversity and accurate genotype

calls for low frequency and rare variants in our multi-

ancestry study afforded us the ability to detect additional

population-specific association signals, including a low-

frequency variant with a large effect size. These association

signals add to our knowledge of the extensive allelic het-

erogeneity and diversity of the CRP genomic region, which
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contains a number of shared and population-specific cod-

ing and regulatory alleles.10,12,28 Ultimately, finer dissec-

tion of the functional alleles at the CRP locus may have

consequences for understanding the biology of acute or

chronic inflammation or the causal role of CRP in inflam-

mation-related complex disorders. To determine whether

the two replicated African-specific CRP-associated variants

(rs11265259 and rs181704186) have downstream clinical

consequences, we performed a phenome-wide association

study (pheWAS) in the BioVU biobank. No phenotype as-

sociations were statistically significant at a Bonferroni

adjusted level. Though this result may be a consequence

of small sample size or sub-optimal imputation quality, it

is largely consistent with previous studies that have failed

to find a large number of clinical outcomes that correlate

with CRP-associated variants.12

A primary goal of many human genetics studies is to

identify the causal allele that underlies the association

with a human trait or disease. As such, the value of

deep sequencing data on hundreds of thousands of indi-

viduals from diverse genetic backgrounds should not be

understated. Our results demonstrate the potential for

WGS analysis to discover genetic signals, including

conditionally distinct, low-frequency signals at known

loci. Limitations of our current analysis include the

modest sample size, particularly for ancestry groups

other than European and African Americans, and the

focus on single-variant tests only. As larger sample sizes

become available, further study of aggregate tests for

very rare variants and structural variation is warranted.

Future studies from TOPMed and other large WGS efforts

integrating both sequencing data and dense imputation,

along with interrogation of rich functional annotation

databases and higher-throughput cellular assays, will

continue to clarify the role of genetic variation on com-

plex traits.
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34. Võsa, U., Claringbould, A., Westra, H.-J., Bonder, M.J., Deelen,

P., Zeng, B., Kirsten, H., Saha, A., Kreuzhuber, R., Kasela, S.,

et al. (2018). Unraveling the polygenic architecture of com-

plex traits using blood eQTL metaanalysis. bioRxiv. https://

doi.org/10.1101/447367.

35. Strunz, T., Grassmann, F., Gayán, J., Nahkuri, S., Souza-Costa,

D., Maugeais, C., Fauser, S., Nogoceke, E., and Weber, B.H.F.

(2018). A mega-analysis of expression quantitative trait loci

(eQTL) provides insight into the regulatory architecture of

gene expression variation in liver. Sci. Rep. 8, 5865.

36. Fishilevich, S., Nudel, R., Rappaport, N., Hadar, R., Plaschkes,

I., Iny Stein, T., Rosen, N., Kohn, A., Twik, M., Safran, M., et al.
120 The American Journal of Human Genetics 106, 112–120, January
(2017). GeneHancer: genome-wide integration of enhancers

and target genes in GeneCards. Database (Oxford) 2017,

bax028.

37. Wang, T.M., Hsieh, S.C., Chen, J.W., and Chiang, A.N. (2013).

Docosahexaenoic acid and eicosapentaenoic acid reduce C-

reactive protein expression and STAT3 activation in IL-6-

treated HepG2 cells. Mol. Cell. Biochem. 377, 97–106.

38. Tsukada, J., Yoshida, Y., Kominato, Y., and Auron, P.E. (2011).

The CCAAT/enhancer (C/EBP) family of basic-leucine zipper

(bZIP) transcription factors is a multifaceted highly-regulated

system for gene regulation. Cytokine 54, 6–19.

39. Kowalski, M.H., Qian, H., Hou, Z., Rosen, J.D., Tapia, A.L.,

Shan, Y., Jain, D., Argos, M., Arnett, D.K., Avery, C., et al.

(2019). Use of �100,000 NHLBI Trans-Omics for Precision

Medicine (TOPMed) Consortium whole genome sequences

improves imputation quality and detection of rare variant as-

sociations in admixed African and Hispanic/Latino popula-

tions. bioRxiv. https://doi.org/10.1101/683201.
2, 2020

http://refhub.elsevier.com/S0002-9297(19)30466-5/sref33
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref33
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref33
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref33
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref33
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref33
https://doi.org/10.1101/447367
https://doi.org/10.1101/447367
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref35
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref35
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref35
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref35
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref35
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref36
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref36
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref36
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref36
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref36
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref37
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref37
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref37
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref37
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref38
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref38
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref38
http://refhub.elsevier.com/S0002-9297(19)30466-5/sref38
https://doi.org/10.1101/683201


The American Journal of Human Genetics, Volume 106
Supplemental Data
Allelic Heterogeneity at the CRP Locus Identified

by Whole-Genome Sequencing

in Multi-ancestry Cohorts

Laura M. Raffield, Apoorva K. Iyengar, Biqi Wang, Sheila M. Gaynor, Cassandra N.
Spracklen, Xue Zhong, Madeline H. Kowalski, Shabnam Salimi, Linda M.
Polfus, Emelia J. Benjamin, Joshua C. Bis, Russell Bowler, Brian E. Cade, Won Jung
Choi, Alejandro P. Comellas, Adolfo Correa, Pedro Cruz, Harsha Doddapaneni, Peter
Durda, Stephanie M. Gogarten, Deepti Jain, Ryan W. Kim, Brian G. Kral, Leslie A.
Lange, Martin G. Larson, Cecelia Laurie, Jiwon Lee, Seonwook Lee, Joshua P.
Lewis, Ginger A. Metcalf, Braxton D. Mitchell, Zeineen Momin, Donna M.
Muzny, Nathan Pankratz, Cheol Joo Park, Stephen S. Rich, Jerome I. Rotter, Kathleen
Ryan, Daekwan Seo, Russell P. Tracy, Karine A. Viaud-Martinez, Lisa R.
Yanek, Lue Ping Zhao, Xihong Lin, Bingshan Li, Yun Li, Josée Dupuis, Alexander P.
Reiner, Karen L. Mohlke, Paul L. Auer, TOPMed Inflammation Working
Group, and NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium



 

Figure S1a: QQ-plot of association analysis for C-reactive protein in TOPMed.  
 

 
Observed versus expected -log10 p-values for all variants included in the pooled ancestry C-reactive protein analysis on ENCORE, 
stratified by minor allele frequency (MAF) bin, with genomic inflation λ for each bin.   
 
 
 
 



 

Figure S1b: Manhattan plot of CRP association signals in TOPMed.  

 
Y axis displays -log10 p-values for all variants included in the pooled ancestry C-reactive protein analysis on ENCORE, with the x axis 
displaying chromosomal position.  
 
 
 
 
 
 
 
 



 

Figure S2: LocusZoom plots for sequential conditional analysis results at CRP locus, as well as plot of CRP locus adjusting 
for all previously identified CRP locus variants. For each plot, linkage disequilibrium is calculated using the same TOPMed 
samples included in our ancestry pooled C-reactive protein analyses.  
 

a. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731 (lead variant rs73024795). 
Letters in this and subsequent figures correspond to the list of conditionally distinct signals in Table 2. All plots display -
log10(p-value) versus genomic location for all distinct signals subsequent to ones conditioned on, using order from Table. The 
lead variant for each conditionally distinct signal is indicated with a diamond, with other variants in linkage disequilibrium 
r2>0.2 indicated in the colors used for each letter label and displayed on the legend at right, each with a different shape (for 
example, variants in close linkage disequilibrium with signal B (rs73024795) are displayed as pink triangles). 
 

 



 

 
b. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731 and rs73024795 (lead variant 

rs2211321).  

 
 
 

 



 

c. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, and rs2211321 
(lead variant rs553202904).  

 
 



 

d. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, and 
rs553202904 (lead variant rs11265259).  

 
 



 

e. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, 
rs553202904, and rs11265259 (lead variant rs1800947).  

 
 
 

 



 

f. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, 
rs553202904, rs11265259, and rs1800947 (lead variant rs12734907).  

 
 
 
 



 

 
g. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, 

rs553202904, rs11265259, rs1800947, and rs12734907 (lead variant rs181704186).  

 
 
 



 

 
h. Ancestry pooled analysis conditioned on all previously known variants from GWAS and exome sequencing studies. Only 

signals E and H are labelled, as these are the only signals still reaching our locus-wide significance threshold (as listed in 
Table 1).  

 
 



 

Figure S3: LocusZoom plots for sequential conditional analysis results at CRP locus, as well as plot of CRP locus adjusting 
for all previously identified CRP locus variants, with ancestry stratified LD reference panels.  
 

a. In ancestry pooled analysis, LocusZoom plot of association results (lead variant rs7551731). Letters in this and subsequent 
figures correspond to the list of conditionally distinct signals in Table 2. All plots display -log10(p-value) versus genomic 
location for all distinct signals subsequent to ones conditioned on, using order from Table. The lead variant for each 
conditionally distinct signal is indicated with a diamond, with other variants in linkage disequilibrium r2>0.2 indicated in the 
colors used for each letter label and displayed on the legend at right, each with a different shape (for example, variants in 
close linkage disequilibrium with signal B (rs73024795) are displayed as pink triangles). Linkage disequilibrium is calculated 
based on European American participants in TOPMed CRP analysis; association statistics are from pooled analysis.  
 

 



 

b. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731 (lead variant rs73024795). 
Linkage disequilibrium is calculated based on European American participants in TOPMed CRP analysis; association 
statistics are from pooled analysis.  
 

 
 



 

c. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731 and rs73024795 (lead variant 
rs2211321). Linkage disequilibrium is calculated based on European American participants in TOPMed CRP analysis; 
association statistics are from pooled analysis. 

 



 

d. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, and rs2211321 
(lead variant rs553202904). Linkage disequilibrium is calculated based on European American participants in TOPMed CRP 
analysis; association statistics are from pooled analysis. 

 



 

 
e. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, and 

rs553202904 (lead variant rs11265259). Linkage disequilibrium is calculated based on European American participants in 
TOPMed CRP analysis; association statistics are from pooled analysis. 

 
 



 

f. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, 
rs553202904, and rs11265259 (lead variant rs1800947). Linkage disequilibrium is calculated based on European American 
participants in TOPMed CRP analysis; association statistics are from pooled analysis. 

 
 

 
 



 

 
g. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, 

rs553202904, rs11265259, and rs1800947 (lead variant rs12734907). Linkage disequilibrium is calculated based on 
European American participants in TOPMed CRP analysis. 

 
 

 
 



 

 
h. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, 

rs553202904, rs11265259, rs1800947, and rs12734907 (lead variant rs181704186). Linkage disequilibrium is calculated 
based on European American participants in TOPMed CRP analysis; association statistics are from pooled analysis. 
 

 
 



 

 
i. Ancestry pooled analysis conditioned on all previously known variants from GWAS and exome sequencing studies. Only 

signals E and H are labelled, as these are the only signals still reaching our locus-wide significance threshold (as listed in 
Table 1). Linkage disequilibrium is calculated based on European American participants in TOPMed CRP analysis; 
association statistics are from pooled analysis. 
 

 



 

j. In ancestry pooled analysis, LocusZoom plot of association results (lead variant rs7551731). Linkage disequilibrium is 
calculated based on African American participants in TOPMed CRP analysis; association statistics are from pooled analysis.  
 

 



 

k. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731 (lead variant rs73024795). 
Linkage disequilibrium is calculated based on African American participants in TOPMed CRP analysis; association statistics 
are from pooled analysis.  

 

 



 

l. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731 and rs73024795 (lead variant 
rs2211321). Linkage disequilibrium is calculated based on African American participants in TOPMed CRP analysis; 
association statistics are from pooled analysis. 

 



 

m. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, and rs2211321 
(lead variant rs553202904). Linkage disequilibrium is calculated based on African American participants in TOPMed CRP 
analysis; association statistics are from pooled analysis. 

 
 



 

n. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, and 
rs553202904 (lead variant rs11265259). Linkage disequilibrium is calculated based on African American participants in 
TOPMed CRP analysis; association statistics are from pooled analysis. 

 

 



 

o. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, 
rs553202904, and rs11265259 (lead variant rs1800947). Linkage disequilibrium is calculated based on African American 
participants in TOPMed CRP analysis; association statistics are from pooled analysis. 

 

 
 

 



 

p. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, 
rs553202904, rs11265259, and rs1800947 (lead variant rs12734907). Linkage disequilibrium is calculated based on African 
American participants in TOPMed CRP analysis. 

 
 

 
 



 

 
q. In ancestry pooled analysis, LocusZoom plot of association results conditioned on rs7551731, rs73024795, rs2211321, 

rs553202904, rs11265259, rs1800947, and rs12734907 (lead variant rs181704186). Linkage disequilibrium is calculated 
based on African American participants in TOPMed CRP analysis; association statistics are from pooled analysis. 
 
 

 



 

 
r. Ancestry pooled analysis conditioned on all previously known variants from GWAS and exome sequencing studies. Only 

signals E and H are labelled, as these are the only signals still reaching our locus-wide significance threshold (as listed in 
Table 1). Linkage disequilibrium is calculated based on African American participants in TOPMed CRP analysis; association 
statistics are from pooled analysis. 

 
 



 

Figure S4: Functional annotation information for rs11265259. Genome browser plot for rs11265259, displaying UCSC genes, 
chromHMM annotation in adult liver (yellow=enhancer, green=weak transcription, red=transcription start site) from RoadMap 
Epigenomics, H3K4me1 signal from adult liver, 100 vertebrates basewise conservation by PhyloP, and transcription factor ChIP-seq 
clusters from ENCODE (161 factor version, motifs highlighted in green, proportion cell types detected/ total number of cell types 
assayed displayed). Unlike in the plot for rs181704186, we did not display GeneHancer due to lack of any relevant signals. No other 
variants have linkage disequilibrium r2 ≥ 0.8 with lead variant rs11265259. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure S5: Additional Information for Functional Assays.   
a. Additional luciferase assay for rs181704186. Blue lines indicate the groups compared for each listed p-value. 

  

 
 
 
 
 
 
 



 

b. Full EMSA from main text Figure 2. NE, nuclear extract. 

 
 
 
 

 



 

c. Additional replicate of EMSA for rs181704186. EMSA with biotin-labeled probes containing the A or G allele of rs181704186 
shows an allele-specific band (arrow; lane 2 versus 6) that is competed away by 40-fold excess of unlabeled probe containing 
the A allele (lane 3), but unaffected by a 40-fold excess of probe containing the G allele (lane 4). NE, nuclear extract. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

d. Full EMSA from Figure S4c.   
 

 
 
 
 
 
 
 
 
 
 
 



 

Table S1: Cohort demographic characteristics and C-reactive protein assays.  
 

Study N 
Mean 
(SD) 
Age 

% 
female 

Mean 
(SD) C-
reactive 
Protein 

Self-Reported Ancestry 
Case/control 

status (if used 
for sample 
selection) 

Assay 

Atherosclerosis 
Risk in 

Communities 
(ARIC) 

2,433 63.7 
(5.6) 51.1% 4.3 (6.2) 95.9% EA, 4.1% AA 

Case 5.5% (VTE 
or atrial 

fibrillation), 
control 94.5% 

BNII analyzer (Siemens 
Healthcare Diagnostics, 

Deerfield, Illinois)1 

Cleveland 
Family Study 

(CFS) 
570 42.3 

(18.7) 56.0% 4.4 (6.1) 42.1% EA, 54.9% AA, 3.0% 
Multiple NA Dade Behring BNII 

nephelometer 

Framingham 
Heart Study 

(FHS) 
3,151 53.0 

(14.3) 53.5% 3.5 (5.1) EA NA 

Dade Behring BN 100 High 
Sensitivity CRP Agent, 

Dade Behring CardioPhase 
hsCRP, Roche cobas c501 
CRP High Sensitivity Assay 

Genetic 
Epidemiology 

of COPD 
(COPDGene) 

504 
63.6 
(8.7) 

 
51.0% 4.8 (5.8) EA NA Myriad RBM custom 

multiplex2 

Genetic 
Studies of 

Atherosclerosis 
Risk 

(GeneSTAR) 

1,525 43.0 
(11.9) 60.3% 2.9 (3.1) 55.6% EA, 44.4% AA NA Dako and E80C 

Jackson Heart 
Study (JHS) 3,035 55.5 

(12.8) 61.9% 5.0 (7.3) AA NA 

Immunoturbidimetric CRP-
Latex assay (Kamiya 
Biomedical Company, 
Seattle, WA) using a 
Hitachi 911 analyzer 
(Roche Diagnostics, 

Indianapolis, IN)3 
Multi-Ethnic 

Study of 
Atherosclerosis 

(MESA) and 
MESA Family 

4,289 61.1 
(9.8) 51.5% 3.5 (4.9) 38.7% EA, 27.2% AA, 21.5% 

HL, 12.6% AS NA BNII nephelometer (Dade-
Behring)4 



 

Old Order 
Amish 988 49.4 

(16.1) 50.1% 2.0 (3.4) EA NA Nephelometry 

Women's 
Health Initiative 

(WHI) 
6,784 67.2 

(6.7) 100.0% 4.9 (6.3) 
18.5% AA, 78.7% EA, 3.9% 

HL, 0.7% AS 
0.7 AI/AN, 0.2% Other 

Case 47.1% 
(stroke and VTE), 

control 52.9%  

Multiple assays, including 
BNII Nephlometer, 

DiaSorin, 
hs-immunotechnique -

Behring analyzer (Denka 
Seiken; Niigata, Japan), 

Immulite Analyzer, 
a Roche Modular P 
Chemistryanalyzer, 

SPQ High Sensitivity 
ReagentHitachi Analyzer 

 
Note that some individuals identify both as of African American or European American ancestry and as Hispanic/Latino. 
Abbreviations: EA, European American; AA, African American; HL, Hispanic/Latino; AS, East Asian; AI/AN American Indians/Alaska 
Natives; VTE, venous thromboembolism; SD, standard deviation; NA, not applicable 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table S2a: Lead variants and number of distinct signals in European American specific association analysis  
Locus Lead Variant Annotation P-value Beta Effect Allele 

Frequency 
Effect Allele Number of 

distinct 
signals 

Sequential 
Conditioning 
Lead Variants 

LEPR rs6588153 intronic 6.5E-16 -0.10 0.37 A 1  
IL6R rs61812598 intronic 1.8E-07 -0.06 0.40 A 1  
CRP rs2211320 intergenic 7.7E-39 -0.16 0.32 A 4 rs4425982, 

rs553202904, 
rs1800947 

NLRP3 rs10157379 intronic 1.1E-05 0.05 0.62 T 0  
GCKR rs1260326 missense, 

p.Leu446Pro 
(GCKR) 

1.2E-12 -0.09 0.58 C 1  

IL1F10 rs28648961 intergenic 1.1E-07 0.07 0.40 A 1  
HNF1A rs11065384 intronic 1.0E-25 0.13 0.67 C 1  
APOE rs429358 missense, 

p.Cys130Arg 
(APOE4) 

1.6E-42 -0.24 0.13 C 1  

 
Analysis was performed at 8 loci (500 kb ± genome-wide significant variants) identified in the pooled ancestry analysis. We used the 
same locus-wide thresholds as pooled ancestry analysis in Table 1. 
  



 

Table S2b: Lead variants and number of distinct signals in African American-specific association analysis 
 
Locus Lead Variant Annotation  P-value  Beta   Effect Allele 

Frequency 
Effect Allele Number of 

distinct 
signals 

Sequential 
Conditioning 
Lead 
Variants 

LEPR  rs112200619 intronic  1.9E-05 -0.66 0.003 C 0  
IL6R  rs4129267 intronic  1.2E-06 -0.13 0.14 T 1  
CRP  rs112563958 intergenic 8.6E-43 0.32 0.17 T 5 rs4428887, 

rs3122014, 
rs11265259, 
rs181704186 

NLRP3  rs56188865 intronic  1.1E-07 -0.09 0.52 C 1  
GCKR  rs556974380 intergenic 8.0E-04 0.50 0.003 C 0  
IL1F10  rs6734238 intergenic  2.2E-06 0.08 0.45 G 1  
HNF1A  rs1169284 intronic  3.6E-06 -0.10 0.24 C 1  
APOE  rs429358 missense, 

p.Cys130Arg 
(APOE4)  

1.3E-21 -0.21 0.21 C 1  

Analysis was performed at 8 loci (500 kb ± genome-wide significant variants) identified in the pooled ancestry analysis. We used the 
same locus-wide thresholds as pooled ancestry analysis in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table S3: Results from African American and European American stratified analyses for eight signals detected at CRP 
locus in pooled ancestry results (unconditioned). 

Signal Variant Beta 
EA 

P-value 
EA 

EAF 
EA 

Beta 
AA 

P-value 
AA 

EAF 
AA 

LD with EA 
leads 

LD with AA 
leads 

A rs7551731 -0.16 2.5E-38 0.33 -0.21 2.5E-23 0.22 
r2=0.93 with 
rs2211320, 
lead signal 

r2=0.89 with 
rs4428887, 

second signal 

B rs73024795 NA NA 0.0005 0.33 2.5E-42 0.16  
r2=0.70 with 

rs112563958, 
lead signal 

C rs2211321 0.03 5.2E-02 0.71 -0.11 4.9E-09 0.65 
r2=0.98 with 
rs4425982, 
fourth signal 

r2=0.36 with 
rs3122014, 
third signal 

D rs553202904 -0.71 8.2E-12 0.0031 NA NA 0.0004 Third signal  

E rs11265259 NA NA 0.0004 -0.17 7.3E-08 0.09  Fourth signal 

F rs1800947 -0.24 1.7E-22 0.06 -0.29 4.6E-04 0.01 Second signal  

G rs12734907 0.10 5.8E-16 0.34 -0.04 0.27 0.08   

H rs181704186 NA NA 0.0001 -0.59 3.9E-10 0.01  Fifth signal 

We also list the linkage disequilibrium (if r2>0.2) between the eight CRP locus lead variants from the ancestry pooled analysis with 
the lead CRP locus variants identified in ancestry stratified CRP locus conditional analyses Five locus-wide significant variants were 
identified at the CRP locus in African Americans, and four locus-wide significant variants were identified at CRP in European 
Americans. Abbreviations: AA, African American; EA, European American; EAF, effect allele frequency; LD, linkage disequilibrium 
with ancestry stratified conditional analysis results, from European (EUR) (for EA individuals) or African (AFR) (for AA individuals) 
1000 Genomes phase 1; NA, not applicable (did not meet 0.1% minor allele frequency threshold). Effect alleles are listed in Table 2.  
 
 



 

Table S4: Previous genome-wide significant variants at the C-reactive protein (CRP) locus used for conditional analyses 
Variant Position  

(Chr 1; GRCh38) 
Reference Included in conditional analysis? r2<0.9 with other previously 

identified variants 
rs3027012 159,204,333 5 Yes No 
rs56288844 159,330,024 5 Yes No 
rs6695494 159,603,761 5 Yes No 
rs149520992 159,697,727 5 Yes No 
rs72698571 159,701,146 5 Yes No 
rs12029262 159,709,406 5 Yes No 
rs3091244 159,714,875 5-7 No (FAIL variant-adjusted for in sensitivity analysis) - 
rs2246469 159,721,022 5 Yes No 
rs141729353 159,734,040 5 Yes Yes-kept, removed LD proxies 
rs11265263 159,740,727 5 Yes No 
rs4131568 159,752,266 5 Yes No 
rs3845624 159,248,476 8 Yes No 
rs16842484 159,677,134 6 Yes No 
rs12093699 159,678,198 9 Yes No 
rs10494326 159,679,910 10 Yes No 
rs2592887 159,683,149 6 Yes No 
rs726640 159,685,728 11 Yes No 
rs2592902 159,685,936 12 Yes Yes-removed 
rs876537 159,705,143 13 Yes Yes- kept, removed LD proxies 
rs16842559 159,706,381 14 Yes Yes-removed 
rs2794520 159,709,026 15 Yes Yes- kept, removed LD proxies 
rs1800947 159,713,648 5; 16 Yes No 
rs77832441 159,714,024 16 Yes No 
rs3093059 159,715,346 17 Yes Yes- kept, removed LD proxies 
rs1341665 159,721,769 8 Yes Yes- removed 
rs2808634 159,722,783 10 Yes Yes-removed 
rs7553007 159,728,759 10 Yes Yes- removed 
rs11265260 159,730,249 18 Yes Yes- removed 

Previously identified variants were identified through review of the literature (particularly 5; 19).  A previously reported tri-allelic variant 
and the lead CRP locus SNP from a multi-ethnic PAGE fine-mapping effort, rs3091244, failed the variant quality filter in TOPMed. 
We adjusted for the variant calls that were available in a sensitivity analysis, additionally adjusting for all previously identified CRP 
locus variants, and signals E and H from Table 2 remained unchanged (β= -0.32, p= 7.09 x 10-18 for rs11265259, β= -0.47, p= 2.89 x 
10-7 for rs181704186). This variant is also common across ancestry groups and not in high LD with either signal E or H in African 
ancestry individuals from TOPMed or 1000 Genomes. 
 



 

We also performed a conditional analysis adjusting only for previously identified CRP locus variants with linkage disequilibrium r2<0.9 
(as assessed in AA and EA ancestry samples used in TOPMed CRP analysis) with any other previously identified CRP variant to 
prevent potential problems with collinearity. Both signals E and H from Table 2 were still significant in the pooled analysis (β= -0.29, 
p= 3.57 x 10-16 for rs11265259, β= -0.47, p= 2.55 x 10-7 for rs181704186), and in African Americans alone (β= -0.28, p= 3.13 x 10-13 
for rs11265259, β= -0.49, p= 4.64 x 10-6 for rs181704186).  
 
Abbreviations: LD, linkage disequilibrium.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table S5: Previous genome-wide significant variants at the HNF1 Homeobox A (HNF1A) locus used for conditional 
analyses.  
Variant Position  

(Chr 12; GRCh38) 
Reference Included in conditional 

analysis? 
r2<0.9 with other 
previously identified 
variants 

rs1039302 120,798,455 20 Yes No 
rs2650000 120,951,159 21 Yes No 
rs7305618 120,965,129 13 Yes No 
rs7953249 120,965,921 22 Yes No 
rs7979473 120,982,457 6; 10 No-FAIL variant  
rs1183910 120,983,004 23 Yes No 
rs2393791 120,986,153 24 Yes Yes-kept, removed 

LD proxies 
rs7310409 120,987,058 5; 17 Yes Yes-removed 
rs2259816 120,997,784 10 Yes Yes-kept, removed 

LD proxies 
rs1169310 121,001,630 18 Yes Yes-removed 
rs2259883 121,024,336 5 Yes No 

 
Previously identified variants were identified through review of the literature (particularly 5; 19). One previously reported variant was not 
available for conditional analysis at the HNF1A locus (rs797947310), as it failed variant quality filters. However, since both HNF1A 
signals in our analysis were attenuated to non-significance (post-conditioning lead variant rs544759708, p= 2.69 x 10-5, β= -0.46) 
even without adjusting for this variant, we did not pursue further conditional analysis adjusting for fail variants. We also did not 
condition on secondary signal rs2243616 from 6, as it did not meet a conventional genome-wide significance threshold.  
 
We did perform a conditional analysis adjusting only for previously identified HNF1A locus variants with linkage disequilibrium r2<0.9 
(as assessed in AA and EA ancestry samples used in TOPMed CRP analysis) with any other previously identified HNF1A variant to 
prevent potential problems with collinearity. Results were unchanged (post-conditioning lead variant rs544759708, p= 2.69 x 10-5, β= 
-0.46).  
 
 
Abbreviations: LD, linkage disequilibrium. 
 
 
 



 

Table S6: Linkage disequilibrium between rs11265259 and rs181704186 and previously reported CRP locus variants, as well 
as other signals from TOPMed conditional analysis, in African Americans from the TOPMed CRP analysis 

SNP_A SNP_B r2 D’ Source 
1:159706154_T/C_rs11265259 1:159724989_T/C_rs7551731 0.028 1 Signal A, our paper 
1:159706154_T/C_rs11265259 1:159732996_C/T_rs73024795 0.018 1 Signal B, our paper 
1:159706154_T/C_rs11265259 1:159723932_T/C_rs2211321 0.051 1 Signal C, our paper 
1:159706154_T/C_rs11265259 1:159738205_A/G_rs553202904 3.63E-05 1 Signal D, our paper 
1:159706154_T/C_rs11265259 1:159706154_T/C_rs11265259 1 1 Signal E, our paper 
1:159706154_T/C_rs11265259 1:159713648_C/G_rs1800947 0.001 1 Signal F, our paper 
1:159706154_T/C_rs11265259 1:159749804_A/T_rs12734907 0.008 1 Signal G, our paper 
1:159706154_T/C_rs11265259 1_159204333_T_C 0.004 1 rs3027012 
1:159706154_T/C_rs11265259 1_159248476_A_C 0.013 0.97 rs3845624 
1:159706154_T/C_rs11265259 1_159330024_A_G 1.75E-04 1 rs56288844 
1:159706154_T/C_rs11265259 1_159603761_T_C 0.007 0.31 rs6695494 
1:159706154_T/C_rs11265259 1_159677134_C_T 0.114 0.72 rs16842484 
1:159706154_T/C_rs11265259 1_159678198_A_G 0.127 0.77 rs12093699 
1:159706154_T/C_rs11265259 1_159679910_T_C 0.020 0.97 rs10494326 
1:159706154_T/C_rs11265259 1_159683149_T_C 0.086 0.90 rs2592887 
1:159706154_T/C_rs11265259 1_159685728_A_G 0.018 0.98 rs726640 
1:159706154_T/C_rs11265259 1_159685936_T_G 0.029 0.96 rs2592902 
1:159706154_T/C_rs11265259 1_159697727_T_C 1.01E-06 0.09 rs149520992 
1:159706154_T/C_rs11265259 1_159701146_T_C 9.21E-04 0.77 rs72698571 
1:159706154_T/C_rs11265259 1_159705143_T_C 0.025 1 rs876537 
1:159706154_T/C_rs11265259 1_159706381_C_T 0.003 0.97 rs16842559 
1:159706154_T/C_rs11265259 1_159709026_T_C 0.026 1 rs2794520 
1:159706154_T/C_rs11265259 1_159709406_C_G 0.004 1 rs12029262 
1:159706154_T/C_rs11265259 1_159714024_A_G 3.63E-05 1 rs77832441 
1:159706154_T/C_rs11265259 1_159715346_G_A 0.271 1 rs3093059 
1:159706154_T/C_rs11265259 1_159721022_A_G 0.051 0.98 rs2246469 
1:159706154_T/C_rs11265259 1_159721769_A_G 0.026 1 rs1341665 
1:159706154_T/C_rs11265259 1_159722783_T_C 0.017 1 rs2808634 
1:159706154_T/C_rs11265259 1_159728759_A_G 0.028 1 rs7553007 
1:159706154_T/C_rs11265259 1_159730249_G_A 0.007 1 rs11265260 
1:159706154_T/C_rs11265259 1_159734040_C_T 0.021 1 rs141729353 
1:159706154_T/C_rs11265259 1_159740727_A_C 0.003 1 rs11265263 
1:159706154_T/C_rs11265259 1_159752266_T_C 0.008 1 rs4131568 



 

1:159752293_A/G_rs181704186 1:159724989_T/C_rs7551731 0.027 0.96 Signal A, our paper 
1:159752293_A/G_rs181704186 1:159732996_C/T_rs73024795 0.001 0.93 Signal B, our paper 
1:159752293_A/G_rs181704186 1:159723932_T/C_rs2211321 0.003 0.85 Signal C, our paper 
1:159752293_A/G_rs181704186 1:159738205_A/G_rs553202904 0.002 0.19 Signal D, our paper 
1:159752293_A/G_rs181704186 1:159706154_T/C_rs11265259 0.001 1 Signal E, our paper 
1:159752293_A/G_rs181704186 1:159713648_C/G_rs1800947 8.74E-06 0.003 Signal F, our paper 
1:159752293_A/G_rs181704186 1:159749804_A/T_rs12734907 0.001 1 Signal G, our paper 
1:159752293_A/G_rs181704186 1_159204333_T_C 3.49E-04 1 rs3027012 
1:159752293_A/G_rs181704186 1_159248476_A_C 0.001 1 rs3845624 
1:159752293_A/G_rs181704186 1_159330024_A_G 1.31E-04 0.02 rs56288844 
1:159752293_A/G_rs181704186 1_159603761_T_C 0.007 0.78 rs6695494 
1:159752293_A/G_rs181704186 1_159677134_C_T 0.003 0.93 rs16842484 
1:159752293_A/G_rs181704186 1_159678198_A_G 0.003 0.92 rs12093699 
1:159752293_A/G_rs181704186 1_159679910_T_C 0.002 1 rs10494326 
1:159752293_A/G_rs181704186 1_159683149_T_C 0.009 0.96 rs2592887 
1:159752293_A/G_rs181704186 1_159685728_A_G 0.001 0.86 rs726640 
1:159752293_A/G_rs181704186 1_159685936_T_G 0.022 0.92 rs2592902 
1:159752293_A/G_rs181704186 1_159697727_T_C 2.41E-04 0.04 rs149520992 
1:159752293_A/G_rs181704186 1_159701146_T_C 1.78E-05 0.35 rs72698571 
1:159752293_A/G_rs181704186 1_159705143_T_C 0.028 0.92 rs876537 
1:159752293_A/G_rs181704186 1_159706381_C_T 9.77E-05 0.02 rs16842559 
1:159752293_A/G_rs181704186 1_159709026_T_C 0.028 0.93 rs2794520 
1:159752293_A/G_rs181704186 1_159709406_C_G 0.198 0.94 rs12029262 
1:159752293_A/G_rs181704186 1_159714024_A_G 0.002 0.19 rs77832441 
1:159752293_A/G_rs181704186 1_159715346_G_A 0.003 1 rs3093059 
1:159752293_A/G_rs181704186 1_159721022_A_G 0.014 0.94 rs2246469 
1:159752293_A/G_rs181704186 1_159721769_A_G 0.029 0.96 rs1341665 
1:159752293_A/G_rs181704186 1_159722783_T_C 0.002 1 rs2808634 
1:159752293_A/G_rs181704186 1_159728759_A_G 0.027 0.96 rs7553007 
1:159752293_A/G_rs181704186 1_159730249_G_A 2.57E-05 0.01 rs11265260 
1:159752293_A/G_rs181704186 1_159734040_C_T 0.002 1 rs141729353 
1:159752293_A/G_rs181704186 1_159740727_A_C 2.37E-04 1 rs11265263 
1:159752293_A/G_rs181704186 1_159752266_T_C 7.39E-04 1 rs4131568 

 
 



 

Table S7: Women’s Health Initiative (WHI) replication analysis 
 

Variant Beta P-value Effect 
Allele 

Effect 
Allele 

Freque
ncy 

Beta, 
Post 

Condit
ioning 

P-value, 
Post 

Conditio
ning 

Effect 
Allele 

Frequen
cy, 

1000G 

Beta, 
1000G 

P-value, 
1000G 

Beta, 
Post 

Conditio
ning, 

1000G 

P-value, 
Post 

Conditio
ning, 

1000G 

rs11265259 -0.18 6.1x10-9 C 0.08 -0.26 8.7x10-12 0.08 -0.17 1.3 x10-7 -0.23 2.1 x10-9 

rs181704186 -0.58 9.2x10-11 G 0.009 -0.45 9.7x10-6 0.008 -0.62 7.1x10-11 -0.50 2.2 x10-6 

 
Conditional analysis was done conditioning on all variants in Table S4. Imputation was performed to TOPMed freeze 5b, using the 
Michigan Imputation Server. Imputation quality was r2=0.94 and r2=0.95 for rs181704186 and r2=0.92 and r2=0.90 for rs11265259, in 
two separately analyzed subsets of WHI Affymetrix 6.0 data (one in participants overlapping the Population Architecture using 
Genomics and Epidemiology (PAGE) MEGA array study (n= 4685) which would have been included in 19, the rest (n=2423) with 
Affymetrix data only). Imputation quality for all included variants in the conditional analysis was ≥0.6. For the 1000G phase 3 
imputation, imputation quality was r2=0.83 and r2=0.86 for rs181704186 and r2=0.77 and r2=0.81 for rs11265259. Results from the 
subsets were meta-analyzed with metal (2011-03-25 version).  
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table S8a: FUN-LDA tissue specific annotation scores for CRP locus variants (signals E and H from Table 2), with top two 
tissues as well as any additional tissues with an annotation score >0.9 listed.  
Epigenome Dataset Full Name Score SNP Label 

E066 Liver 0.0746 rs11265259 CRP, Signal E 
E042 Primary T helper 17 cells PMA-I stimulated 0.00006 
E066 Liver 1 rs181704186 CRP, Signal H 
E023 Mesenchymal Stem Cell Derived Adipocyte Cultured Cells 0.99977 
E117 HeLa-S3 Cervical Carcinoma Cell Line 

 
0.99907 

 
E025 

 
Adipose Derived Mesenchymal Stem Cell Cultured Cells 

 
0.98627 

 
E030 

 
Primary neutrophils from peripheral blood 

 
0.9787 

 
 
Table S8b: Annotation PCs for CRP locus variants (signals E and H from Table 2) 
 

rsID Epigenetics Conservation Protein 
Function 

Negative 
Selection 

Distance to Nearest 
Coding Variant 

Mutation 
Density 

Transcription 
Factor 

rs11265259 6.1 18.8 3.0 2.2 1.1 5.0 9.2 
rs181704186 10.0 16.3 3.0 3.3 0.3 6.4 18.0 

As further described in the methods, we used a novel, multi-dimensional annotation pipeline to derive annotation PCs from individual 
functional annotations in the following categories: epigenetics, conservation, protein function, negative selection, distance to coding 
variants, mutation density, and transcription factor binding. Variant-specific annotation PCs are given as the PHRED-scaled scores 
from the first principal component of the category’s individual annotations. 
 
 
 
 
 
 
 
 
 
 



 

Table S9a: 95% Credible Set Variants for CRP locus in European Americans, derived using FINEMAP. 
 
Variants in Credible Set (4 causal variant setting) 
1:159727120_G/C_rs3116653 1:159685936_G/T_rs2592902 
1:159728695_C/T_rs3116651 1:159690923_GA/G_rs60702037 
1:159731554_C/T_rs3116655 1:159695286_TAA/T_rs3039321 
1:159732697_G/A_rs12727021 1:159696131_C/G_rs2808624 
1:159743672_A/G_rs74596724 1:159699194_C/T_rs11265257 
1:159744970_G/A_rs4656848 1:159705143_C/T_rs876537 
1:159748522_A/G_rs4255379 1:159713301_G/A_rs1130864 
1:159750926_G/A_rs4420078 1:159713648_C/G_rs1800947 
1:159753330_T/C_rs6677719 1:159716693_G/A_rs3116636 
1:159753731_G/A_rs4656849 1:159716703_A/G_rs3116635 
1:159754730_T/C_rs11265268 1:159719533_T/C_rs3122012 
1:159759547_G/C_rs4433388 1:159722054_C/CT_rs35625772 
1:159760689_G/T_rs7418263 1:159723815_G/A_rs2211320 

 
 
Table S9b: 95% Credible Set Variants for CRP locus in African Americans, derived using FINEMAP.  
 
Variants in Credible Set (5 causal variant setting) 

1:159718685_C/T_rs2808633 
1:159723031_G/A_rs2794518 
1:159723932_C/T_rs2211321 
1:159730897_G/A_rs10797053 
1:159741019_G/C_rs10437340 
1:159743435_A/T_rs12083620 
1:159758337_T/C_rs11265269 

 
 
 
 
 



 

Table S10: Oligonucleotide sequences for functional assays. Forward and reverse oligonucleotides indicate forward or 
reverse directions (5’-3’) with respect to the genome. 
 
PCR primers for 
reporter assays 

Sequence (5’-3’) Region (hg19) 

rs181704186 Forward 
rs181704186 Reverse 

TTCATGGGGCAGATGATACA 
GGCATGTTGTCTTGCAGGTA 

chr1:159,721,514-159,722,654 

Oligonucleotide 
sequences for EMSAs 

  

rs181704186 Forward 
rs181704186 Reverse 

AGTTGCACA/GATGGGAGG 
CCTCCCATT/CGTGCAACT 

chr1:159,722,075-159,722,091 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplemental Materials and Methods 
Statistical Analysis 
Our analysis included 23,279 individuals [average age 59.2 years; 32% male; predominantly European (64.7%) and African 
American (28.1%) ancestry] from nine cohorts. Inverse-normalized natural log-transformed CRP values were assessed. Models were 
adjusted for sex, age, study, and self-reported ancestry, as well as ten cross-cohort ancestry principal components calculated from 
228,497 LD pruned variants (r2<0.1 across all freeze 5b individuals) with a minor allele frequency >1%. For each cohort, basic 
demographic, self-reported ancestry sub-group, and assay information is displayed in Table S1. Individuals with raw CRP levels of 
zero or residual values more than 3 standard deviations outside the mean were excluded.  

We analyzed variants and indels with a minor allele frequency >0.1% (corresponding to a minor allele count >46 in our pooled 
ancestry sample) using WGS data from freeze 5b (see https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-
5b-phases-1-and-2 and preprint at25 for sequencing and variant calling methods). We used EPACTS (v3.3.3) on the University of 
Michigan ENCORE server for initial analyses with EMMAX to control for sample relatedness. Stepwise conditional analysis at each 
identified locus was performed locally using the same EPACTS version. Loci were declared significant at a threshold of p<1x10-9 
based on estimated number of independent tests for whole genome sequencing data26. Within an identified locus (500 kb on each 
side of any variant with p<1 x 10-9), we defined a Bonferroni corrected p-value threshold based on the number of tested variants. This 
threshold is conservative given the correlation between variants within a locus, but increases our confidence in the robustness of 
identified distinct signals. We then performed stepwise conditional analysis to define the number of conditionally distinct signals at 
each locus, defined as the number of rounds of conditional analysis needed to have no variants within the locus with a p-values lower 
than the locus threshold. We also performed analyses adjusting for variants previously attaining genome-wide significance at the 
CRP (Table S4) and HNF1A loci (Table S5). Conditional analyses at the CRP locus were visualized using LocusZoom, using linkage 
disequilibrium calculated from included TOPMed subjects27.  

We performed statistical fine-mapping with FINEMAP (v1.3.1)28 using marginal test statistics and TOPMed derived LD 
reference panels in unrelated EA and AA participants from TOPMed (selected from individuals included in TOPMed CRP analysis 
using PC-air, n=4,442 AAs, n=11,397 EAs). We chose FINEMAP specifically because it permits a large number of potential causal 
variants at a locus. At the CRP locus, we input a maximum of 5 causal variants in our sample of AAs and 4 causal variants in EAs, 
based on the number of conditionally distinct signals from stepwise conditional analysis.   
 
Annotation 
For signals E and H, we used the FUN-LDA program (functional effect prediction for noncoding variants, using a latent Dirichlet 
allocation model) to identify the tissue type in which they were most likely to have a functional effect29. This program gives each 
variant a score ranging from 0 to 1 (with higher scores indicating variants that are most likely to be functional) based on epigenetic 
assays evidence, with scores available for 127 cell types and tissues in Roadmap Epigenomics. FUN-LDA scores are derived by 
summing posterior probabilities for active functional classes (such as promoters and enhancers), based on histone modifications and 
quantitative DNAse hypersensitivity.  

We also used a novel, multi-dimensional annotation pipeline, which derives annotation PCs from individual functional annotations 
in the following categories: epigenetics, conservation, protein function, negative selection, distance to coding variants, mutation 



 

density, and transcription factor binding. Variant-specific annotation PCs are given as the PHRED-scaled scores from the first 
principal component of the category’s individual annotations. Values greater than 10 thus represent variants in the top 10% of a given 
annotation category. We report the epigenetic PC calculated from individual annotations percent GC within +/- 75bp window, percent 
CpG within +/- 75bp window, maximum Encode H3K4me1 level, maximum Encode H3K4me2 level, maximum Encode H3K4me3 
level, maximum Encode H3K9ac level, maximum Encode H3K9me3 level, maximum Encode H3K27ac level, maximum Encode 
H3K27me3 level, maximum Encode H3K36me3, maximum Encode H3K79me2 level, maximum Encode H4K20me1 level, maximum 
Encode EncodeH2AFZ level, ReMap count of binding transcription factors, ReMap count of binding transcription factors for cell line 
combinations, distance to nearest Transcribed Sequence Start (TSS), and distance to nearest Transcribed Sequence End (TSE). We 
also report conservation PC calculated from the neutral evolution score of GERP++, rejected Substitution score of GERP++, primate 
PhastCons conservation score, mammalian PhastCons conservation score, vertebrate PhastCons conservation score, primate 
PhyloP score, mammalian PhyloP score, and the vertebrate PhyloP score. All annotations are drawn from CADD database30. Finally, 
we assessed whether lead CRP-associated variants were colocalized (r2>0.8 in EUR or AFR populations; 1000 Genomes phase 3) 
with lead variants from eQTL signals from GTEx (all tissues31) or eQTLGen (whole blood)32 (https://www.eqtlgen.org/index.html) or a 
recent large adult liver eQTL analysis33. We also examined GeneHancer for enhancer/gene pairings, as determined based on scores 
for tissue co-expression correlation between genes and enhancer RNAs, enhancer-targeted transcription factor genes, eQTLs for 
variants within enhancers, and promoter capture Hi-C34.  
 
Replication  
African American individuals with Affymetrix 6.0 data from the WHI35 SHARe resource (dbGaP phs000386.v7.p3) were imputed using 
TOPMed freeze 5b as a reference panel. We then performed association analysis for inverse-normalized natural log-transformed 
CRP in the CRP region using the EMMAX test in EPACTS v3.2.6, adjusting for an empirical kinship matrix and age. We also 
performed an additional analysis adjusting for known CRP locus variants from GWAS and exome sequencing analyses.  
 
PheWAS 
We additionally performed a follow-up phenome-wide association study (pheWAS) for rs181704186 and rs11265259 in BioVU. 
BioVU is the biobank of Vanderbilt University Medical Center (VUMC) that houses de-identified DNA samples linked to phenotypic 
data derived from electronic health records (EHRs) system of VUMC. DNA samples were genotyped with genome-wide arrays 
including the Multi-Ethnic Global (MEGA) array, and the genotype data were imputed into the HRC reference panel using the 
Michigan imputation server. In total, 1815 phecodes (i.e., groupings of ICD codes into clinically similar diseases or traits) were tested 
for association in up to 5275 African Americans. Association between each binary phecode and a SNP was assessed using logistic 
regression, while adjusting for covariates of age, gender, genotyping array type/batch and 10 principal components of ancestry. 
 
Functional Assays 
 
Cell Culture HepG2 human liver carcinoma cells were cultured in MEM-alpha (Corning) supplemented with 10% FBS, 2 mM L-
glutamine, and 1 mM sodium pyruvate. Cells were maintained at 37°C in 5% CO2. 



 

 
Transcriptional Reporter Assays Oligonucleotide primers (Table S10) containing KpnI and XhoI restriction sites were designed to 
PCR-amplify a 1,141-bp region (GRCh37/hg19 –chr1:159,721,514 – 159,722,654) surrounding rs181704186. A DNA segment from 
an individual homozygous for rs181704186-A was amplified, digested with KpnI and XhoI, and ligated into the minimal promoter-
containing luciferase reporter vector pGL4.23 (Promega). The constructs were altered to create vectors containing the low-frequency 
rs181704186-G allele using the QuikChange site-directed mutagenesis kit (Stratagene). Isolated clones were sequenced for 
genotype and fidelity.  
 

1.3×105 HepG2 cells per well were seeded in 24-well plates. Cells were co-transfected using Lipofectamine 3000 (Life 
Technologies) with five independent pGL4.23 constructs and Renilla luciferase vector phRL-TK (Promega) to control for transfection 
efficiency. 48 hours post-transfection, cells were lysed with Passive Lysis Buffer (Promega) and measured for luciferase activity 
using the Dual-Luciferase Reporter Assay system (Promega) as directed and previously described36. Reporter assays were repeated 
on a second separate day and yielded comparable results. 
 
Electrophoretic Mobility Shift Assays Nuclear protein was extracted from HepG2 cells using the NE-PER Nuclear and 
Cytoplasmic Extraction Kit (Thermo Scientific). Biotinylated and unlabeled 17-bp oligonucleotide probes (Table S10) were designed 
centered around rs181704186 and annealed as previously described36. Electrophoretic Mobility Shift Assays (EMSAs) were 
performed using the LightShift Chemiluminescent EMSA Kit (Thermo Fisher Scientific). 20 uL binding reactions containing 10 ug 
nuclear protein, 400 fmol labeled probe, 1x binding buffer, and 50 ng/uL poly(dI-dC) were incubated at room temperature for 25 
minutes. For competition reactions, 40-fold excess of unlabeled probe was incubated in the reaction for 15 minutes prior to addition 
of the labeled probe, followed by 25 minutes of incubation. Gel electrophoresis and transfer, wash, and detection steps were 
performed as previously described37. EMSAs were carried out on a second separate day and yielded comparable results. 
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