Supplementary Online Content

Gordon LG, Rodriguez-Acevedo AJ, Køster B, et al. Association of indoor tanning regulations with health and economic outcomes in North American and Europe. *JAMA Dermatol.* Published online February 19, 2020. doi:10.1001/jamadermatol.2020.0001

eFigure 1. Illustration of Markov Model Health States and Possible Transitions

eFigure 2. Pooled Estimates of Ever Exposure to Indoor Tanning Among Adults After 2009

eFigure 3. Estimated Prevalence of Indoor Tanning by Age

eFigure 4. Incremental Cost per Life-year Scatterplot for Full Ban vs Current Use in North America

eFigure 5. Incremental Cost per Life-year Scatterplot for Full Ban vs Current Use in Europe

eTable 1. Comparison of Pooled Estimates on the Prevalence of Indoor Tanning

eTable 2. One-Way Sensitivity Analyse: Full Ban vs Current Sunbed Use

eReferences

This supplementary material has been provided by the authors to give readers additional information about their work.

eFigure S1. Illustration of Markov model health states and possible transitions

eFigure 2. Pooled estimates of ever exposure to indoor tanning among adults after 2009

Proportion (95% CI) Source Australia Day 2016 AUS 0.11 [0.08; 0.14] 0.11 [0.08; 0.14] Total Heterogeneity: not applicable Europe Grange 2015 FRA 0.10 [0.08; 0.12] Stanganelli 2013 ITA 0.19 [0.18; 0.20] Gajda 2018 POL 0.19 [0.18; 0.20] Koster 2018 DNK (2015) 0.46 [0.45; 0.48] $\begin{array}{c} \text{Diehl 2017 DEU} \\ \text{Total} \\ \text{Heterogeneity: } \chi_4^2 = 1320.24 \ (P < .01), \ I^2 = 100\% \end{array}$ United States and Canada Neenan 2012 (NC, USA) 0.24 [0.20; 0.27] 0.56 [0.52; 0.61] Mosher 2010 (NY, USA) Gillen 2012 USA 0.17 [0.13; 0.21] Hillhouse 2015 USA 0.27 [0.24; 0.30] Rodriguez 2017 (AL-MA, USA) 0.31 [0.28; 0.34] Heckman 2018 USA 0.16 0.16; 0.17 Andrulonis 2017 (PA, USA) 0.40 [0.36; 0.44] Daniel 2018 (AL, USA) 0.51 [0.49; 0.53] Yan 2017 (IN, USA) 0.55 [0.51; 0.59] Parsons 2018 (UT, USA) 0.46 0.40; 0.51 Total 0.36 [0.23; 0.49] Heterogeneity: $\chi_9^2 = 2297.29 \ (P = 0), \ I^2$ = 1009 0.29 [0.23; 0.36] Total Heterogeneity: $\chi^2_{15} = 3710.55 (P = 0), I^2 = 100\%$

References³⁻¹⁸

eFigure 3. Estimated prevalence of indoor tanning by Age

a) North America

b) Europe

eFigure 4. Incremental cost per life year scatterplot for full ban vs current use in North America

Note: Each dot represents an incremental cost and incremental life year pairing using the assigned distributions around each model parameter, selected randomly during 5000 iterations. Dots falling to the right of the diagonal & vertical lines (the willingness-to-pay threshold of \$50,000 per life year saved) are cost-effective. The proportion of simulations cost-effective is 83.4%. The oval is the 95% ellipse and represents the 95% uncertainty ellipsoid.

eFigure 5. Incremental cost per life year scatterplot for full ban vs current use in Europe

Note: Each dot represents an incremental cost and incremental life year pairing using the assigned distributions around each model parameter, selected randomly during 5000 iterations. Dots falling to the right of the diagonal & vertical lines (the willingness-to-pay threshold of \leq 30,000 per life year saved) are cost-effective. The proportion of simulations cost-effective is 83.8%. The oval is the 95% ellipse and represents the 95% uncertainty ellipsoid.

© 2020 American Medical Association. All rights reserved.

eTable 1.	Comparison	of pooled	estimates	on the prev	valence o	of indoor	tanning
crubic 1.	Gomparison	or pooled	countaces	on the pre-	valence (Ji maooi	cuming

	2019 Rodriguez-Acevedo ¹ meta-analysis [#] (%, 95% Cl)	2014 Wehner ² meta-analysis^ (%, 95% Cl)		
Adolescents <u>past year</u> exposure				
North America	7.6% (5.1-10.5%)	10% (8-12%)		
Europe	5.1% (0.2-15.8%)	36% (21-52%)		
Adults <u>ever</u> exposure				
North America	35.6% (23.4-48.7%)	35% (27-44%)		
Europe	22% (12-34%)*	42% (29-54%)		

#This included the latest results when multiple studies from the same nation were possible (see Supplementary Figure ^ In sensitivity analyses, prevalence for all studies were included (31% 95%CI: 24-41%) which included multiple studies from the same nation.

	Incremental cost per life year		Probability	Range -high	
	Mean	2.5%	97.5%	cost-effective (%)	& low mean ICER
NORTH AMERICA model					
RR melanoma with sb use low 1.36	dominant	dominant	dominant	100.0%	
RR melanoma with sb use high 1.85	dominant	dominant	dominant	100.0%	4546
RR KCs low 1.12	dominant	dominant	5970	86.6%	
RR KCs high 2.76	dominant	dominant	265050	81.8%	-16759
Cost of KCs low 984	dominant	dominant	40209	85.6%	
Cost of KCs high 1477	dominant	dominant	61984	85.6%	-602
Probability of thick melanoma low 0.25	dominant	dominant	53277	85.6%	
Probability of thick melanoma high 0.29	dominant	dominant	51475	85.6%	2311
Cost of thick mel first year low 17059	dominant	dominant	52623	85.6%	
Cost of thick mel first year high 31680	dominant	dominant	52197	85.6%	-684
Prob of mulitple KCs low 10.9%	dominant	dominant	52018	85.6%	
Prob of mulitple KCs high 16.4%	dominant	dominant	54754	85.6%	-326
RR insitu to invasive melanoma 1.1	dominant	dominant	47726	85.7%	1.70
RR insitu to invasive melanoma 1.2	dominant	dominant	43501	85.7%	156
EUROPE model				400.00/	
RR melanoma with sb use low 1.36	dominant	dominant	dominant	100.0%	0.407
RR melanoma with sb use high 1.85	dominant	dominant	dominant	100.0%	3437
		da waka awat	40000	00 70/	
RR KUS IOW 1.21	dominant	dominant	13086	86.7%	404245
RR KUS nign 2.08	87769	dominant	153026	84.2%	124345
Cost of KCo Jour 2200	dominant	deminent	27505	05 00/	
Cost of KCs low 2309	dominant	dominant	51520	00.0% 95.7%	201
COSE OF RCS High 3124	uommani	uominant	51569	05.7%	304
Brobability of thick malanama law 0.283	dominant	dominant	44074	85.8%	
Probability of thick melanoma high	uominam	uummanii	44274	05.070	
0.425	dominant	dominant	63181	85.9%	-26051
0.425	uominam	uominant	00101	00.070	-20031
Cost of thick mel first year low 10195	dominant	dominant	41322	85.8%	
Cost of thick mel first year high 13793	dominant	dominant	41200	85.8%	-180
	aominant	aominant	71200	00.070	100
Prob of mulitale KCs low 10.9%	dominant	dominant	40519	85.8%	
Prob of mulitple KCs high 16.4%	dominant	dominant	42934	85.8%	-1419
		aominant	12007	00.070	
	1				

eTable 2. One-way sensitivity analyses^a - Full ban vs current sunbed use

a. Each variable low and high variable was altered one and at time and the Monte Carlo simulations were re-run. The mean incremental cost per life year were calculated and their 2.5 and 97.5 percentiles for a credible interval.

eReferences

- 1. Rodriguez-Acevedo AJ, Green AC, Sinclair C, van Deventer E, Gordon LG. Indoor tanning prevalence after the International Agency for Research on Cancer statement on carcinogenicity of artificial tanning devices: systematic review and meta-analysis. *Br J Dermatol.* 2019;5(10):18412.
- 2. Wehner MR, Chren MM, Nameth D, et al. International prevalence of indoor tanning: a systematic review and meta-analysis. *JAMA Dermatol.* 2014;150(4):390-400. doi: 310.1001/jamadermatol.2013.6896.
- 3. Andrulonis R, Secrest AM, Patton TJ, Grandinetti LM, Ferris LK. A cross-sectional study of indoor tanning use among patients seeking skin cancer screening. *J Am Acad Dermatol.* 2017;76(1):164-165.
- 4. Daniel CL, Gassman NR, Fernandez AM, Bae S, Tan MCB. Intentional tanning behaviors among undergraduates on the United States' Gulf Coast. *BMC Public Health*. 2018;18(1):441.
- 5. Day AK, Wilson CJ, Hutchinson AD, Roberts RM. Acculturation, Skin Tone Preferences, and Tanning Behaviours Among Young Adult Asian Australians. *J Prim Prev.* 2016;37(5):421-432.
- Diehl K, Gorig T, Breitbart EW, et al. First evaluation of the Behavioral Addiction Indoor Tanning Screener (BAITS) in a nationwide representative sample. *Br J Dermatol.* 2018;178(1):176-182.
- 7. Gajda M, Kaminska-Winciorek G, Wydmanski J, Tukiendorf A, Kowalska M. Behaviors of active sunbeds users and their knowledge on the potential health risks; results of cross-sectional study in Poland. *J Cosmet Dermatol.* 2018.
- 8. Gillen MM, Markey CN. The role of body image and depression in tanning behaviors and attitudes. *Behav Med.* 2012;38(3):74-82.
- 9. Grange F, Mortier L, Crine A, et al. Prevalence of sunbed use, and characteristics and knowledge of sunbed users: results from the French population-based Edifice Melanoma survey. *J Eur Acad Dermatol Venereol.* 2015;29 Suppl 2:23-30.
- 10. Heckman CJ, Handorf E, Auerbach MV. Prevalence and Correlates of Skin Cancer Screening Among Indoor Tanners and Nontanners. *JAMA Dermatol.* 2018.
- Hillhouse J, Stapleton JL, Florence LC, Pagoto S. Prevalence and Correlates of Indoor Tanning in Nonsalon Locations Among a National Sample of Young Women. JAMA Dermatol. 2015;151(10):1134-1136.
- 12. Koster B, Meyer MKH, Andersson TM, Engholm G, Dalum P. Skin cancer projections and cost savings 2014-2045 of improvements to the Danish sunbed legislation of 2014. *Photodermatol Photoimmunol Photomed.* 2018;10(10):12424.
- 13. Mosher CE, Danoff-Burg S. Indoor tanning, mental health, and substance use among college students: the significance of gender. *J Health Psychol.* 2010;15(6):819-827.
- 14. Neenan A LS, Lesesky E B. . Reasons for Tanning Bed Use: A Survey of Community College Students in North Carolina. *NCMJ.* 2012;73(2).
- 15. Parsons BG, Gren LH, Simonsen SE, Harding G, Grossman D, Wu YP. Opportunities for Skin Cancer Prevention Education among Individuals Attending a Community Skin Cancer Screening in a High-Risk Catchment Area. *J Community Health.* 2018;43(2):212-219.
- 16. Rodriguez VM, Daniel CL, Welles BF, Geller AC, Hay JL. Friendly tanning: young adults' engagement with friends around indoor tanning. *J Behav Med.* 2017;40(4):631-640.
- 17. Stanganelli I, Gandini S, Magi S, et al. Sunbed use among subjects at high risk of melanoma: an Italian survey after the ban. *British Journal of Dermatology*. 2013;169(2):351-357.
- 18. Yang K, Han J. Indoor tanning use among white female students aged 18-30. *J Dermatol Sci.* 2017;85(3):253-256.

© 2020 American Medical Association. All rights reserved.