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SUMMARY

Two-photon functional imaging using genetically en-
coded calcium indicators (GECIs) is one prominent
tool to map neural activity. Under optimized experi-
mental conditions, GECIs detect single action poten-
tials in individual cells with high accuracy. However,
using current approaches, these optimized condi-
tions are never met when imaging large ensembles
of neurons. Here, we developed a method that sub-
stantially increases the signal-to-noise ratio (SNR)
of population imaging of GECIs by using galvano-
metric mirrors and fast smart line scan (SLS) trajec-
tories. We validated our approach in anesthetized
and awake mice on deep and dense GCaMP6 stain-
ing in the mouse barrel cortex during spontaneous
and sensory-evoked activity. Compared to raster
population imaging, SLS led to increased SNR,
higher probability of detecting calcium events, and
more precise identification of functional neuronal
ensembles. SLS provides a cheap and easily imple-
mentable tool for high-accuracy population imaging
of neural GCaMP6 signals by using galvanometric-
based two-photon microscopes.

INTRODUCTION

Spatiotemporal dynamics of neuronal activity underlie funda-

mental aspects of brain function, including the processing of

sensory information, the generation of motor outputs, and the

regulation of internal states (Harris and Thiele, 2011; Yuste

2015). For example, sensory areas encode external stimuli vary-

ing their spatiotemporal dynamics (Grinvald and Peterson, 2015;

Helmchen et al., 2018) in response to the presentation of

different sensory stimuli. Various theories have been proposed

to account for how these different activity patterns are used to

extract sensory information that guides behavior (Okun et al.,

2015; Quian Quiroga and Panzeri, 2009; Yang and Zador,
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2012). Precise mapping of the fine spatiotemporal structure of

these dynamics is, thus, of utmost importance to understand

the cellular and network mechanisms underlying many aspects

of brain function (Runyan et al., 2017).

Ideally, mapping neuronal activity at the population level

should attain single-cell resolution, ability to detect single action

potentials (APs), and robustness against artifacts (Harris et al.,

2016). Currently, multiphoton fluorescence imaging is consid-

ered a preferred technique to this aim, enabling structure-func-

tion correlation and allowing single-cell precision over large pop-

ulations of contiguous neurons (Dombeck et al., 2007; Helmchen

and Denk, 2005; Ohki et al., 2005; Ouzounov et al., 2017; Stosiek

et al., 2003). Moreover, the recent development of genetically

encoded calcium indicators (GECIs) (Chen et al., 2013; Dana

et al., 2016, 2019; Tian et al., 2009) allowed the use of bright

fluorescent indicators with relatively high dynamic range and

large quantum yield in genetically identified cell classes. Among

these sensors, GCaMP6 is one of the most used because of its

large dynamic range and high calcium binding affinity (Chen

et al., 2013). When using raster scanning two-photon excitation

to image at high acquisition frame rate small field of views (FOVs)

containing one or few neural cells with high expression levels of

the indicator, it is possible to record GCaMP6 signals with large

signal-to-noise ratio (SNR). Under these optimized conditions,

the detection of individual APs with high accuracy (>90%;

Chen et al., 2013) can be achieved. However, the accuracy in de-

tecting single APs and the SNR of GCaMP6 signals drops when

the number of imaged cells increases (Harris et al., 2016; Huang

et al., 2019; Theis et al., 2016) because the dwell time and, thus,

the number of emitted photon per cell per unit of time decreases

when imaging large FOVs. Moreover, heterogeneity in GCaMP

expression may lead to variable levels of accuracy across cells,

with low-expressing neurons havingdimmer signals. Thus, in vivo

population imaging of GCaMP6 with current raster scanning

approaches systematically underestimates neural activities,

missing neurons with low firing rates and/or low expression

level of the indicator.

Here, we validated a method that maximizes the SNR of

GCaMP6s over population of neurons. The technique uses im-

age segmentation based on pixel-wise statistics and complex
orts 30, 2567–2580, February 25, 2020 ª 2020 The Author(s). 2567
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Figure 1. Schematic Representation of SLS

(A) In raster scanning, images are generated scanning the excitation spot (red arrow) over all pixels in the FOV in a sequential raster trajectory. Fluorescence from

GcaMP-labeled neurons (green), background structures (white), and GcaMP-unlabeled cells (gray) is sampled.

(B) In SLS, scanned regions corresponding to labeled cells (green donuts) are identified based on the reference raster scan t-series.

(C) Pixels belonging to one cell are sorted according to their SNR (green shades), and the subset of pixels maximizing the SNR is selected (ROIs).

(D) SLS trajectories (red) intersect only selected pixels.
line scan trajectories (smart line scan [SLS]). Compared to raster

scanning, SLS increased the SNR of calcium signals (average

increase: �60%) and led to a higher probability of detecting cal-

cium events over population of neurons (average probability

increase: �36%) during spontaneous and whisker-evoked

activities. SLS led to improved precision in detecting neural en-

sembles in layer IV excitatory neurons of the barrel cortex of

awake animals. This method can be easily and inexpensively im-

plemented in commercial raster scanning two-photon set-ups,

allowing significant improvements in signal quality during popu-

lation imaging in vivo with no change in the microscope

hardware.

RESULTS

SLS Samples Only the Pixels with the Most Information
The workflow of SLS encompassed four main steps: (1) a high-

resolution image of the target FOV was obtained using raster

scanning (high-resolution reference image; Figure 1A); (2) target

neurons were located (target identification, Figure 1B); (3) for

each target cell, the more informative pixels were identified

based on pixel-wise SNR statistics (pixel selection; Figure 1C);

and (4) an optimized scanning trajectory, which sampled only

the pixels of interest, was used to move the galvanometric mir-

rors (Figure 1D).

To test SLS, we used a dense and deep GCaMP6s staining in

themouse cortical layer IV (Figure S1). Using raster scanning, we

acquired a first set of t-series in anesthetized animals (16 raster t-

series from 8 animals; average frame period: 0.79 ± 0.17 s;

average duration of raster t-series: 700 ± 288 s), and we asked

whether SNR pixel-wise statistics could be used to improve

the accuracy of GCaMP imaging. Figure 2A shows a representa-

tive SNR map (pseudocolor, see STAR Methods) superimposed

to the GCaMP6s signal (gray) of a reference t-series. SNR values

were heterogeneous across cells, with nuclear regions associ-
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ated with low average SNR and cytoplasmic compartments

with high average SNR (Figure 2B; average SNR in nuclear re-

gion: 1.4 ± 0.4; average SNR in cytoplasm: 3.6 ± 1.5; n = 8

FOVs from 8 mice). Within the cytoplasm, SNR values of individ-

ual pixels were variable, reflecting non-homogeneous GCaMP6s

staining inside cells (Figure 2C; observed SNR distribution

different from uniform distribution: two-sample Kolmogorov-

Smirnov [KS], p = 3E-13).

For image segmentation, visual inspection was performed to

identify the center of each cell of interest (point of interest, red

cross in Figure 2D). A square box of lateral dimension similar

to the cell diameter (red box in Figure 2D; average side dimen-

sion: 11.8 ± 0.7 mm, n = 604 cells from 8 mice) was centered

on the manually identified points of interest. The dimension of

the ensemble of relevant pixels for each cell, which we defined

as region of interest (ROI), was determined by adding pixels

within the box (red pixels in Figure 2E), starting from the ones

with the highest SNR. In the majority of the cells (94%, 571 out

of 604 cells from 8 mice), we observed that the average SNR

within a ROI was an increasing function of the number of pixels

(n) that reached a peak (average peak value: 5.0 ± 1.8, n = 571

cells from 8 mice) for n = 48 ± 32 pixels per cell (average total

ROI surface: 182 ± 36 pixels; Figure 2E). Incorporating more

pixels within the ROI tended to decrease the average SNR of

the ROI (Figures 2E and 2F) because it included pixels from the

nuclear and neuropil regions, which had lower SNR (average

SNR in nuclear region: 1.4 ± 0.4; average SNR in neuropil: 2.0

± 0.7; n = 571 cells from 8 mice). We compared the average

SNR of ROIs identified with the semiautomatic method

described above with the average SNR of manually identified

ROIs, which included the cytoplasm and nucleus of those cells

(average SNR in semiautomatic segmentation: 5.0 ± 1.8;

average SNR of manual ROIs: 3.1 ± 1.5; n = 571 cells from 8

mice; two-sample KS test, p = 2E-50). Moreover, the number

of pixels was smaller for ROIs identified based on pixel-wise



Figure 2. Pixel-Wise Statistics Identify the Subset of Most Informative Pixels to Scan Inside Each Cell

(A) Two-photon raster scanning image showing layer IV neurons of the barrel cortex expressing GCaMP6s in an anesthetized mouse. Intensity projection of

GCaMP6s fluorescence signal (gray scale) and SNR (pseudocolor scale) are shown.

(B) Six cells in (A) are displayed at an enlarged scale. Color code as in (A).

(C) Distribution of the SNR of cytoplasmic pixels (n = 164 cells from N = 8 mice).

(D) Intensity projection of GCaMP6s signal (gray) of a t-series recorded in layer IV. The red cross indicates the center of the identified cell and the red box the

boundaries of the region in which pixel-wise statistics are computed to identify ROIs.

(E) Average SNR value as a function of the number of selected pixels for the cell showed in (D). Inset: four images of the cell highlighted in (D) are shown.

Each image shows a different number of selected pixels (9, 46, 107, and 153, respectively).

(F) Same FOV as in (D) after pixels selection. A total of 83 ROIs (red pixels) were identified.
SNR than manually drawn ROIs (pixel number in ROIs identified

with pixel-wise SNR: 48 ± 32; pixel number in manually drawn

ROIs: 75 ± 27; two-sample KS test, p = 2E-46). Based on these

results, we decided to use the pixel SNR to identify ROIs and

guide the generation of the SLS trajectory.

The SLS trajectory (yellow trace in Figures S2A and S3A) was

built such that at each scan (1) the trajectory intersected all

selected pixels in each ROI, (2) the trajectory intersected each
ROI only once, (3) the trajectory first visited all pixels inside

ROIN then moved to ROIN+1 in a straight line, (4) the trajectory

minimized (using a genetic algorithm) the total path length and

the distance between the first and the last ROI in the sequence

(see STAR Methods), (5) the pixels of the SLS were mapped as

contiguous pixels in the 2D raster image, (6) the dwell time of

the SLS was the same of that used in the corresponding raster

image (4.4 ms in most experiments), and (7) a region surrounding
Cell Reports 30, 2567–2580, February 25, 2020 2569



each cell was scanned (surround region; Figures S3B–S3D). The

dimension of the surround region was adjustable and pixels

inside the surround region weremapped in a different data struc-

ture for separate analysis (see STAR Methods). The resulting

SLS trajectory was then imported in the microscope software

to control the movement of the galvanometric mirrors.

Stability of Trajectory Computation and Precision of SLS
To evaluate the stability over time of pixel selection, we selected

reference t-series (n = 8 from 4mice) and divided them in shorter

t-series, each one-fourth in length (62.5 s) compared to the orig-

inal t-series (Figures S2A–S2B3). Trajectories obtained in short t-

series largely overlapped (Figure S2C), and the average number

of pixels was not different when SLS trajectory was computed on

the long versus short t-series (6,513 ± 1,113 pixels for the 8 long

t-series versus 6,547 ± 1,190 pixels for 32 short t-series, F-test,

p = 0.23). The ratio between the number of selected pixels in

short t-series and that selected in the whole series was on

average 1.03 ± 0.25 (n = 8 long t-series and n = 32 short t-series,

respectively), and the percentage of pixels showing 100% co-

localization in all consecutive 4 short t-series for each long t-se-

ries was 74.0% ± 0.3% (n = 8; Figure S2E). Among pixels

showing no co-localizations in consecutive short t-series, only

a small fraction fell into ROIs (average: 0.21 ± 0.08, n = 8; Fig-

ure S2F). because the path length of a SLS depended on the

heuristic solution to a nondeterministic polynomial time (NP)-

complete problem (i.e., minimization of path length), small

changes in pixel selection might affect the SLS duration. We

found no difference in scan duration under the different condi-

tions (average line scan duration for 8 long t-series: 0.049 ±

0.019 s; average line scan duration for 32 short t-series: 0.048

± 0.004 s; paired t test, p = 0.77).

The actual movement of the galvanometric mirrors may lag

behind the signal that controls them (command signal; Kummer

et al., 2015). In many galvanometric mirror types, including the

ones used in this study, the actual mirror movement can be

monitored through the signal of the feedback output (feedback

signal). To control whether the time lag between the command

and feedback signal depended on the angle of the SLS trajec-

tory, we generated line scans with regular polygon trajectories

(Figure S4). Within each trajectory, the angle between succes-

sive segments of the polygon was kept constant. In contrast,

trajectories differed for the shape of the polygon, such that

different trajectories had different angles in the range 20�–
160�, and there was at least 20� difference between the angles

of two trajectories (Figures S4A and S4B). Importantly, this

range included 96% ± 1% (n = 18 SLS trajectories) of the angles

of a typical SLS trajectory. We measured the lag between the

command and the feedback signals as the time of the peak of

the correlation coefficient in the cross-correlogram. We found

that the time lag was largely independent on the trajectory angle

and was similar to the one observed during raster scanning (Fig-

ure S4D).We also found the time lag using SLS trajectories to be

similar to that observed using the polygon trajectories (Figures

S4C and S4D). The time difference between the command

signal and the mechanical response of the galvanometric mir-

rors was incorporated as a time lag in the settings of the com-

mercial acquisition software, and it was considered in the crea-
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tion of fluorescence imaging data in both raster and SLS

acquisitions.

To estimate the precision of mirror positioning (Figures S4E–

S4H), we imaged a pollen grain by using raster scanning. We

placed a SLS trajectory such that the convoluted portion of the

SLS crossed the borders of the pollen grain. We plotted the in-

tensity profiles of the SLS pixels in the portion of SLS trajectory

crossing the pollen grain and compared this profile with the in-

tensity profile of the same pixels acquired in the raster scanning

image. The distance corresponding to the peak of the cross cor-

relation between these two intensity profiles was taken as amea-

surement of the error in mirror positioning in SLS compared to

raster scanning. We found this value to be <1 mm (Figure S4H).

We measured SLS trajectories acquired on a fluorescent grid

at different acquisition rates (Figures S4I–S4K). The different SLS

acquisition rates were obtained by changing the pixel dwell time

from 4.4 ms to 1.6 ms in 0.4-ms steps. Fluorescence signals

acquired in the range 3.6 ms–4.4 ms were highly correlated,

whereas correlation decreased from those SLS acquired in the

range 1.6 ms–3.2 ms (Figures S4J and S4K). This finding suggests

that below a certain dwell time value (3.6 ms in our case), mirror

positioning becomes less accurate.

Finally, wemeasured the reliability of mirror movements during

SLS over time. We performed repetitive SLS on a grid (Figure S5)

and found that transitions between fluorescent and non-fluores-

cent regions of the grid were sharp (Figure S5C), implying reliable

and precise mirror movements across repetitions.

Acquisition Rate versus Number of Imaged Cells in SLS
To evaluate the acquisition rate during SLS as a function of num-

ber of imaged cells, we first selected 292 cells in a densely

GCaMP6-expressing cortical slice. We then identified subsets

comprising 1–292 cells (1-cell increment), and for each subset,

we generated four SLS trajectories with different surrounds (0,

1, 2, and 3 pixels, respectively). SLS duration was a linearly

increasing function of the number of scanned cells and the slope

of the linear fit was higher for SLS with increasing surround (Fig-

ure S6A). Moreover, the ratio between the pixels scanned in SLS

and the pixel scanned in raster scanning decreased with the

number of scanned cells (Figure S6B). As expected given a fixed

number of cells to be scanned, the acquisition rate decreased

with the dimension of the surround region (Figure S6C).

We then evaluated the performance of SLS on population im-

aging in vivo. GCaMP6s expression levels were heterogeneous

across animals. We selected four experiments with a high level

of expression (high < F > in Figure S6D) and four with low expres-

sion (low < F > in Figure S6D; see STARMethods). The number of

segmented cells in low-expressing mice was lower than in high-

expressing ones (39 ± 19 cells, N = 4 experiments versus 135 ±

51 cells, N = 4 experiments; unpaired t test, p = 0.026). In

contrast, the number of pixels required to maximize the SNR in

each cell in low-expressing cells was higher than that in high-ex-

pressing animals (58 ± 11 pixels versus 36 ± 6 pixels, respec-

tively; N = 4 experiments; unpaired t test, p = 4E-4). The

acquisition rate was higher for low-expressing animals than in

high-expressing animals (Figure S6D), indicating that the reduc-

tion in the number of segmented cells more greatly influenced

the SLS acquisition rate than the increase in the number of pixels



Figure 3. Motion Artifacts in SLS

(A) X and Y displacement during raster scanning in anesthetized animals (n = 3 mice, gray), quiet wakefulness (n = 3 mice, orange), and active wakefulness

(n = 3 mice, magenta).

(B) Top: representative SLS acquisition during active wakefulness. Pseudocolor scale indicates fluorescence amplitude. Middle: autoregressive second order fit

(AR(2), red) of SLS PC1 (black). Bottom: cross correlation (green) between AR(2) and the PC1. The gray arrowhead indicates a movement artifact detected when

the 0.3 threshold is crossed.

(C) Representative SLS acquisition with no detected large motion artifacts during quite wakefulness.

(D) Fluorescence over time without (no reassignment, gray) or with (reassigned, red) the reassignment of 11 pixels.

(E) SNR as a function of the number of reassigned pixels for one representative ROI. The gray and the red asterisks indicate the conditions displayed in (D).

(F) Correlation between the motion displacement calculated using NoRMCorre on the reference patch and the motion displacement computed from the pixels

reassignment approach (black dots). Empty circles: individual experiments; filled circles: average ±SD. Data from the reference patch were downsampled in time

before applying NoRMCorre. Motion displacement values were separately calculated for the X (left) and the Y (right) direction in the reference patch and in the

ROIs. The correlation between the motion displacement calculated using NoRMCorre and a random pixels reassignment are shown in gray. Left: downsampling

0.5 Hz, p = 0.08; downsampling 1 Hz, p = 0.18; downsampling 2 Hz, p = 0.06; downsampling 5 Hz, p = 0.32; paired t test, n = 13 SLS acquisitions. Right:

downsampling 0.5, p = 2E-6; downsampling 1 Hz, p = 2E-4; downsampling 2 Hz, p = 2E-5; downsampling 5 Hz, p = 8E-9; paired t test n = 13 SLS acquisitions. In

this as well in other figures: *, p < 0.05; **, p < 0.01; ***, p < 0.001; n.s., non significant. Error bars represent ± SD.
required to maximize SNR in low expressing compared to high-

expressing animals.

Motion Artifacts in SLS
Because SLS sampled only a subset of pixels without building an

image of the sample, current methods for correction of motion

artifacts could not be applied to SLS. We, thus, developed a

strategy to identify and counterbalance motion artifacts in SLS.

We first evaluated the average lateral displacement due to mo-

tion by aligning raster scanning t-series (maximizing frame-
wise correlation) offline in recordings performed in anesthetized

and awake animals free to run on a wheel. Sudden and large

(R3 mm) displacements of the FOV were observed upon running

in awake animals, whereas during quite wakefulness displace-

ments were small (<3 mm) and comparable to those observed

under anesthesia (Figure 3A). We then developed a method to

automatically detect offline the large motion artifacts associated

with locomotion in SLS. An autoregressive linear model (AR(2))

was fit on the first principal component (PC1) of the whole SLS

acquisition. When the correlation between AR(2) fit and PC1
Cell Reports 30, 2567–2580, February 25, 2020 2571



dropped below a threshold value (set at 0.3), a large motion arti-

fact was detected (gray arrowhead in Figure 3B). A posteriori vi-

sual inspection confirmed the presence of large, fast, and syn-

chronous distortions of the SLS signal when AR(2)-PC1

correlation was <0.3. These distortions showed fast onset that

were incompatible with GCaMP6 kinetics. All SLS acquisitions

with AR(2)-PC1 correlation values below 0.3 (5 out of 26 line

scans in 3 awake mice and 0 out of 22 line scans in 3 anesthe-

tized animals) were discarded. The amount of detected large ar-

tifacts in awake animals decreased with the increase in the sur-

round region, and they were never detected for surround values

of 3 (0 out of 4 SLS acquisitions in 3 awake mice). Based on this

evidence and the fact that movement artifacts were animal and

preparation specific, we devised the following strategy to mini-

mize the impact of these large artifacts on SLS. We first esti-

mated the displacement associated with motion artifacts in a

10-min-long raster scan t-series. Based on the value of the

observed displacement, a value of surround region was deter-

mined such that the scanned surround was larger than the

observed displacement (with the scanned surround region

smaller than the upper limit of 3 pixels). This strategy allowed

us to decrease the occurrence of sharp discontinuities in SLS

and to discard a minority of SLS acquisitions.

Besides large motion artifacts, smaller motion-induced distor-

tions may still be present and confound the interpretation of the

SLS signal. To partly compensate for these smaller artifacts, we

processed the SLS acquisitions a posteriori, reassigning pixels

to the cell regions or to the surround regions based on pixel

SNR value in a sliding window of 10 s (the sliding window was

moved in the temporal axis by one frame at a time). Pixels with

higher SNR were assigned to the cell region even if they

belonged to the initially assigned surround region (average num-

ber of reassigned pixels per ROI: 10 ± 8, n = 48 line scans from 3

awake and 3 anesthetized mice; Figures 3D and 3E). This strat-

egy was based on the assumption that (1) the surround region

was large enough such that it always contained the cell body

of the recorded neuron despite the displacement due to the

movement artifact and (2) the FOV displacement occurred in

the X, Y direction. We observed that reassigning a limited num-

ber of pixels based on SNR values within each ROI along the

SLS improved signal quality (Figure 3E).

We investigated the correspondence between the artifact

readout strategy described above and the X, Y displacement

simultaneously computed from the reference patch, a user-

selected square box added at the end of the SLS trajectory

(yellow box in the top right corner of Figure S3A). We tested

whether pixel reassignment could be used to track motion. To

this aim, we extracted the activity of the reference patch (in n =

13 SLS acquisitions) and we estimated sample motion in X and

Y directions on the reference patch using non-rigid motion

correction computed with NoRMCorre (Pnevmatikakis and Gio-

vannucci, 2017). We computed the correlation between the shift

obtained on the reference patch and the shift of the average po-

sition of the selected ROI pixels of the SLS trajectory (Figure 3F).

Correlation values between the average Y position of ROI pixels

selected with pixel reassignment and the Y shifts obtained by

NoRMCorre on the reference patch were higher than correlation

values between the average Y position of randomly selected
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pixels in the Y direction and the Y shifts obtained by NoRMCorre

on the reference patch (Figure 3F, right). For the X direction, cor-

relation of ROI pixels tended to be higher than those for randomly

selected pixels, but the effect did not reach significance

(Figure 3F, left).

Neuropil Decontamination in SLS
For neuropil decontamination, we first defined two different

types of neuropil signals (Figure 4A). The ‘‘local’’ neuropil of a

given cell was defined as the average fluorescence signal pre-

sent in the surround region of the SLS trajectory for that cell.

The ‘‘global’’ neuropil was instead defined as that signal arising

from all pixels of the SLS trajectory that did not belong to ROIs

or surround regions, based on offline segmentation of the refer-

ence scanning image which was used to build the SLS trajectory

(see STAR Methods). We calculated the correlation between the

average PC1 extracted from each local neuropil region with the

PC1 obtained for the global neuropil. We observed a strong cor-

relation between the two principal components (Figures 4B and

4C) for all values of surround regions investigated, indicating that

the local and global signals contain very similar neuropil informa-

tion. Similarly, we observed a high correlation between PC1 of

the ROIs and the global neuropil (Figure 4D), suggesting that

the PC1 of all ROIs may be interpreted as a global neuropil under

our experimental conditions. We then subtracted the global, the

local, and the global neuropil signal appropriately corrected for

the activation coefficient of each ROI (obtained from the prin-

cipal-component analysis [PCA]) from the average fluorescence

signal of each ROI. After this procedure was performed, we

found that the correlation between the signals of different ROIs

was reduced (Figures 4E and 4F). Local neuropil-based correc-

tion was similar to what previously done in raster scanning

(Chen et al., 2013), and it was effective in decreasing correlation

across ROIs. The global neuropil and the corrected PC1 of all

ROIs can also be effective in decreasing correlation across

ROIs, and they have the advantage that they can be computed

even when the surround region is zero.

Population Imagingwith Single APResolution Using SLS
We performed population calcium imaging in large FOVs con-

taining hundreds of cells in the barrel cortex of anesthetized

mice using the SLS and conventional raster scanning (Figures

5A and 5A1). The same set of cells (360 in N = 4 animals) was

imaged under the different conditions (acquisition rate: 49 ±

2 Hz for SLS, 1.0 ± 0.1 Hz for raster scanning; same dwell time

(4.4 ms) and excitation power (30–90 mW) for both conditions).

Neuronal activity was stimulated by repetitive deflections of

the whiskers with an air puff. In raster scanning, small fluores-

cence events were associated to the sensory stimulus (gray in

Figures 5B and 5C), whereas in SLS cells displayed clear calcium

transients in response to the whisker deflection (black in Fig-

ure 5B1, gray in Figure 5C1). The SNR of fluorescence transients

(Figure 5D) and the fraction of responsive neurons (Figure 5E)

were higher for SLS than for raster scanning.

To compare the accuracy in detecting APs over the population

of cells in SLS with that obtained with raster scanning, we

performed simultaneous juxtasomal electrophysiological and

imaging recordings (Figures 5F–5I). Imaging was performed at



Figure 4. Neuropil Decontamination in SLS
(A) Left: a GCaMP6s-expressing layer IV cell. Right: the pixels belonging to the ROI (red), the local neuropil (green, local np), and the global neuropil (blue, global

np) are shown. SLS trajectory is shown in yellow and pixels at the border between the ROI and the local np were not considered (white, skipped).

(B) Black traces on the left: raw fluorescence signal over time from SLS on one representative cell (ROI), its corresponding local np, and the global np. Grey traces

on the right: PC1 computed from the combined pixels of all the ROIs (upper trace), PC1 of all local np regions (middle trace), and PC1 of the whole global np

(bottom trace).

(C) Pearson’s correlation between the PC1 of the signal from local np regions and the PC1 of the global np regions as a function surround region dimension (from

0 to 3 pixels). n = 172 ROIs from 11 SLS for each surround region value; paired t test, p = 1E-11 for surround 1 pixel versus surround 2 pixel; p = 0.04 for surround 2

pixel versus surround 3 pixels; p = 2E-9 for surround 3 versus surround 4 pixels.

(D) Pearson’s correlation between the PC1 of the ROI signal and the global np as a function of the surround region dimension (from 0 to 3 pixels). n = 90 ROIs from

5SLS for each surround region value; paired t test, p = 0.1 for surrond 0 pixel versus surround 1 pixel; p = 0.1 for surround 1 pixel versus surround 2 pixels; p = 0.96

for surround 2 versus surround 3 pixels.

(E) Left: raw fluorescence over time for four ROIs (black traces) acquired in SLS. Right: corrected fluorescence signals for the same four ROIs shown on the left

after neuropil decontamination (gray traces). Neuropil correction is obtained subtracting from the raw fluorescence traces the weighted PC1 of the global np

signal.

(F) Pearson’s correlation across ROIs before (raw) and after neuropil decontamination using different strategies (global np subtraction, local np subtraction, and

subtraction of theweighted PC1 of the global np). n = 3,656 ROI pairs from 11SLS;Wilcoxon rank-sum test, p = 0.02 for raw versus global np subtraction; p = 2E-4

for raw versus local np subtraction; p = 0.02 for raw versus PC1 of the global np; p = 0.08 for global versus local np subtraction; p = 0.07 for global np versus PC1 of

the global np subtraction; p = 0.01 for local np versus PC1 of the global np subtraction.
30–62.5 Hz in the SLS approach over tens of different cells.

Raster scanning was performed on small FOVs, including the

cell body of the recorded neurons and a small surrounding region

at 10–30 Hz. We found that the SNR of fluorescence events re-

cordedwith SLS at 30 Hz had a similar SNR of fluorescence tran-

sients recorded in the raster scanning at the same acquisition

frequency of 30 Hz (Figures 5G and 5H). Raster scanning at

10 Hz reduced the SNR associated with fluorescence transients

compared to 30 Hz. In contrast, SLS at 62.5 Hz increased the

SNR of fluorescence signals compared to that of events re-

corded at 30 Hz (Figure 5H). The accuracy in detecting a single

AP was an increasing function of the acquisition rate both in

SLS and in raster scanning (Figure 5I). Importantly, the accuracy

in detecting a single AP in SLS over a large group of cells was

higher than that recorded in raster scanning (Figure 5I), and it

reached the value of 0.9 at 62.5 Hz, close to that previously re-

ported for single cells in raster scanning at similar acquisition

frame rate (Chen et al., 2013), but scanned a much smaller
FOV including one or few cells. Altogether, these results demon-

strate that SLS allows us to obtain, at the population level, the

highest performance in detecting AP that raster scanning

achieves at the single-cell level, thus enabling high-accuracy

population imaging.

We investigated how the SNR and the accuracy in detecting

AP from fluorescence signals depended on the acquisition

rate and on the dwell time per cell. To this aim, we temporally

or spatially downsampled SLS and raster scanning acquisi-

tions. We found that downsampling lines (for SLS) or frames

(for raster scanning) in time led to a mild but significant

decrease in the SNR and in the accuracy in detecting APs

(Figures S7A–S7D1). In SLS, downsampling the acquisition

rate to half reduced the SNR by �7% and the accuracy by

�6% (Figures S7C and S7D). In raster scanning, downsampling

to one-third data from series acquired at 30 Hz led to SNR

and accuracy values higher than those obtained by raster

scanning a larger FOV containing the same cell at 10 Hz
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Figure 5. SLS Allows Single AP Resolution during Population Imaging

(A) GCaMP6s-expressing layer IV principal neurons. Yellow circles identify 155 neurons. (A1) SLS trajectory (yellow line) crossing all the identified cells.

(B and B1) Fluorescence over time from the two cells indicated in red in (A) in conventional raster scanning acquisitions (B) and SLS (B1). Blue ticks above traces

indicate whisker stimuli (duration: 200 ms).

(C and C1) Fluorescence over time of all cells shown in (A) (gray traces) during consecutive whisker stimulations and the average across cells (black trace) in raster

scanning (C) and SLS (C1).

(D) SNR of events in all raster scan series and all SLS acquisitions. n = 360 cells from 4 animals; paired t test, p = 5E-4.

(E) Fraction of cells responding to the whisker stimulation in raster scanning and SLS. n = 360 cells from 4 animals; paired t test, p = 4E-12.

(F–F3) Simultaneous juxtasomal recording and raster scan experiment from aGCaMP6s-expressing neuron at 10 Hz (F) and 30Hz (F1). The white line indicates the

recording pipette. The same cell in (F) is recorded using juxtasomal recording and SLS imaging in a much larger FOV at 30 Hz (F2) and 62.5 Hz (F3). The yellow line

in (F2) and (F3) represents the SLS trajectory across the different cells (white number). The same cells were differently numbered in SLS at 30 Hz and 62.5 Hz

because the SLS trajectory changed when the surround region was modified to change the scanning rate.

(G) Left: fluorescence over time acquired in raster scanning at 10 Hz (top) and electrophysiology recording (bottom). Right: fluorescence over time acquired in

raster scanning at 30 Hz (top) and electrophysiology recording (bottom).

(G1) The same as in (G) for SLS at 30 Hz (left) and at 62.5 Hz (right).

(legend continued on next page)
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(Figures S7C1 and S7D1). We observed a stronger dependence

of the SNR and accuracy on the number of pixels per cell (which

is proportional to the dwell time per cell). In SLS, decreasing the

number of pixels to half reduced the SNR by �31% and the ac-

curacy by �33% (Figures S7G and S7H). In raster scanning

mode, decreasing the number of pixels to half reduced the

SNR by �22% and the accuracy by �15% (Figures S7G1 and

S7H1). In summary, these results show that both the SNR and

the accuracy in detecting single APs depended on both the

acquisition rate and the dwell time per cell. However, these find-

ings also suggest a stronger dependence of SNR and accuracy

on the dwell time per cell rather than on the acquisition rate,

which is in line with the relatively slow kinetics of the GECI

GCaMP6s.

We controlled for potential photodamage introduced by the

SLS modality by performing one SLS acquisition, on average,

every 420 s for a total of 4 h. We found that the firing rate of

imaged cells recorded in juxtasomal configuration did not

change between the first and the 4th h of imaging sessions

(average firing rate estimated in 120 s: 0.29 ± 0.13 Hz during

the first hour versus 0.29 ± 0.08Hz during the 4th h of the imaging

session; paired t test, p = 0.85 from 4 FOVs in 4 anesthetized

animals). Moreover, the number of total GCaMP6s-expressing

cells and number of cells with a filled fluorescence in the FOVs

remained constant between the 1st and the 4th h of the imaging

session (total number of identified cells within the 1st h: 83 ± 28;

total number of identified cells within the 4th h: 83 ± 28; number

of filled cells within the 1st h: 2 ± 1; number of filled cells within

the 4th h: 2 ± 1; data from 4 FOVs in 4 anesthetized mice; paired

t test between distribution of total detected cells and filled cells

during 1st versus 4th hour, p = 1).

High-Accuracy Mapping of Neural Ensembles in Awake
Mice
We used SLS to characterize population dynamics in anesthe-

tized and awake animals during spontaneous and sensory-

evoked activities. We first aimed for the identification of neuronal

ensembles comparing results between imaging sessions

acquired using raster scan and SLS. SLS traces were classified

according to acquisition rate in 3 classes: 0–20 Hz, 20–40 Hz,

and >40 Hz. Ensemble detection was performed as described

in Miller et al. (2014) (see STAR Methods). We found that func-

tional ensembles were more frequently observed in SLS acquisi-

tions than in raster scanning (Figure 6A). Indeed, ensemble rate

was higher for SLS than for raster scanning during spontaneous

and sensory-evoked activities in both anesthetized (Figure 6B)

and awake mice (Figure 6C). The increased ensemble rate

observed in SLS could be due to the increased acquisition rate

in this modality than in raster scanning. To control for this, we

downsampled SLS acquisitions to match the acquisition rate

of raster scanning. We found that the ensemble rate of sponta-

neous and sensory-evoked activities was still higher in
(H) SNR of fluorescence events associated to isolated APs (see STAR Methods

Wilcoxon rank-sum test; p = 5E-4 for raster scan at 10 Hz versus raster scan at 3

30 Hz versus SLS at 62.5 Hz.

(I) Accuracy of single AP detection under the different conditions. n = 16 acquisitio

10 Hz versus raster scanning at 30 Hz; p = 0.01 for raster scan at 30 Hz versus S
downsampled SLS than in raster scanning in both anesthetized

(Figure 6D) and awake mice (Figure 6E), suggesting that the

increased rate of ensembles in SLS might be due to increased

accuracy in detecting small calcium events. In agreement with

this, we observed that the rate of detected calcium events for

spontaneous and sensory-evoked activities was higher for SLS

than for raster scanning in both anesthetized (Figure 7A, left)

and awake mice (Figure 7B, left). The higher calcium event rate

in SLS was still observed when SLS acquisitions were down-

sampled to match the acquisition frequency of raster scanning

(Figures 7A and 7B, right). The coactivity threshold (left panels

in Figures S8A and S8B) was lower and the time to peak of cal-

cium events (Figures S8C and S8D) was smaller in SLS than in

raster scanning. Moreover, we defined ‘‘small’’ calcium events

as those events with amplitude below a certain threshold

compared to local maxima in the fluorescence trace (Figure S9A;

see also STARMethods for details). The amplitude of these small

events was smaller in SLS than in raster scanning (Figures 7C

and 7D; Figure S9B).

We used a non-negative matrix factorization (NMF) to

decompose the spatial pattern of calcium activity observed

across ROIs at each instant of time where an ensemble was de-

tected into the sum of a given number of activity patterns that

mostly recurred during the recording (called modules) with

non-negative activation coefficients. We calculated the per-

centage of variance accounted for (VAF) of calcium signals by

using a spatial NMF decomposition of imaging data when

increasing the number of spatial modules used to decompose

neural activity (see STAR Methods). To quantify the diversity

of spatial patterns of activity expressed at each instant of

time, we quantified how the VAF depended on the number of

spatial modules used in the NMF decomposition (the number

was normalized to the maximal number of possible modules,

which was equal to the number of ROIs). The more modules

were needed to reach a given percentage of VAF, the more

diverse were the patterns expressed by neural activity. We

found that higher numbers of modules were needed to reach

a given VAF level for SLS than for raster scanning (Figures

S9D and S9E), suggesting that SLS picked a more diverse

range of instantaneous spatial activation patterns than the

raster scan did. Upon downsampling of SLS (SLS binned in Fig-

ures S9D and S9E), this difference in VAF was no longer

observed, suggesting that this was due to the higher acquisition

rate obtained in SLS. Moreover, the spatial sparseness of func-

tional modules (computed in each FOV using the number of

modules giving 50% of VAF) was higher in SLS than in raster

scanning (Figure S9F), suggesting that instantaneous firing pat-

terns captured by SLS were more spatially concentrated than

those captured by the raster scans. Taken together, the results

of more diverse and more spatially localized instantaneous

firing patterns suggest that SLS separates into finer instanta-

neous spatial patterns than what would have been artificially
) under the different conditions. n = 16 acquisitions from 8 FOVs in 4 animals;

0 Hz; p = 0.12 for raster scan at 30 Hz versus SLS at 30 Hz; p = 7E-3 for SLS at

ns from 8 FOVs in 4 animals; Wilcoxon rank-sum test; p = 2E-3 for raster scan at

LS at 30 Hz; p = 2E-3 for SLS at 30 Hz versus SLS at 62.5 Hz.
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Figure 6. Increased Rate of Detected Neural Ensembles in SLS

(A) Top: functional ensembles (red dots) detected in an awake animal using raster scan imaging (frame rate: 0.8 Hz). Bottom: functional ensembles (red dots)

detected in the experiment shown in the top panel using SLS (frame rate: 48 Hz). The gray vertical shades indicate whisker stimuli. Blue dots indicate active

neurons not belonging to any ensemble.

(B and C) Rate of detected ensembles in anesthetized (B) and awake (C) animals under the different conditions. Data are classified according to modality (raster

or SLS at different acquisition rates) and to the type of activity (spontaneous or air puff stimulation). Spontaneous activity in (B): n = 6 for raster, n = 6 for SLS at

0–20Hz, n = 6 for SLS at 20–40Hz, n = 3 for SLS at >40Hz from 6 anesthetizedmice. Paired t test, p = 0.01 for raster versus SLS 0–20Hz, p = 3E-7 for raster versus

SLS 20–40 Hz; unpaired t test, p = 6E-8 for raster versus SLS >40 Hz. Air puff stimulation in (B): n = 20 for raster, n = 15 for SLS at 0–20 Hz, n = 13 for SLS at 20–

40 Hz, n = 7 for SLS at >40 Hz from 6 anesthetizedmice. Unpaired t test, p = 1E-7 for raster versus SLS 0–20 Hz, p = 6E-8 for raster versus SLS 20–40 Hz, p = 6E-7

for raster versus SLS >40 Hz. Spontaneous activity in (C): n = 5 for raster and n = 4 for SLS at 0–20 Hz from 2 awake mice; unpaired t test, p = 4E-9. Air puff

stimulation in (C): n = 7 for raster and n = 8 for SLS at 0–20 Hz from 2 awake mice; unpaired t test, p = 4E-9.

(D and E) Same as in (B) and (C) but for SLS downsampled to match the acquisition frequency of raster scanning (Acq. freq. match). Spontaneous activity in (D):

paired t test, p = 0.01 for raster versus SLS 0–20 Hz, p = 1E-4 for raster versus SLS 20–40 Hz; unpaired t test, p = 5E-5, for raster versus SLS >40 Hz. Air puff in (D):

unpaired t test, p = 2E-6 for raster versus SLS 0–20 Hz, p = 7E-7 for raster versus SLS 20–40 Hz, p = 3E-5 for raster versus SLS >40 Hz. Spontaneous activity in (E):

unpaired t test, p = 2E-7. Air puff stimulation in (E): t test, p = 3E-7. Unpaired t test, p = 0.01, for raster in spontaneous versus raster in air puff stimulation.
collated into a single, less spatially localized instantaneous acti-

vation pattern by the raster scanning. These findings are

consistent with an increased precision of population imaging

by using SLS compared with raster scanning as a combined ef-

fect of both increased scanning speed and higher SNR. Indeed,

although temporal downsampling of SLS decreased the VAF to

raster scan levels (Figures S9D and S9E), ensemble rate re-

mained higher (Figures 6D and 6E).

If SLS allowed a more precise characterization of ensemble

activity than raster scanning, more accurate decoding of the

external state (air puff presence/absence) from SLS trajectories

should be expected. To test this hypothesis, we trained a sup-

port vector machine (SVM) (Bzdok et al., 2018) on 50% of data

and tested classification performance on the remaining 50%

of data. We found that SVM decoded the presence/absence

of the sensory stimulus with higher accuracy in SLS acquisitions

than raster scanning (see STAR Methods; accuracy above

chance level for SLS: 0.09 ± 0.02, n = 30; accuracy above chance

level for raster scan: 0.01 ± 0.03, n = 20; Wilcoxon rank-sum

test, p = 3E-8).
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DISCUSSION

We developed a method, SLS, to increase the SNR in popula-

tion GCaMP6 imaging. SLS combines image segmentation

using pixel-wise statistics and line scan trajectories, and it

samples only the pixels with the most information within

each cell. SLS allowed population imaging with single AP resolu-

tion, and it increased the frequency of detected neuronal ensem-

bles compared to raster scanning. The observed increase in

ensemble frequency was paired with increased frequency of

detected calcium events and decreased average amplitude of

small calcium events. This suggests that SLS allows a richer

description of neural ensembles because of increased accuracy

in detecting small events associated with low firing rates or

low GCaMP6 expression levels. In agreement with this conclu-

sion, (1) the coactivity threshold was smaller in SLS than in

raster scanning, (2) a larger number of modules in the NMF

decomposition had smaller VAF in SLS than in raster scanning,

and (3) the sparseness of modules explaining 50% of variance

was larger for SLS than for raster scanning.



Figure 7. Increased Rate of Detected Calcium Events in SLS

(A) Left: rate of detected calcium events in anesthetized animals under the different conditions. Right: rate of detected events with downsampling of SLS tomatch

the acquisition rate of raster scanning. Spontaneous activity: n = 6 for raster, n = 6 for SLS at 0–20 Hz, n = 6 for SLS at 20–40 Hz, n = 3 for SLS at >40 Hz from 6

anesthetized mice. Left: paired t test, p = 0.32 for raster versus SLS 0–20 Hz, p = 4E-3 for raster versus SLS 20-40 Hz; unpaired t test, p = 1E-4 for raster versus

SLS >40 Hz. Right: paired t test, p = 0.02 for raster versus SLS 0–20 Hz, p = 1E-4 for raster versus SLS 20–40 Hz; unpaired t test p = 1E-4 for raster versus SLS

>40Hz. Air puff stimulation: n = 20 for raster, n = 15 for SLS at 0–20 Hz, n = 13 for SLS at 20–40 Hz, n = 7 for SLS at >40Hz from 6 anesthetizedmice. Left: unpaired

t test, p = 0.01 for raster versus SLS 0–20 Hz, p = 1E-4 for raster versus SLS 20–40 Hz, p = 1E-4 for raster versus SLS >40 Hz. Right: unpaired t test, p = 1E-4 for

raster versus SLS 0–20 Hz, p = 3E-6 for raster versus SLS 20–40 Hz, p = 6E-8 for raster versus SLS >40 Hz.

(B) Same as in (A) for awake mice. Spontaneous activity: n = 5 for raster and n = 4 for SLS at 0–20 Hz from 2 awakemice. Unpaired t test, p = 4E-6 and p = 9E-6 for

left and right panels. Air puff stimulation: n = 7 for raster and n = 8 for SLS at 0–20 Hz from 2 awake mice. Unpaired t test, p = 2E-8 and p = 6E-8 for left and right

panels.

(C) Normalized amplitude of events under the different conditions in anesthetized mice. Same dataset as in (A). Spontaneous activity: paired t test, p = 6E-8

for raster versus SLS 0–20 Hz, p = 6E-8 for raster versus SLS 20–40 Hz; unpaired t test, p = 6E-8 for raster versus SLS >40 Hz. Air puff stimulation: unpaired t test,

p = 6E-8 for raster versus SLS 0–20 Hz, p = 6E-8 for raster versus SLS 20–40 Hz, p = 6E-8 for raster versus SLS >40 Hz.

(D) Same as in (C) for awakemice. Number of acquisitions for each condition as in (B). Spontaneous activity: unpaired t test, p = 2E-6. Air puff stimulation: unpaired

t test, p = 1E-7.
These results are of importance to identify the circuit mecha-

nisms underlying behavior because they allow better correlation

of activity patterns with behavioral variables. In line with this, the

improved accuracy in detecting ensemble activity was associ-

ated with better performance of SVM in decoding the pres-

ence/absence of the sensory stimulus. These findings are also

relevant for all optical imaging and holographic manipulation ap-

proaches, where precise identification of neural ensembles is the

first crucial step to guide subsequent optogenetic manipulations

(Forli et al., 2018; Packer et al., 2015; Panzeri et al., 2017).

Different line scan methods have been developed to increase

frame rate by reducing the number of scanned pixels. These

methods have been so far applied in vitro and in anesthetized an-

imals (Kim et al., 2012; Langer et al., 2013; Lillis et al., 2008;

Sadovsky et al., 2011; Schuck et al., 2018; Valmianski et al.,

2010). However, previous line scan approaches have not been

extensively applied in awake animals and to GECI, the most

commonly used class of functional indicators nowadays. More-
over, previous work did not extensively address the issue of neu-

ropil decontamination nor that of dealing with motion artifacts.

Building on those important studies, the SLS method that we

described here is characterized by important additional imple-

mentations. First, SLS is generated to maximize SNR from

each cell in a pixel-parsimonious way (on average 25% of the

cell’s pixels are scanned in SLS), allowing for signal quality

improvement and fast acquisition rates (30–120 Hz for hundreds

of cells). Second, we applied SLS to image GCaMP6s, achieving

high accuracy in detecting AP in population imaging. This

allowed better detection of small calcium signals associated

with the discharge of isolated APs at the level of neuronal popu-

lation, a result obtained so far imaging only individual or few cells

(Chen et al., 2013). Third, we implemented background subtrac-

tion in SLS by using different strategies. Fourth, we devised a

strategy to identify large movement artifacts, and we imple-

mented a method to try to compensate for small movements.

In raster scanning imaging, movement artifacts are usually
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corrected for by using various methods, which rely on the

anatomical features contained in the image (Dubbs et al.,

2016; Pnevmatikakis and Giovannucci, 2017). In SLS, compen-

sation for motion distortions during acquisition was achieved

incorporating a surround region for each ROI and then relying

on SNR-based pixel reassignment in a sliding window of 10 s

(the sliding windowwasmoved in the temporal axis by one frame

at a time).

The pixel reassignment procedure did not allow frame-by-

frame correction for motion artifacts. Moreover, the autoregres-

sive procedure allowed the identification of largemotion artifacts

but required us to discard data after the detection of one such

event. To achieve frame-by-frame correction of motion artifacts,

an approach similar to Nadella et al. (2016) and Szalay et al.

(2016) could be developed. Additionally and in a more complex

experimental design, the movement-induced ROI shift in the X

and Y directions for each ROI could be recovered by imaging a

second static red channel by using raster scanning with an inde-

pendent scan head. Alternatively and assuming rigid movement

of the whole FOV during motion artifacts, the X and Y shifts for

ROIs could be recovered from the reference patch.

SLS could also be achieved steering the beam with acousto-

optic deflectors (AODs) (Akemann et al., 2015; Duemani Reddy

et al., 2008; Grewe et al., 2010; Nadella et al., 2016; Otsu

et al., 2008) rather than galvanometric mirrors. This would have

the advantage of removing the correlation between the time

needed to steer the beam from one position to another and the

physical distance between the two beam positions. However,

AODs introduce significant limitations, such as spatial distortions

of the beam, significant increase in the group dispersion velocity,

relatively small FOV, and high costs. In contrast, the approach

described in this study reduces costs and it is applicable to

most galvanometric mirror-based scopes.

Optimization of the fluorescence excitation based on pixel-

wise SNR may increase the SNR and reduce photodamage in

functional voltage and calcium imaging using holographically

sculpted light schemes (Bovetti et al., 2017; Castanares et al.,

2016; Dal Maschio et al., 2010; Foust et al., 2015; Nikolenko

et al., 2008; Szabo et al., 2014; Tanese et al., 2017; Yang et al.,

2015). SLS is characterized by high SNR and high acquisition

rates. Thus, future applications of this technology may facilitate

time-resolved lifetime fluorescence (Zheng et al., 2018) and

voltage imaging (Chamberland et al., 2017; Xu et al., 2017). How-

ever, when implementing SLS to image indicators with faster ki-

netics than GCaMP6, the tradeoff between acquisition rate and

dwell time per cell will probably need to be reconsidered. Reso-

nant raster imaging may achieve frame rates of 30 Hz that are

comparable with the acquisition rates of some of the SLS record-

ings presented in this study. However, SLS can achieve higher

frame rates and it is characterized by an inherently higher ratio

between the cellular dwell time and total frame time than imaging

with resonant mirrors. For this reason, SLS may be particularly

useful in the presence of sparse cellular labeling such that

observed in some transgenic animal models expressing GECIs

(Chen et al., 2012; Song et al., 2017) and when imaging specific

classes of interneurons (Ebina et al., 2014; Kato et al., 2013) or

small astrocyte structures displaying fast calcium kinetics (Bind-

occi et al., 2017; Stobart et al., 2018). Future developments of
2578 Cell Reports 30, 2567–2580, February 25, 2020
SLSmay include 3DSLS using electrically tunable lenses (Grewe

et al., 2011), two-color SLS, and SLS of functional indicators

combined with holographic optogenetic stimulation (Bovetti

and Fellin, 2015; Forli et al., 2018; Mardinly et al., 2018; Packer

et al., 2015; Papagiakoumou et al., 2010; Yang et al., 2018).

In conclusion, we developed a method for population imaging

of GCaMP6 with single AP resolution in anesthetized and awake

head-fixed rodents. This technique is easily implementable on

commercial scanning two-photon microscopes, allowing pre-

cise identification of neural ensembles during population imag-

ing in vivo with no change in the microscope optical pathway.
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neous all-optical manipulation and recording of neural circuit activity with

cellular resolution in vivo. Nat. Methods 12, 140–146.

Panzeri, S., Harvey, C.D., Piasini, E., Latham, P.E., and Fellin, T. (2017).

Cracking the Neural Code for Sensory Perception by Combining Statistics,

Intervention, and Behavior. Neuron 93, 491–507.
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Song, C., Do, Q.B., Antic, S.D., and Knöpfel, T. (2017). Transgenic Strategies

for Sparse but Strong Expression of Genetically Encoded Voltage and Calcium

Indicators. Int. J. Mol. Sci. 18, E1461.

Stobart, J.L., Ferrari, K.D., Barrett, M.J.P., Gl€uck, C., Stobart, M.J., Zuend, M.,

andWeber, B. (2018). Cortical Circuit Activity Evokes Rapid Astrocyte Calcium

Signals on a Similar Timescale to Neurons. Neuron 98, 726–735.e4.

Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A. (2003). In vivo two-

photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100,

7319–7324.

Sun, W., Tan, Z., Mensh, B.D., and Ji, N. (2016). Thalamus provides layer 4 of

primary visual cortex with orientation- and direction-tuned inputs. Nat. Neuro-

sci. 19, 308–315.

Szabo, V., Ventalon, C., De Sars, V., Bradley, J., and Emiliani, V. (2014).

Spatially selective holographic photoactivation and functional fluorescence

imaging in freely behaving mice with a fiberscope. Neuron 84, 1157–1169.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All experiments were carried out according to the guidelines of the European Communities Council Directive and approved by the

Istituto Italiano di Tecnologia (IIT) Animal Health Regulatory Committee and by the National Council on Animal Care of the Italian

Ministry of Health (authorization #34/2015-PR). Animals used in this study were obtained by crossing B6;C3-Tg(Scnn1a-cre)

3Aibs/J (JAX #009613, called Scnn1a-cre line) with C57BL/6J mice (Charles River, Calco, Italy), or, for Figure S1, with B6;129S6-

Gt(ROSA)26Sortm14(CAG-TdTomato)Hze/J (JAX #007908, tdTomato line). All transgenic strains were purchased from the Jackson

Laboratory (Bar Harbor, USA). Animals were housed in individually ventilated cages under a 12-hr light:dark cycle. A maximum of

five animals per cage was allowed. Access to food and water was ad libitum. Data included in the present work come from a total

of 16 animals (both sexes).
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METHOD DETAILS

Viral injections
AAV1.Syn.Flex.GCaMP6s.WPRE.SV40 was purchased from the University of Pennsylvania Viral Vector Core. Viral injections were

performed on postnatal days 30-33 (P30–P33). Animals were anesthetized with 2% isoflurane/0.8% oxygen, placed into a stereo-

taxic apparatus (Stoelting Co, Wood Dale, IL), and maintained on a warm platform at 37�C for the whole duration of the anesthesia.

After scalp incision, two small holes were drilled on the skull above the somatosensory cortex at stereotaxic coordinates [-1.2, �2]

mm from bregma in the antero-posterior direction and [2.8, 3] mm in the lateral direction to lower the micropipette into the tissue

(pipette depth: 0.3 - 0.4 mm from the pia) at the two sites. 200 nL of virus were injected at 20 - 60 nl/min at each site by means of

a hydraulic injection apparatus driven by a syringe pump (UltraMicroPump, WPI, Sarasota, FL). The injected solution contained viral

particles in 1012 genomes/ml diluted 1:1 in artificial cerebro-spinal fluid (aCSF). At the end of the procedures, the skull was cleaned

and the skin incision sutured and cleansed with betadine. Animals were monitored until full recovery and experiments performed

10-20 days after the injection.

In mice used for imaging in awake conditions (see below), a custommetal plaque was sealed on the skull to assurance stable head

fixation during two-photon imaging using vetbond (3 M, St. Paul, MN, USA) and dental cement (Paladur, Kulzer GmbH). The exposed

bone was covered using the silicone elastomer KWIK-Cast (World Precision Instruments, Friedberg, DE) and an intraperitoneal

injection of antibiotic (BAYTRIL, Bayer, DE) was performed.

Animal preparation for two-photon imaging
For imaging in anesthetized animals, mice were injected intraperitoneally with urethane (16.5%, 1.65 g/kg). The scalp was cut after

infiltrating all incisions with lidocaine (2%). Using an epifluorescence stereoscope, the position of brighter fluorescence emission

within the somatosensory cortex was identified and a custom made plastic chamber with a central hole (hole diameter: 4 mm) posi-

tioned on top of the high fluorescence region was attached with dental cement to the animal’s skull for head-fixation (Bovetti et al.,

2017). A craniotomy was opened over the targeted cortical area while leaving the meninges intact. The craniotomy was round and

�0.5mm in diameter for imaging experiments and rectangular (0.5mmx 2mm) for combined imaging and juxtasomal recordings (see

below). The surface of the brain was kept moist with normal HEPES-buffered aCSF composed of: 127 mM NaCl, 3.2 mM KCl, 2 mM

CaCl2, 1 mMMgCl2 and 10 mM HEPES [pH 7.4] at 37�C. Body temperature was maintained at 35�C with a heating pad. Respiration

rate, heartbeat, eyelid reflex, vibrissae movements, and reactions to tail pinching were typically monitored throughout the surgery.

Once the craniotomy was performed, animals were moved under the two-photon microscope, the body temperature kept at 37�C,
and the brain surface irrigated with aCSF maintained at 35-36�C. Imaging session began one hour after the end of the surgeries

procedures.

For experiments in awake animals, mice were trained for a period of 7–10 days to head fixation before two-photon imaging was

performed. During this training period, animals were head restrained for increasing temporal windows (from 15 minutes to one hour)

and free to run on a wheel. On the day of the experiment, the habituated animal was anesthetized with isoflurane (2%) to perform a

craniotomy with procedures similar to the ones described above. After surgery, the animal was head fixed and allowed to recover

under the microscope for at least one hour before imaging.

Raster scanning and SLS two-photon imaging
Two-photon GCaMP6s imaging was performed using a chameleon ultra II pulsed laser (80MHz pulse frequency, Coherent, Milan, IT)

tuned at 920 nm. The range of excitation power under the objective was assessed with a power meter and typically set between 30

mW and 90 mW for layer IV imaging. An Ultima II scanhead (Bruker Corporation, Milan, IT) and an Olympus 25X 1.05 N.A.

(XLPLN25XWMP2, Olympus, Milan, IT) were used for two-photon imaging. The scanhead (Bruker Corporation, Milan, IT) was equip-

ped with a pair of galvanometric mirrors (open aperture 3 mm, 6215H, Cambridge Technology, USA). The driver board of the galva-

nometric mirrors was customized (named 6SPRAIRIE5, Cambridge Technology, USA) and it was calibrated in-house by the scan-

head producer (Bruker Corporation, Milan, IT) for fast settling with a 1 V step response. No high power option was used. For

raster scanning and line scan imaging, the dwell time was fixed at 4.4 ms, the photomultiplier voltage to 777 V, the zoom factor to

1 for all experiments. The FOV surface was adjusted in each experiment according to the number and position of GCaMP6 express-

ing cells. Pixel size 0.77 mm. Excitation power was adjusted to obtain pixel values across 95% of the available dynamic range (16 bit).

Semi-automatic FOV segmentation and generation of SLS trajectories
To generate SLS trajectories, a reference raster scanning t-series was first acquired (60-100 frames). Manual identification of the cen-

ter of individual cells was performed on the average temporal projection of the t-series or frame by frame (Figure 2). A square box was

then generated and centered on the selected positions. The box dimensions were visually adjusted to best fit the cell perimeter. The

average lateral dimension of the box (11.8 ± 0.7 mm, Figure 2) was not observed to vary considerably across cells in a given t-series.

The dimension of the first box in a t-series was then typically used to fit the vastmajority of visible cells, speeding up the segmentation

process. Upon selection of one box, the software identified the frame displaying the highest fluorescence value in that box across
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frames of the t-series. At this point, pixels inside each box were ranked according to their SNR (from high SNR to low SNR) and the

average SNR across selected pixels was plotted as a function of number of selected pixels. The SNR of the pixel i,j, SNRi,j, was

defined as:

SNRi; j =

max
t˛ t1;t2½ �

Fi; j tð Þ
noisei; j

wheremax Fi,j(t) is the maximum fluorescence intensity of the pixel i,j over the considered time interval Dt = t2-t1, 1 < i < Nx, 1 < j < Ny,

Nx and Ny are the number of image pixels in the x and y direction, and noisei,j was computed as the standard deviation across all

fluorescence values below the 25th percentile of the fluorescence distribution of the pixel i,j in the same time interval Dt. The SNR

of the ROI was computed as follows:

SNR =

max
m˛½½1;M�

CFmðtÞD

noise

wheremax < Fm(t) > is the maximum of the average intensity of individual pixels over time, < Fm(t) > , for the M pixels belonging to a

given ROI in the time interval Dt (with t1 < t < t2 and 1 < m < M). noise was computed as the standard deviation across all fluores-

cence values below the 25th percentile of the fluorescence distribution of the M different pixels belonging to the ROI in the time

interval Dt.

These plots typically showed a peak followed by a plateau or a decrease (Figure 2E). The software automatically identified the

maximum of the SNR plot for one box (this value could be adjusted by the user if needed). All pixels with SNR higher than or equal

to the maximum of the average SNR plot were chosen as representative for the cell corresponding to the considered box. We

observed that the number of pixels used tomaximize the SNR in one cell was different across cells and it typically ranged between 30

and 50. Once iterated across boxes, this procedure returned a set of pixels for each cell with no overlap across pixels belonging

to different cells. Neuropil and nuclear regions were typically excluded because of their low SNR. When all visible cells

were identified, a genetic algorithm (https://www.mathworks.com/matlabcentral/fileexchange/13680-traveling-salesman-problem-

genetic-algorithm) was used to determine the optimal path for the SLS. Each selected pixel was scanned by the SLS trajectory and

the sequence of cells was selected to produce the shortest trajectory. The first and the last pixels of the SLS trajectory were chosen

from two adjacent cells in order to generate a closed path and reduce fly-back time (Sadovsky et al., 2011) (http://macleanlab.

uchicago.edu/software/). A surround region was then added to the trajectory. The surround region covered the area around the pixels

which were previously found tomaximize the SNR in the ROIs (ROI pixels). The dimension of the surround area could be adjusted and

it was determined as including those pixels with distance 0, 1, 2, 3 pixels from the ROI pixels (with the value 0, 1, 2, 3 selected by the

user). All the SLS trajectories were saved as .xml files, a format compatible with the image acquisition system. Computation time for

the generation of line scan trajectories was < 10 s. The number of line scan trajectories was directly controlled in the image acquisition

software. When comparing between raster and SLS all acquisition parameters (pixel dwell time, pixel size, laser power, etc.) were

kept constant. No visible sign of photodamage or photobleaching was observed during prolonged SLS.

When test trajectories were used to measure the temporal lag between the command signal and feedback signals as a function

of the angle between successive segments of the line trajectory, each test trajectory was composed of regular polygons with a

lateral size of 20 pixels. The angles between segments increased across trajectories in step of 20� in the range [20�, 160�] and
polygons were repeated several times along the horizontal side of the FOV. Individual polygons were separated by horizontal

segments.

Combined two-photon imaging and juxtasomal electrophysiological recording
Temporal series from GCaMP6s expressing neurons were acquired in the raster scanning configuration at 10 Hz or 30 Hz and in the

SLS at 30 Hz or 62.5 Hz while simultaneously recording the spiking activity of one of the imaged neurons with a patch pipette. To

collect imaging sessions at the specific acquisition rates listed above, the dimensions of the field of view (for raster scanning) and

of the surround regions (for SLS) were adjusted accordingly. Two-photon targeted juxtasomal electrophysiological recordings

were performed as previously described (De Stasi et al., 2016; Zucca et al., 2017). Borosilicate glass pipettes had resistance of

7 - 12 MU (tip diameter: 1 - 1.2 mm) and were filled with aCSF mixed with Alexa Fluor 488 (20 mM) for pipette visualization. Neurons

were identified and targeted based on the signal generated by the cellular fluorescent reporter (GCaMP) using two-photon excitation

at l = 920 nm. Glass pipettes were inserted with a shallow angle (�25�) in the brain tissue and slowly advanced toward the targeted

neuron. Once the pipette reached the proximity of the target cell, gentle suction was applied until the resistance between the cell

membrane and the glass reached a value between 50 MU and 300 MU. Electrophysiological signals were amplified and filtered at

8 kHz by a MultiClamp 700B amplifier (Molecular Devices, Sunnyvale, CA) and digitized at 10 kHz using a Digidata 1440A (Molecular

Devices, Sunnyvale, CA).
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Whisker stimulation
A picospritzer (Intracel, Royston Herts, UK) was used to deliver a train of 4 air puffs (duration, 200 ms; pressure, 1.5 psi) with duty

cycle 0.5. Each stimulation trial consisted of 4 trains at 0.5 Hz. The picospritzer output was relayed with tygon tubing to a syringe

needle placed in proximity of whisker field contralateral to the imaging site.

Image analysis
In order to classify fields of view according to the GCaMP6s expression levels across animals, we measured the average fluores-

cence in the whole FOV and across the whole t-series from reference t-series acquired in raster scan mode from different animals

(N = 8 t-series from 8 anesthetized animals). FOVs with the 4 largest average values of fluorescence were classified as belonging

to high expressing animals, while the remaining 4 as belonging to low expressing animals (average absolute fluorescence intensity

from 4 high expressing animals: 2,657 ± 605 bit; average absolute fluorescence intensity from 4 low expressing animals: 1,526 ± 181

bit, Wilcoxon rank-sum test p = 0.012). The percentage of filled cells with high expression level was not different in high and low

expressing FOVs (0.5 ± 0.3% N = 4 in high expressing FOVs and 0.6 ± 0.3% N = 4 in low expressing FOVs, Wilcoxon rank-sum

test p = 0.5).

Processing of GCamp6 t-series
Motion correction and neuropil decontamination

For t-series acquired with conventional raster scan, we first corrected for motion artifact using (https://github.com/flatironinstitute/

NoRMCorre) and then processed them. Neuropil decontamination was performed subtracting from each ROI the time course of the

average fluorescence intensity measured in visually identified neuropil regionmultiplied by a factor a = 0.7 (Chen et al., 2013). For SLS

series, we extracted the fluorescence activity of each pixel in the SLS and then used a strategy based on dimensionality reduction to

detect large motion artifacts. We reduced the dimensionality of our data by projecting each data point onto the first principal compo-

nent (PC1, the onewith the largest variance). PC1 accounted, on average across sessions, for 15.5 ± 9.2%of the variance of the data.

The algorithmwe used to compute PCAwas the standard one based on single value decomposition and implemented in theMATLAB

function ‘‘pca.’’ In more detail, we considered the time vector of the first term in the SVD of the [num SLS pixel] x [num frames] raster

and assumed that neural activity was characterized only by smooth variations in the SLS raster. We fitted the time vector using an

autoregressive model with order p = 2 (AR(2)) (Pnevmatikakis et al., 2016) and computed the correlation between the time vector and

its fit using a sliding window of �10 s (the sliding window was moved in the temporal axis by one frame at a time). If the correlation

coefficient dropped below a threshold value set to 0.3, a large motion artifact was detected and the line scan acquisition was dis-

carded from the time of detection of the artifact to the end of the SLS acquisition. For SLS acquisitions, the neuropil signal was sub-

tracted using three different strategies. In the first, we implemented a neuropil subtraction strategy based on pixels labeled as back-

ground. We considered as neuropil activity the time vector of the first term in the SVD of the [num global np px] x [num frames] raster,

we multiplied this time vector by a constant factor (0.7; Chen et al., 2013), and we subtracted the resulting value from the activity of

each ROI. This first component accounted for the largest variability in background pixels (fraction of variance explained by first

component 12.4 ± 7.7%). In the second method, we implemented a local neuropil decontamination strategy similarly to Chen

et al. (2013). For each ROI, we considered as neuropil activity the time vector of the first term in the SVD of the [num local np px]

x [num frames] raster (fraction of variance explained by first component 33.4 ± 15.1%), we multiplied this time vector by a constant

factor (0.7; Chen et al., 2013), and we subtracted the resulting value from the activity of the ROI. Given the limited number of pixels in

the surround, this secondmethod could be implemented only with trajectories with surround > 1 pixel. In the thirdmethod, we applied

a neuropil decontamination strategy based on PCA of the ROIs signal, instead of the single pixels signal. We computed the [num

ROIs] x [num frames] raster, by averaging the activity of pixels assigned to the same ROI (and to its surround). Therefore, each

row in the raster represents the fluorescence activity of a ROI. We considered as neuropil activity the time vector of the first term

in the SVD of this raster (fraction of variance explained by first component 55.9 ± 12.1%). The coefficient relative to each ROI in

the first principal score represents the ROI’s projection on the first principal direction used for the decomposition. In this third

case, for each ROI we used this coefficient as a weight for the neuropil activity and then subtracted the weighted neuropil from

the ROI’s activity. All considered neuropil decontamination strategies resulted in decreased pairwise correlation in the estimated

fluorescence trace of ROIs acquired with SLS.

To compensate for potential small movement artifacts within each ROI + surround region, we reassigned pixels based on their SNR

value after the neuropil decontamination. If N pixels were originally identified during the SLS trajectory identification, we searched for

the N pixels with highest SNR within the ROI + surround region in a sliding window of 10 s (the sliding window was moved in the tem-

poral axis by one frame at a time) and we considered only these reassigned pixels for further processing.

Segmentation and ROIs detection

For raster scan series, the segmentation of the FOVwas donewith the semi-automatic procedure described above. For SLS series, to

assign pixels to relevant cellular areas, we used the ROIs obtained in the segmentation process used to identify the SLS trajectory

(see above). Pixels were assigned to one of the following three groups: i) pixels belonging to ROIs (if the distance between the pixel

and a reference ROI was smaller than 1 pixel); ii) pixels in the surround of a ROI (if the distance between the pixel and a reference ROI
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was larger than 2 pixels and smaller than 4 pixels); iii) pixels in the background (if the distance between the pixel and all reference ROIs

was larger than 4 pixels). If a pixel fell intomore than one group or did not belong to any class, that pixel was not assigned to any of the

groups.

Calcium activity extraction and events detection

Fluorescence traceswere displayed as non-negative raw signal,DF(t)/F0 = (F(t)-F0)/F0 (where F(t) is the fluorescence at time t, F0 is the

fluorescence intensity in periods of no activity and negative values ofDF(t)/F0 are set to 0) or processed using NMF and deconvolution

(https://github.com/flatironinstitute/CaImAn-MATLAB). For each ROI fluorescence values below the 25th percentile of the average

trace are regarded as periods of no activity (Sun et al., 2016). Values from all pixels in a given ROI were averaged to obtain fluores-

cence signal of that ROI. Detection of fluorescence events was performed on DF/F0 traces. A fluorescence event was detected at

time t if: i) it occurred outside the baseline periods; ii) the fluorescence amplitude at time t was above the 50th percentile of average

ROI signal; iii) the time to peak was compatible with GCaMP6s dynamics. The time of the fluorescence event was set as the time of

the fluorescence peak. Stimulus-evoked fluorescence events (Figures 5, 6, and 7) were detected in a response window of 2 s

following the stimulus and the baseline fluorescence in a 7 s continuous no activity period preceding the sensory stimulus. Fluores-

cence events were classified as large or small based on whether their amplitude was higher or respectively lower than a threshold

value placed at the 50th percentile of their amplitude distribution.

In combined imaging and electrophysiological recordings (Figure 5), isolated APs (and associated fluorescence events) were

defined as those APs which were preceded or followed by a period of no activity (no APs) of 0.4 s and 1 s, respectively. In electro-

physiological recordings, traces were high-pass filtered (corner frequency, 100 Hz) and APs were detected based on a threshold cri-

terion set at two times the standard deviation of trace average value in a 10 s period of no activity. Precise temporal alignment of

electrophysiological recordings, imaging data, and sensory stimulation was achieved through TTL signals.

The SNR was defined as the absolute maximum fluorescence value in each ROI from a given t-series (from either raster scan or

SLS) divided by the standard deviation of the fluorescence values of all the no activity periods. In the case of air puff whisker stim-

ulation, a cell was considered responsive if at least one fluorescence event was detected in the stimulus presentation window for at

least one pulse of the train (see above for whisker stimulation protocol). The accuracy in the detection of isolated APs was calculated

as the ratio between the number of detected isolated APs in the juxtasomal electrophysiological recordings and the number of

detected corresponding fluorescence events.

Graphical user interface (GUI)

The t-series processing was done using a custom-made graphical user interface (GUI). TheGUI waswritten inMATLAB (R2017b, The

MathWorks, Inc., Natick, Massachusetts, United States). The GUI allowed to: i) import .tiff sequence (raw data) acquired both with

raster scan and SLS, browse frame by frame the series or display temporal projections (average, absolute maximum, temporal pixel

autocorrelation or local dynamic range in adjustable frame intervals); ii) correct for motion artifacts in raster scan acquisition using the

algorithms provided in https://github.com/flatironinstitute/NoRMCorre; iii) perform the semi-automatic segmentation procedure

described above; iv) perform NMF-based segmentation using the algorithms provided in https://github.com/flatironinstitute/

CaImAn-MATLAB; v) compute the SLS trajectories controlling for the inclusion of surrounding regions; vi) save relevant files.

Colocalization analysis
The manual selection of ROIs in each FOV was performed in Fiji (ImageJ V. 1.52e; Schindelin et al., 2012). This was done for ROI

identification including whole cellular profile, nuclear, and cytoplasmic regions. To perform colocalization analysis, we segmented

each FOV using the semi-automatic SNR pixel-wise approach. We divided each of 8 long t-series from 8 FOV in 4 short t-series, re-

sulting in 32 short t-series. The segmentation process returned a binary image for each t-series. Pixels belonging to ROIs in each

short t-series were assigned the value ‘1’, while pixels belonging to the remaining FOV were given the value ‘0’. Colocalization

was calculated summing the values of individual pixels across consecutive short t-series. If a pixel belonged to the selected ROI

in all 4 epochs, the sum of its values across the short t-series was 4 and at that pixel was assigned 100% of colocalization.

Accordingly, when a pixel belonged to the ROI in 1, 2 or 3 t-series, colocalization was set at 0%, 50%, 75%, respectively.

Ensembles detection
We computed neuronal ensembles similarly to Miller et al. (2014) and the code provided with the FluoroSNNAP software (Patel et al.,

2015) (https://www.seas.upenn.edu/�molneuro/software.html). As described inMiller et al. (2014), ensembles are defined as groups

of neurons simultaneously coactive in a given frame. To detect frames in which a given ROI was active we used raw fluorescence

traces processed as described in Pnevmatikakis et al. (2016) to obtain signal denoising and NMF processed traces. Periods (frames)

of activity for each ROI was defined using a threshold criterion on the amplitude of NMF-processed trace setting as ‘‘active’’ every

frame in which NMF trace was higher than 3 s.d. above 0. Traces were then binarized assigning value 0 to all periods (frames) where

the processed traces were below threshold and value 1 otherwise. The result is an ‘‘activity trace,’’ a series of frames assigned as

‘‘active’’ or ‘‘inactive.’’Whenever at least twoROIs were ‘‘active’’ in the same frame, we tested for the detection of an ensemble event.

To do this we generated 1,000 surrogate distribution of the ‘‘activity trace’’ for each ROI randomly shuffling frames assigned as

‘‘active’’ and ‘‘inactive.’’ A threshold for ensemble detection was set as the number of coactive cells exceeding only 5% of the sur-

rogate ‘‘activity traces.’’ In order to compute neural ensembles on down sampled datasets, we first detected events on the original
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traces and then binned the activity (bin width = 0.5 s) for both raster and SLS acquisitions assigning a value of 1 to bins where at least

one event was present, 0 otherwise. We repeated the neuronal ensembles extraction on the binned datasets.

NMF and Variance Accounted For
We applied spatial NMF (Lee and Seung, 1999) to either the entire normalized calcium activity or to the normalized calcium activity

restricted to those time instants where an ensemble was detected.We decomposed the spatial patterns of activity across the ROIs at

any instant of time, or at any instant of timewhere an ensemblewas detected, (which is a non-negative dataset) into a given number of

non-negative modules with non-negative coefficients, as follows:

F = M � A+E

where F is the normalized calcium activity in each of the ROIs at time instant t, M are the spatial modules (each being a pattern of

normalized calcium activity in each ROI), A is the set of spatial activation coefficients in each ROI in the considered instant of

time, and E the residual error.

The number of modules is a free parameter of the factorization, which expresses the number of possible different firing patterns in

which we factorize the data. We repeated the factorization by varying the number of modules from the minimal possible value (1) to

the maximal possible value (the number of ROIs in the FOV). For each value of the possible number of modules in this range, and for

each FOV, we computed the percentage of Variance Accounted For (VAF) of the NMF decomposition, defined as:

VAF = 100 �
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To characterize the spatial sparseness of each spatial module we used a sparseness index defined as:
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Where wj represents the weight of the j-th ROI to the module. The sparseness index reaches its maximal value of 1 if only 1 ROI

participate to a module.

Support vector machine
We trained a support vector machine (SVM) classifier (Bzdok et al., 2018) using non-balanced dataset to test if calcium population

dynamics could be used to infer the presence/absence of whisker stimulation in SLS and raster scan t-series. Chance level was set to

be proportional to the number of ‘‘baseline’’ frames (without whisker stimulation) over the total number of frames. The dataset was

split in 50% training set and 50% test set. Only series with at least half of the ROIs showing calcium events in at least half of the

whisker stimuli were considered. On the training set 10-fold cross validation was performed to select the optimal parameters for

the decoder. We used the n-dimensional array of the neural population activity (n = number of ROIs) to decode the presence of

the air puff. The accuracy of the SVM classifier was given by the percentage of correctly predicted states (presence/absence of

whisker stimulation).

QUANTIFICATION AND STATISTICAL ANALYSIS

Values are expressed as mean ± sd; the number of samples (N) and p values are reported in the figure legends or in the text. No sta-

tistical methods were used to pre-determine sample size, but sample size was chosen based on previous studies (Chen et al., 2013;

Miller et al., 2014). All recordings with no technical issues were included in the analysis and blinding was not used in this study. Quan-

tification was performed as described in previous paragraphs. Statistical analysis was performed with MATLAB software (Mathworks,

Natick,MA) andOrigin(Pro) 2018 (Origin OriginLab, Northampton,MA). A Kolmogorov-Smirnov testwas run on each experimental sam-

ple to test for normality. The significance thresholdwas always set at 0.05.When comparing two pairedpopulations of data, paired t test

or paired Wilcoxon signed-rank test were used to calculate statistical significance in case of normal and non-normal distribution,

respectively. Unpaired t test and two-sampleKolmogorov-Smirnov test orWilcoxon rank-sum testwere used for unpaired comparisons

of normally and non-normally distributed data, respectively. Fisher’s exact test was used to compare set of pixels selected in long

versus short t-series. All tests were two-sided, unless otherwise stated. Analysis of variance, functional modules identification,modules

sparseness and SVM classification were performed on MATLAB software (Mathworks, Natick, MA) using custom written codes.

DATA AND CODE AVAILABILITY

The dataset/code supporting the current study are available from the corresponding author on request.
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Figure S1. Selective expression of GCaMP6s in layer IV principal neurons of the mouse barrel cortex. Related to 
Figure 2. (A) Two-photon image showing a coronal section of the barrel cortex of a Scnn1a-cre mouse injected with 
AAV1.Syn.Flex.GCaMP6s. (B) Normalized fluorescence intensity as a function of cortical depth. The grey lines represent 
standard deviation, the dark line represents the average across FOVs (N = 4). (C) Two-photon image showing a zoom on 
a single barrel. (D) Normalized fluorescence intensity as a function of the barrel width (N = 4). (E-G) Two-photon image 
showing TdTomato expression (left panel, red), GCaMP6 (middle panel, green), and the merge in a coronal section of 
the barrel cortex from a bigenic Scnn1a-cre mouse x Floxed-TdTomato mouse injected with AAV1.Syn.Flex.GCaMP6s. 
(H) Percentage of observed cells under the different experimental conditons (N = 4 mice). (I) 3D intensity profile for four 
representative layer IV cells expressing GCaMP6s in vivo. (J) Fluorescence intensity profile along the cell’s diameter (N 
= 604 neurons from 8 mice). Grey lines indicate individual cells; the black line indicates the average across neurons ± sd. 
 
 
 
 
 

  



 

Figure S2. Computation of SLS trajectories is stable over time. Related to Figure 2. (A) Two-photon raster scanning 
image (single frame from a 250 seconds long time series) of layer IV neurons in vivo. The SLS trajectory is depicted in 
yellow. (B-B3) SLS trajectories designed on short t-series obtained dividing the t-series shown in (A) into four sequential 
epochs: 0-62.5 s in (B), 62.5-125 s in (B1), 125-187.5 s in (B2) and 187.5-250 s in (B3). (C) Overlap between the SLS 
trajectories shown in (B-B3). Only pixels belonging to cells of interest are displayed. Colors represent the percentage of 
overlap between the selected pixels in the four epochs: 0 % (magenta), 50 % (red), 75 % (yellow) and 100 % (white), 
respectively. (D) Zoom in of the five cells highlighted in (C). (E) Normalized distribution of segmented pixels showing 
0 %, 50 %, 75 % or 100 % colocalization. N = 8 groups of 4 consecutives short t-series from 8 FOV in 8 animals; two-
sample KS test, p = 2E-3 between 0 % and 50 % colocalization; p = 2E-4 between 50 % and 75 % colocalization; p = 2E-
4 between 75 % and 100 % colocalization; p = 2E-4 between 0 % and 100 % colocalization; p = 0.08 between 0 % and 
75 % colocalization; p = 2E-4 betwenn 50 % and 100 % colocalization. In this as well in other figures: *, p < 0.05; **, p 
< 0.01; ***, p < 0.001; n.s., non significant. Grey dots indicate individual measurements, the black bars indicate the 
average across measurements ± s.d. (F) Normalized number of segmented pixels with no colocalization (0 % in F) that 
belonged to ROIs (Inside ROIs) or that belonged to the segments connecting adjacent ROIs (Outside ROIs). N = 8 groups 
of 4 consecutives short t-series from 8 FOVs in 8 animals for both Inside ROIs and Outside ROIs conditions, respectively, 
two-sample KS test, p = 2E-4.  



 
 
Figure S3. Generation of SLS trajectories. Related to Figure 2. (A) Two-photon image of layer IV GCaMP6-expressing 
neurons. The yellow line represents the trajectory generated by SLS algorithm. Note that a reference box (Ref.) can be 
included in the SLS to monitor x, y motion artefacts. The region of the FOV highlighted in white is shown at an enlarged 
scale in the inset. (B-D) Same as in (A) for SLS trajectories with various surround regions (one pixel in B, two pixels in 
C, and three pixels in D).  
 
  



 
 
Figure S4. Precision of mirror positioning. Related to Figure 2. (A) Polygon line trajectories used to measure the 
temporal lag between the command signal and feedback signals of galvanometric mirrors as a function of the angle 
between successive segments of the line trajectory. (A1) Zoom in of the polygon trajectories shown in (A). (B) Left: 
Command (top) and feedback (bottom) signal for the X galvanometric mirror during a polygon trajectory with 20° angle. 
Right: Command (top) and feedback (bottom) signal for the Y galvanometric mirror during the same polygon trajectory 
shown on the left. (B1) Command (black) and feedback (red) signals are shown overlapped for the X (left) and Y (right) 
direction during a 20° polygon line scanning. Please note that the feedback signal was shifted backward in time by the 
time lag between command and feedback signals. (C-C1) Same as in (B-B1) for a typical SLS trajectory. (D) Temporal 
lag between the command signal and the feedback signal of the galvanometric mirrors during polygon line trajectories, 
SLS trajectories (SLS), and raster scanning (Raster). (E) Top: Two-photon fluorescence image showing a pollen grain 
obtained in raster scanning (greyscale signal) and an overlaying SLS trajectory (yellow line). Bottom: same field of view 
as above showing only the intensity of the pixels of the SLS (greyscale signal). (F) Normalized fluorescence intensity of 
pixels belonging to the SLS trajectory shown in the bottom panel of (E) and the pixels in the same spatial position but 



recorded in the raster scanning image shown in the upper panel of (E). (G) Cross-correlogram between the two signals 
shown in (F). (H) Time of peak cross correlation across different experiments. (I) A SLS trajectory (cyan) is projected 
onto a fluorescent grid (red). The fine spatial structure of the SLS trajectory is shown at an expanded scale in the inset. 
(J) SLS acquisitions with the trajectory shown in (I) as a function of the acquisition dwell time (from 4.4 µs to 1.6 µs). 
(K) Correlation between fluorescent signals recorded with SLS at different acquisition dwell times. 
  



 
 
Figure S5. Stability of line scan trajectories across scanning trials. Related to Figure 2. (A) A line scan trajectory used 
for in vivo recording (yellow line) is scanned on a fluorescent grid (blue squares, 120 µm period). ROIs are randomly 
positioned inside fluorescent region (blue squares) or in non fluorescent regions (dark areas) or at the border between the 
fluorescent and the non fluorescent region. Pixel size of SLS acquisitions is 0.77 µm. (B) A SLS is iterated 10,000 times 
on the grid in four different days (total scanned trajectories: 40,000). Fluorescence intensity of each pixel is displayed on 
a logarithmic pseudocolor scale. Based on the position of the scanned pixel with respect to the grid, we defined 100 border 
regions. Inset: magnification of a set of the 15 SLS repetitions around one border region (highlighted in red in the left 
panel). No bleaching of the grid fluorescence was observed across 10,000 repetitions. (C) Number of SLS acquisitions 
with fluorescence intensity higher than noise across identified border regions as a function of the distance from the highly 
fluorescent region (see STAR Methods for details). Pixel size of SLS acquisitions is 0.77 µm. The average across 4 
sequences of 10,000 SLS trajetories is displayed in black, values of individual sequences is shown in grey. Paired t-test 
for 0 µm vs 0.77 µm p = 1E-7, for 0.77 µm vs 1.54 µm p = 2E-8, for 1.54 µm vs 2.31 µm p = 6E-9, for 2.31 µm vs 3.08 
µm p = 7E-12, and for 3.08 µm vs 3.85 µm p = 2E-8.     
 
 
 
 
 
 
 
 
 
 
  



 
 
Figure S6. Acquisition speed in SLS. Related to Figure 2. (A) Time required to complete a scan as a function of the 
number of scanned cells for raster scan (black circles) and SLS (colored circles). In each SLS the number of pixels per 
cell was mantained constant while the surround region was increased from 0 to 3 pixels (red, pink, blue, and green dots). 
Red lines indicate the linear fit of data. (B) Ratio between the number of pixels in each SLS trajectory and the number of 
pixels in raster scan image (# pixelSLS /# pixelraster) as a function of the number of scanned cells. (C) Acquisition rate of 
SLS as a function of number of pixels included in the surround region (S0, S1, S2, and S3). N = 8 SLS acquisitions from 
8 FOVs. Paired t-test, p = 0.009 between S0 and S1 , p = 6E-4 between S0 and S2, p = 6E-4 between S0 and S3, p = 0.21 
between S1 and S2, p = 0.053 between S1 and S3, p = 0.36 between S2 and S3. (D) Acquisition frame rate of SLS in 4 
FOVs characterized by low (Low <F>) and high (High <F>) GCaMP6 fluorescence in vivo. N = 16 SLS acquisitions 
from 4 FOVs for both Low <F> and High <F>. Paired t-test, p = 0.003. 
  



 
 
Figure S7. The SNR and the accuracy in detecting single APs depend on both the acquisition rate and the dwell 
time per cell. Related to Figure 5. (A) Top: representative SLS acquisitions at 62.5 Hz from one cell in combined imaging 
and juxtasomal electrophysiological recordings (see Figure 5). Bottom: SLS acquisitions were temporally down sampled 
maintaining 75 %, 50 %, 33 %, and 25 % of the acquired SLS. White horizontal stripes indicates the position of the 
removed SLS acquisitions. (B) ∆F/F (black) over time for the cell shown in (A), which was simultaneously recorded in 
the juxtasomal electrophysiological configuration (grey trace), for SLS at 62.5 Hz (top) and after temporal down sampling 
(bottom traces). (C) SNR of fluorescence signals in SLS acquisitions in which one single spike was observed in 
simultaneous juxtasomal electrophysiological recordings as a function of the temporal down sampling. Grey dots, N = 16 
cells from 8 FOV in 4 animals. Error bars represent standard deviation. Paired sample Wilcoxon signed rank test: SLS 



62.5 Hz vs 75% p = 7.1E-4, SLS 62.5 Hz vs 50 % p = 4.8E-4, SLS 62.5 Hz vs 33 % p = 4.8E-4, SLS 62.5 Hz vs 25 % p 
= 5.8E-4, SLS 62.5 Hz vs SLS 30 Hz p = 0.002; 75 % vs 50 % p = 7.3E-4, 75 % vs 33 % p = 4.8E-4, 75 % vs 25 % p = 
0.072, 75 % vs SLS 30 Hz p = 0.003; 50 % vs 33 % p = 7.2E-4, 50 % vs 25 % p = 4.8E-4, 50 % vs SLS 30 Hz p= 0.064; 
33 % vs 25 % p = 3.1E-4, 33 % vs SLS 30 Hz p = 0.083. 25 % vs SLS 30 Hz p = 0.17. (C1) Same as in (C) but for raster 
scanning acquisitions. Raster scanning acquisitions were temporally down sampled maintaining 75 %, 50 %, 33 %, and 
25 % of the acquired frames. N = 16 cells from 8 FOV in 4 animals. Paired sample Wilcoxon signed rank test: Raster 30 
Hz vs 75 % p =4.8E-4, Raster 30 Hz vs 50 % p =4.8E-4, Raster 30 Hz vs 33 % p = 4.8E-4, Raster 30 Hz vs 25 % p = 
4.8E-4, Raster 30 Hz vs Raster 10 Hz p = 4.8E-4; 75 % vs 50 % p = 0.007, 75 % vs 33 % p = 4.8E-4, 75 % vs 25 % p = 
4.8E-4, 75 % vs Raster 10 Hz p = 4.8E-4; 50 % vs 33 % p = 4.8E-4, 50 % vs 25 % p = 4.8E-4, 50 % vs Raster 10 Hz p = 
4.8E-4; 33 % vs 25 % p = 4.8E-4, 33 % vs Raster 10 Hz p = 4.8E-4; 25 % vs Raster 10 Hz p = 0.48. (D) Accuracy in 
detecting single AP for the SLS experiments shown in (C). N = 16 cells from 8 FOV in 4 animals. Paired sample Wilcoxon 
signed rank test: SLS 62.5 Hz vs 75 % p = 7.1E-4, SLS 62.5 Hz vs 50 % p = 4.8E-4, SLS 62.5 Hz vs 33% p = 4.8E-4, 
SLS 62.5 Hz vs 25 % p = 5.8E-4, SLS 62.5 Hz vs SLS 30 Hz p = 0.002; 75 % vs 50 % p = 7.3E-4, 75 % vs 33 % p = 
4.8E-4, 75 % vs 25 % p = 0.072, 75 % vs SLS 30 Hz p = 0.003; 50 % vs 33 % p = 7.2E-4, 50 % vs 25 % p = 4.8E-4, 50 
% vs SLS 30 Hz p = 0.064; 33 % vs 25 % p = 3.1E-4, 33 % vs SLS 30 Hz p = 0.083; 25 % vs SLS 30 Hz p = 0.17. (D1) 
Same as in (D) but for raster scanning acquisitions. N = 16 cells from 8 FOV in 4 animals. Paired sample Wilcoxon signed 
rank test: Raster 30 Hz vs 75 % p =4.8E-4, raster 30 Hz vs 50 % p = 4.8E-4, raster 30 Hz vs 33 % p = 4.8E-4, raster 30 
Hz vs 25% p = 4.8E-4, raster 30 Hz vs raster 10 Hz p = 4.8E-4; 75 % vs 50 % p = 0.006, 75 % vs 33% p = 4.8E-4, 75 % 
vs 25 % p = 4.8E-4, 75 % vs raster 10 Hz p = 4.8E-4; 50 % vs 33 % p = 4.8E-4, 50 % vs 25 % p = 4.8E-4, 50 % vs raster 
10 Hz p = 4.8E-4; 33 % vs 25 % p = 4.8E-4, 33 % vs raster 10 Hz  p = 4.8E-4; 25 % vs raster 10 Hz p = 0.48. (E) Top: 
Two-photon image showing a GCaMP6s expressing neuron in vivo which was imaged with a SLS trajectory (cyan line) 
and simultaneously recorded with a glass pipette (dashed white lines). Yellow dots indicate the pixels of the SLS trajectory 
belonging to the cell. Bottom panels: pixels belonging to cells were randomly down sampled maintaining 75 %, 50 %, 33 
%, and 25 % of the acquired pixels (spatial down sampling). (F) ∆F/F (black) over time for one representative cell, which 
was simultaneously recorded in the juxtasomal electrophysiological configuration (grey trace), for SLS (top) and after 
spatial down sampling (bottom traces). (G) SNR of fluorescence signals in SLS acquisitions in which one single spike 
was observed in simultaneous juxtasomal electrophysiological recordings as a function of the spatial down sampling. 
Raster scanning acquisitions were randomly down sampled maintaining 75 %, 50 %, 33 %, and 25 % of the pixels within 
each ROI. Grey dots, N = 16 cells from 8 FOV in 4 animals. Error bars represent standard deviation. Paired sample 
Wilcoxon signed rank test: SLS all 62.5 Hz vs 75 % p = 4.8E-4, SLS all 62.5 Hz vs 50 % p = 4.8E-4, SLS all 62.5 Hz vs 
33 % p = 4.8E-4, SLS all 62.5 Hz vs 25 % p = 4.8E-4, SLS all 62.5 Hz vs SLS all 30 Hz p = 0.007; 75 % vs 50 % p = 
4.8E-4, 75 % vs 33 % p = 4.8E-4, 75 % vs 25 % p = 4.8E-4, 75 % vs SLS all 30 Hz p = 0.39; 50 % vs 33 % p = 4.8E-4, 
50 % vs 25 % p = 4.8E-4, 50 % vs SLS all 30 Hz p = 5.8E-4; 33 % vs 25 % p = 4.8E-4, 33 % vs SLS all 30 Hz p = 5.8E-
4; 25 % vs SLS all 30 Hz p = 4.8E-4. (G1) Same as in (G) but for raster scanning acquisitions. N = 16 cells from 8 FOV 
in 4 animals. Paired sample Wilcoxon signed rank test: raster all 30 Hz vs 75 % p =4.8E-4, raster all 30 Hz vs 50 % p = 
4.8E-4, raster all 30 Hz vs 33 % p = 4.8E-4, raster all 30 Hz vs 25 % p = 4.8E-4, raster all 30 Hz vs raster all 10 Hz p = 
4.8E-4; 75 % vs 50 % p = 0.006, 75 % vs 33 % p = 4.8E-4, 75 % vs 25 % p = 4.8E-4, 75 % vs raster all 10 Hz p = 4.8E-
4; 50 % vs 33 % p = 4.8E-4, 50 % vs 25 % p = 4.8E-4, 50 % vs raster all 10 Hz p = 4.8E-4; 33 % vs 25 % p = 4.8E-4, 33 
% vs raster 10 Hz p = 0.48; 25 % vs raster 10 all 10 Hz p = 4.8E-4. (H) Accuracy in detecting single AP for the SLS 
experiments shown in (G). N = 16 cells from 8 FOV in 4 animals. Paired sample Wilcoxon signed rank test: SLS all 62.5 
Hz vs 75 % p = 4.8E-4, SLS all 62.5 Hz vs 50 % p = 4.8E-4, SLS all 62.5 Hz vs 33 % p = 4.8E-4, SLS all 62.5 Hz vs 25 
% p = 4.8E-4, SLS all 62.5 Hz vs SLS all 30 Hz p = 0.002; 75 % vs 50 % p = 4.8E-4, 75 % vs 33 % p = 4.8E-4, 75 % vs 
25 % p = 4.8E-4, 75 % vs SLS all 30 Hz p = 0.012; 50 % vs 33 % p = 4.8E-4, 50 % vs 25 % p = 4.8E-4, 50 % vs SLS all 
30 Hz p = 0.002; 33 % vs 25 % p = 4.8E-4, 33 % vs SLS all 30 Hz p = 4.8E-4; 25 % vs SLS all 30 Hz p = 4.8E-4. (H1) 
Same as in (H) but for raster scanning acquisitions. N = 16 cells from 8 FOV in 4 animals. Paired sample Wilcoxon signed 
rank test: raster all 30 Hz vs 75 % p = 4.8E-4, raster all 30 Hz vs 50 % p = 4.8E-4, raster all 30 Hz vs 33 % p = 4.8E-4, 
raster all 30 Hz vs 25 % p = 4.8E-4, raster all 30 Hz vs raster all 10 Hz p = 4.8E-4; 75 % vs 50 % p = 7.2E-4, 75 % vs 33 
% p = 4.8E-4, 75 % vs 25 % p = 4.8E-4, 75 % vs raster all 10 Hz p = 4.8E-4; 50 % vs 33 % p = 4.8E-4, 50 % vs 25 % p 
= 4.8E-4, 50 % vs raster all 10 Hz p = 4.8E-4; 33 % vs 25 % p = 4.6E-4, 33 % vs raster all 10 Hz p = 0.21; 25 % vs raster 
all 10 Hz p = 4.8E-4. 

  



 
 
Figure S8. Decreased coactivity threshold of detected neural ensembles in SLS. Related to Figure 6. (A) Left: 
Coactivity threshold for ensemble activity detection in anesthetized animals under the different experimental conditions. 
Right: Coactivity threshold after down sampling of SLS series to match the acquisition rate of raster scanning series. 
Spontaneous activity: N = 6 for raster, N = 6 for SLS at 0-20 Hz, N = 6 for SLS at 20-40 Hz, N = 3 for SLS at > 40 Hz 
from 6 anesthetized mice.  Air puff stimulation: N = 20 for raster, N = 15 for SLS at 0-20 Hz, N = 13 for SLS at 20-40 
Hz, N = 7 for SLS at > 40 Hz from 6 anesthetized mice. Left, spontaneous activity: paired t-test raster vs SLS at 0-20 Hz 
p = 1E-4, raster vs SLS at 20-40 Hz p =  1E-5, raster vs SLS at > 40 Hz p = 1E-4. Air puff stimulation: paired t-test raster 
vs SLS at 0-20 Hz p = 6E-8, raster vs SLS at 20-40 Hz p = 6E-8, raster vs SLS at > 40 Hz p = 6E-8. Right, spontaneous 
activity: paired t-test raster vs SLS at 0-20 Hz p = 0.30, raster vs SLS at 20-40 Hz p = 0.056, raster vs SLS at > 40 Hz p = 
0.056. Air puff stimulation: paired t-test raster vs SLS at 0-20 Hz p = 0.009, raster vs SLS at 20-40 Hz p = 0.012, raster 
vs SLS at > 40 Hz p = 1E-7. (B) Same as in (A) for experiments in awake mice. Spontaneous activity: N = 5 for raster 
and N = 4 for SLS at 0-20 Hz from 2 awake mice. Air puff stimulation: N = 7 for raster and N = 8 for SLS at 0-20 Hz 
from 2 awake mice. Left, spontaneous activity: paired t-test raster vs SLS at 0-20 Hz p = 1E-4. Air puff stimulation: paired 
t-test raster vs at SLS 0-20 Hz p = 4E-5. Right, spontaneous activity: paired t-test raster vs SLS at 0-20 Hz p = 0.019. Air 
puff stimulation: paired t-test raster vs SLS at 0-20 Hz p = 2E-5. (C) Time to peak measured for all isolated calcium 
events in anesthetized animals under the different experimental conditions.  Spontaneous activity: N = 6 for raster, N = 6 
for SLS at 0-20 Hz, N = 6 for SLS at 20-40 Hz, N = 3 for SLS at > 40 Hz from 6 anesthetized mice.  Air puff stimulation: 
N = 20 for raster, N = 15 for SLS at 0-20 Hz, N = 13 for SLS at 20-40 Hz, N = 7 for SLS at > 40 Hz from 6 anesthetized 
mice. Spontaneous activity: paired t-test raster vs SLS at 0-20 Hz p = 6E-8, raster vs SLS at 20-40 Hz p = 6E-8, raster vs 
SLS at > 40 Hz p= 6E-8. Air puff stimulation: paired t-test raster vs SLS at 0-20 Hz p = 6E-8, raster vs SLS at 20-40 Hz 
p = 6E-8, raster vs SLS at > 40 Hz p = 6E-8. (D) Same as in (C) for awake mice. Spontaneous activity: N = 5 for raster, 
N = 4 for SLS at 0-20 Hz from 2 awake mice.  Air puff stimulation: N = 7 for raster, N = 8 for SLS at 0-20 Hz from 2 
awake mice. Spontaneous activity: paired t-test raster vs SLS at 0-20 Hz p = 2E-6. Air puff stimulation: paired t-test raster 
vs SLS at 0-20 Hz p = 8E-8. Paired t-test raster in spontaneous activity vs raster in air puff stimulation p = 0.001. 



 
 
Figure S9. Increased number of small detected calcium events in SLS. Related to Figure 7. (A) Representative SLS 
fluorescence trace over time from one ROI showing two fluorescence events classified as small event (small) and large 
event (large) based on the value of a threshold set at the 50th percentile of the amplitude distribution of all detected calcium 
events. (B) Distribution of small calcium events detected from SLS (black) and raster (grey) acquisitions during 
spontaneous activity and air puff stimulation in anesthetized and awake animals. (C) Same as in (B) for large calcium 
events. (D) Normalized number of detected functional modules from ensemble activity as a function of the percentage of 
VAF. Data are reported for SLS acquisitions (black), raster acquisitions (grey), and SLS series down sampled to match 
the acquisition rate of raster scanning series (blue, SLS binned) in anesthetized mice. N = 26 for raster, N = 10 for SLS 
at 0-20 Hz, N = 6 for SLS at 20-40 Hz, N = 3 for SLS at > 40 Hz from 6 anesthetized mice. Comparison bewteen raster 
and SLS acquisitions: paired t-test, p = 3E-12 at 10% of VAF, p = 1E-12 at 20% of VAF, p = 1E-12 at 30% of VAF, p = 
2E-12 at 40% of VAF, p = 2E-11 at 50% of VAF, p = 4E-8 at 60% of VAF, p = 0.025 at 70% of VAF, p = 0.072 at 80% 
of VAF, p = 0.003 at 90% of VAF, p = 1 at 100% of VAF. No significant p-values were obtained when comparing 
between raster and SLS binned at any percentage of VAF. (E) Same as in (D) for experiments in awake animals. N = 12 
for raster, N = 12 for SLS at 0-20 Hz from 2 awake mice. Comparison bewteen raster and SLS acquisitions: paired t-test, 
p = 7E-5 at 10% of VAF, p = 1E-4 at 20% of VAF, p = 2E-4 at 30% of VAF, p = 0.001 at 40% of VAF, p = 0.078 at 50% 
of VAF, p = 0.88 at 60% of VAF, p = 0.12 at 70% of VAF, p = 0.008 at 80% of VAF, p = 0.01 at 90% of VAF, p = 1 at 
100% of VAF. (F) Sparseness index of functional modules from ensemble activity in raster scan (N = 38) and SLS (N = 
31) acquisitions from 6 anesthetized and 2 awake mice. Two sample KS test, p = 6E-14 between anesthetized raster and 
anesthetized SLS, p = 2E-7 between awake raster and awake SLS, p = 0.49 between anesthetized raster and awake raster, 
p = 1E-7 bewteen anesthetized raster and awake SLS, p = 1E-6 between anesthetized SLS and awake raster, and p = 0.08 
between anesthetized SLS and awake SLS.  
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